Chapter

5.1. (a) 478
(b) 743
(c) 2025
(d) 41567
(e) 61680

52. (a) 478
(b) —280
() -1

5.3. (a) 478
(b) —281
(c) -2

5

5.4. The numbers are represented as follows:

Decima | Signand Magnitude | 1's Complement | 2's Complement
73 000001001001 000001001001 | 000001001001
1906 011101110010 011101110010 011101110010
—-95 100001011111 111110100000 111110100001
—1630 111001011110 100110100001 | 100110100010
5.5. Theresults of the operations are:
(a): 00110110 54 (b): 01110101 117 (o): 11011111 (—33)
+01000101 +69 +11011110 —34 +10111000 +(—72)
01111011 123 01010011 83 10010111 (—105)
(d): 00110110 54 (e): 01110101 Q7 N 11010011 (—45)
—00101011 —43 —11010110 —(—42) —11101100 —(-20)
00001011 11 10011111 (159) 11100111 (—25)

Arithmetic overflow occurs in example e; note that the pattern 10011111 represents —97 rather than +159.

5.6. The associativity of the XOR operation can be shown as follows:
td(ydz) = xd®(Yz+yz)

#(yz +yz) +e(y -7+ y2)

= T-yz+zxTyz+zy-z+ vyz

(zPy)dz = (Fy+a2y)dz
= (T-J+ayz+ (Ty+ay)z
= T -yz+rxyz+rTyz +xy -7z

The two SOP expressions are the same.

5.7. Inthecircuit of Figure5.5b, we have:

55 = (0P
= DY D
ciy1 = (2 Dyi)ei + 2y

(Tiyi + ;) ci + 2y
Tiyici + @iy, + 2y;
= YiCi + i + Ty

The expressionsfor s; and ¢; 1 are the same as those derived in Figure 5.4b.

5.8. We will give a descriptive proof for ease of understanding. The 2's complement of a given number can be
found by adding 1 to the 1's complement of the number. Suppose that the number has k£ 0s in the least-
significant bit positions, b1 .. . bg, andit hasb; = 1. Whenthisnumber isconvertedtoits1'scomplement,
each of these k bits has thevalue 1. Adding 1 to thisstring of 1s produces by b, _1b5_2...bg = 100...0.
Thisresultis equivalent to copying the £ Osand thefirst 1 (in bit position &) encountered when the number
isscanned fromrightto left. Supposethat the most-significantn — & bits, b, _ 15,2 . . . by, have some pattern
of Osand 1s, but b, = 1. Inthe 1’scomplement thispattern will be complemented in each bit position, which
will include b; = 0. Now, adding 1 to the entire n-bit number will make b; = 1, but no further carries will
be generated; therefore, the complemented bitsin positionsb,, —16,_s . . . bi+1 Will remain unchanged.

5.9. Construct thetruth table

Tn-1 Yn-1 Cn—1 || ¢n | Sn—1 (Sgnbit) | Overflow
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 1 1 0

Note that overflow cannot occur when two numbers with opposite signsare added. From the truth table the
overflow expressionis
Overflow = Chcn_1+ €xCp_1 = ¢y D Cn_1

5-2

5.10. Since sy = x; P yr P ¢k, it followsthat

p®ysdsy = (thDys) D (2r D yr D)
(zr D yr) ® (ks B yr) B ek
066 e

= Ck

5.11. Yes, itworks. The NOT gate that produces ¢; is not needed in stages where i > 0. The drawback is*“poor”
propagation of ¢; = 1 through the topmost NMOS transistor. The positiveaspect isfewer transistors needed
to produceé; ;1.

5.12. From Expression 5.4, each ¢; requires: AND gates and one OR gate. Therefore, to determine all ¢; signals
weneed 7 (i+ 1) = (n? + 3n)/2 gates. In addition to this, we need 3n gatesto generateal ¢, p, and s
functions. Therefore, atotal of (n? + 9n)/2 gates are needed.

5.13. 84 gates.

5.14. Thecircuit for a 4-bit version of the adder based on the hierarchicd structurein Figure 5.18 is constructed

asfollows:
X3 Y3 X3 ¥ X1 Y1 %o Yo
Block 1 Block 1 Co
G| Py 1 Go|Po l l
S35 S1 So

Cp = L
4 ——‘
C2

Blocks 0 and 1 have the structure similar to the circuit in Figure 5.16. The overal circuit is given by the

expressions
pi = Tty
i = T3y
Py = pipo
Go = g1+p190

5-3

Py = p3ps

Gi = g3+ps392
ez = Go+ FPoco
ca = Gi1+ PiGo+ PiPoco

5.15. Thelongest path, which causes the critical delay, is from the inputsimg and m; to the output p7, indicated
by the dashed path in the following copy of Figure 5.33a:

0 ms m, m, my
|
l %
S S v S
) U
PP1 — - 0
i %
D B 92
PP2 ;
¥
{H[Tle [T FET] EI= 9
I
i
p7 Ps Psg Pg P3 P> Py Po

Propagation through the block A involves one gate delay in the AND gate shown in Figure 5.33b and two
gate delaysto generate the carry-out in thefull-adder. Then, in each of theblocks B, C', D, E, F, G,and H,
two more gate delays are needed to generate the carry-out signalsin the circuits depicted by Figure 5.33¢.
Therefore, thetotal delay along the critical path is 17 gate delays.

5.16. (¢) LIBRARY ieee;
USE ieeestd_logic_1164.dl ;

ENTITY row0 IS
PORT (g0, 1, cin, mk, mkpl : IN STD_LOGIC;
S, cout : OUT STD_LOGIC);
END row0;

ARCHITECTURE LogicFunc OF row0 IS

SIGNAL &0, al : STD_LOGIC;
BEGIN

a0 <=q0 AND mkp1;

al <=qlAND mk ;

s<=cinXOR & XOR a1l ;

cout <= (cin AND a0) OR (cin AND al) OR (a0 AND al) ;
END LogicFunc;

(b)) LIBRARY ieee;
USE ieeestd_logic_1164.dl ;
ENTITY rowl S
PORT (qj, cin, mk, BitPPi : IN STD_LOGIC;
S, cout : OUT STD_LOGIC);
END rowl;

ARCHITECTURE LogicFunc OF row1 1S

SIGNAL &0 : STD_LOGIC ;
BEGIN

a0 <=qg AND mk ;

s<=cin XOR a0 XOR BitPPi ;

cout <= (cin AND a0) OR (cin AND BitPPi) OR (a0 AND BitPPi) ;
END LogicFunc;

(¢) LIBRARY ieee;
USE ieeestd_logic_1164.dl ;
ENTITY mult4x4 1S
PORT (cin :IN STD_LOGIC;
M,Q :IN STD_LOGIC.VECTOR(3DOWNTODO);
P : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END mult4x4 ;

ARCHITECTURE Structure OF mult4x4 1S

COMPONENT row0
PORT (g0, g1, cin, mk, mkpl :IN STD_LOGIC;
S, cout : OUT STD_LOGIC);
END COMPONENT ;
COMPONENT row1
PORT (qj, cin, mk, BitPPi : IN STD_LOGIC;
S, cout : OUT STD_LOGIC);
END COMPONENT ;

SIGNAL PP1 : STD_LOGIC_VECTOR(5 DOWNTO 2) ;
SIGNAL PP2 : STD_LOGIC_VECTOR(6 DOWNTO 3) ;
SIGNAL Crow0, Crowl, Crow2: STD_LOGIC_VECTOR(1 TO 3) ;

BEGIN
P(0) <= Q(0) AND M(0) ;
row0_1: row0 PORT MAP (Q(0), Q(1), cin, M(0), M(1), P(1), Crow0(1)) ;
row0_2: row0 PORT MAP (Q(0), Q(1), Crow0(1), M(1), M(2), PP1(2), Crow0(2)) ;
row0_3: row0 PORT MAP (Q(0), Q(1), Crow0(2), M(2), M(3), PP1(3), Crow0(3)) ;
row0_4: row0 PORT MAP (Q(0), Q(1), Crow0(3), M(3), cin, PP1(4), PP1(5)) ;
rowl 2: rowl PORT MAP (Q(2), cin, M(0), PP1(2), P(2), Crowl1(1)) ;
rowl_3: rowl PORT MAP (Q(2), Crow1(1), M(1), PP1(3), PP2(3), Crowl(2)) ;
rowl 4: rowl PORT MAP (Q(2), Crowl(2), M(2), PP1(4), PP2(4), Crowl(3)) ;
rowl.5: rowl PORT MAP (Q(2), Crow1(3), M(3), PP1(5), PP2(5), PP2(6)) ;
row2_3: rowl PORT MAP (Q(3), cin, M(0), PP2(3), P(3), Crow2(1)) ;
row2_4: rowl PORT MAP (Q(3), Crow2(1), M(1), PP2(4), P(4), Crow2(2)) ;
row2.5: rowl PORT MAP (Q(3), Crow2(2), M(2), PP2(5), P(5), Crow2(3)) ;
row2_6: rowl PORT MAP (Q(3), Crow2(3), M(3), PP2(6), P(6), P(7)) ;

END Structure;;

5.17. The code in Figure P5.2 represents a multiplier. It multipliesthe lower two bits of Input by the upper two
bits of Input, producing thefour-bit Output. The style of codeis poor, because it isnot readily apparent what
isbeing described.

5.18. Let Y = ysy2y1y0 bethe9'scomplement of the BCD digit X = z3zsx12¢. Then, Y isdefined by thetruth

table
r3 T2 T1 Xy Ys Y2 Y1 Yo
0 0 0 0 1 0 0 1
0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0
0 1 1 0 0 0 1 1
0 1 1 1 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0
Thisgives
Yo = %o
y = 1
Y2 = Tawy+ w2my
Ys = T3T2T1

5.19. BCD subtraction can be performed using 10's complement representation, using an approach that is similar
to 2's complement subtraction. Note that 10's and 2's complements are the radix complements in number
systems where the radices are 10 and 2, respectively. Let X and Y be BCD numbersgivenin 10'scomple-
ment representation, such that the sign (left-most) BCD digit is 0 for positive numbers and 9 for negative
numbers. Then, the subtraction operation.S = X — Y isperformed by finding the 10's complement of Y
and adding it to X, ignoring any carry-out from the sign-digit position.

For example, let X = 068 and Y = 043. Then, the 10’'s complement of ¥ is957, and 5" = 068 + 957 =
1025. Dropping the carry-out of 1 from the sign-digit position gives S = 025.
As another example, let X = 032 and Y = 043. Then, S = 032 + 957 = 989, which represents —114.

The 10'scomplement of Y can be formed by adding 1 to the 9's complement of Y. Therefore, acircuit that
can add and subtract BCD operands can be designed as follows:

1

9's complementer

MUX [<—s— Add/Sub

N
BCD Adder
S

For the 9's complementer one can usethecircuit designed in problem 5.18. The BCD adder isacircuit based
on the approach illustrated in Figure 5.40.

5.21. A full-adder circuit can be used, such that two of thebitsof the number are connected asinputsa and y, while
the third bit is connected as the carry-in. Then, the carry-out and sum bitswill indicate how many input bits
areequal to 1.

out

\—v—/
Result

5-7

5.22. Using the approach explained in the solution to problem 5.21, the desired circuit can be built as follows:

Z5 Z Z3 2 i %
[FA | FA
2-bit 0
|7 adder
\—V—/
Result

5.23. Using the approach explained in the solutionsto problems 5.21 and 5.22, the desired circuit can be built as
follows:

— HA F|AS - J_ FAS

i-mt

] adder

0

|

e 0

L

Result

5.24. The graphical representationis

000

999 001

998 002

902 098
901 900 099

For example, the addition —3 + (+5) = 2 involvesstarting at 997 (= —3) and going clockwise 5 humbers,
which givestheresult 002 (= +2). Similarly, thesubtraction 4 — (+8) = —4 involves starting at 004 (= +4)
and going countercl ockwise 8 numbers, which givesthe result 996 (= —4).

5.25. Theternary haf-adder in Figure P5.3 can be defined using binary-encoded signals as follows:

A B Carry | Sum
ap ag by bo Cout 51 So
0O 0 0 ©O 0 0O O
0O 0 0 1 0 0 1
0O 0 1 o0 0 1 0
0O 1 0 oO 0 0 1
0O 1 0 1 0 1 0
0O 1 1 o0 1 0O O
1 0 0 O 0 1 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1

The remaining 7 (out of 16) valuations, where either a1 = ag = 1, 0r by = by = 1, can betreated as don't
care conditions. Then, the minimum cost expressions are;

Cout = aoby +arby 4+ aibg
s1 = aopbo + @ doby + arbiby
so = aiby + @ dobo + agbibo

5.26. Ternary full-adder is defined by the truth table:

Sum

- N O

[QV

o

Cout

O O -

o

A B

Cin

O N

[eoNeoNe]

o

-

-

Using binary-encoded signals for thisfull-adder gives the following truth table:

Sum
S0

S1

Cout

ar ap b1 bo

Cin

5-10

Treating the 14 (out of 32) valuationswhere either a; = ag = 1 or by = by = 1 asdon’t care conditions,
leads to the minimum cost expressions

Cout = aobi + a1bo 4+ a1bi + a1¢in + bicin + aobocin

apboCipn + @1 @001 Cip + a1b100Tin + a1bicin + @1 T0boCin + aobibocin

S1

Sg a101Cip, + @1 aoboCipn + aob1boTin + a1bocin + aobicin + @106b10cn

5.27. The subtractions 26 — 27 = 99 and 18 — 34 = 84 make sense if the two-digit numbers 00 to 99 are in-
terpreted so that the numbers 00 to 49 are positive integers from 0 to +49, while the numbers 50 to 99 are
negative integersfrom —50 to —1. This scheme can be illustrated graphically as follows:

5-11

