
Chapter 5

5.1. (a) 478
(b) 743
(c) 2025
(d) 41567
(e) 61680

5.2. (a) 478
(b) �280
(c) �1

5.3. (a) 478
(b) �281
(c) �2

5.4. The numbers are represented as follows:

Decimal Sign and Magnitude 1’s Complement 2’s Complement
73 000001001001 000001001001 000001001001

1906 011101110010 011101110010 011101110010
�95 100001011111 111110100000 111110100001
�1630 111001011110 100110100001 100110100010

5.5. The results of the operations are:

(a): 00110110 54 (b): 01110101 117 (c): 11011111 (�33)
+01000101 +69 +11011110 � 34 +10111000 +(�72)

01111011 123 01010011 83 10010111 (�105)

(d): 00110110 54 (e): 01110101 (117) (f): 11010011 (�45)
�00101011 �43 �11010110 �(� 42) �11101100 �(�20)

00001011 11 10011111 (159) 11100111 (�25)

Arithmetic overflow occurs in example e; note that the pattern 10011111 represents �97 rather than +159.

5-1

5.6. The associativity of the XOR operation can be shown as follows:

x� (y � z) = x� (yz + yz)

= x(yz + yz) + x(y � z + yz)

= x � yz + xyz + xy � z + xyz

(x� y) � z = (xy + xy)� z

= (x � y + xy)z + (xy + xy)z

= x � yz + xyz + xyz + xy � z

The two SOP expressions are the same.

5.7. In the circuit of Figure 5.5b, we have:

si = (xi � yi) � ci

= xi � yi � ci

ci+1 = (xi � yi)ci + xiyi

= (xiyi + xiyi)ci + xiyi

= xiyici + xiyici + xiyi

= yici + xici + xiyi

The expressions for si and ci+1 are the same as those derived in Figure 5.4b.

5.8. We will give a descriptive proof for ease of understanding. The 2’s complement of a given number can be
found by adding 1 to the 1’s complement of the number. Suppose that the number has k 0s in the least-
significant bit positions, bk�1 : : : b0, and it has bk = 1. When this number is converted to its 1’s complement,
each of these k bits has the value 1. Adding 1 to this string of 1s produces bkbk�1bk�2 : : : b0 = 100 : : :0.
This result is equivalent to copying the k 0s and the first 1 (in bit position bk) encountered when the number
is scanned from right to left. Suppose that the most-significantn�k bits, bn�1bn�2 : : : bk, have some pattern
of 0s and 1s, but bk = 1. In the 1’s complement this pattern will be complemented in each bit position, which
will include bk = 0. Now, adding 1 to the entire n-bit number will make bk = 1, but no further carries will
be generated; therefore, the complemented bits in positions bn�1bn�2 : : : bk+1 will remain unchanged.

5.9. Construct the truth table

xn�1 yn�1 cn�1 cn sn�1 (sign bit) Overflow
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 1 1 0

Note that overflow cannot occur when two numbers with opposite signs are added. From the truth table the
overflow expression is

Overflow = cncn�1 + cncn�1 = cn � cn�1

5-2

5.10. Since sk = xk � yk � ck, it follows that

xk � yk � sk = (xk � yk)� (xk � yk � ck)

= (xk � yk)� (xk � yk)� ck

= 0� ck

= ck

5.11. Yes, it works. The NOT gate that produces ci is not needed in stages where i > 0. The drawback is “poor”
propagation of ci = 1 through the topmost NMOS transistor. The positive aspect is fewer transistors needed
to produce ci+1.

5.12. From Expression 5.4, each ci requires i AND gates and one OR gate. Therefore, to determine all ci signals
we need

Pn

i=1(i+ 1) = (n2 + 3n)=2 gates. In addition to this, we need 3n gates to generate all g, p, and s
functions. Therefore, a total of (n2 + 9n)=2 gates are needed.

5.13. 84 gates.

5.14. The circuit for a 4-bit version of the adder based on the hierarchical structure in Figure 5.18 is constructed
as follows:

Block 1

x1 x0y1 y0

Block 1

x3 x2y3 y2

s1 s0s3 s2

c4 c2

G1 P1 G0 P0

c0

Blocks 0 and 1 have the structure similar to the circuit in Figure 5.16. The overall circuit is given by the
expressions

pi = xi + yi

gi = xiyi

P0 = p1p0

G0 = g1 + p1g0

5-3

P1 = p3p2

G1 = g3 + p3g2

c2 = G0 + P0c0

c4 = G1 + P1G0 + P1P0c0

5.15. The longest path, which causes the critical delay, is from the inputsm0 and m1 to the output p7, indicated
by the dashed path in the following copy of Figure 5.33a:

0

0

0

p7 p6 p5 p4 p3 p2 p1 p0

q2

q1

q3

q0

m3 m2 m1 m00

PP1

PP2

H G F E

D

C B A

Propagation through the block A involves one gate delay in the AND gate shown in Figure 5.33b and two
gate delays to generate the carry-out in the full-adder. Then, in each of the blocksB, C,D, E, F ,G, and H,
two more gate delays are needed to generate the carry-out signals in the circuits depicted by Figure 5.33c.
Therefore, the total delay along the critical path is 17 gate delays.

5.16. (a) LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY row0 IS
PORT (q0, q1, cin, mk, mkp1 : IN STD LOGIC ;

s, cout : OUT STD LOGIC) ;
END row0;

ARCHITECTURE LogicFunc OF row0 IS
SIGNAL a0, a1 : STD LOGIC ;

BEGIN
a0 <= q0 AND mkp1 ;
a1 <= q1 AND mk ;
s <= cin XOR a0 XOR a1 ;
cout <= (cin AND a0) OR (cin AND a1) OR (a0 AND a1) ;

END LogicFunc ;

5-4

(b) LIBRARY ieee ;
USE ieee.std logic 1164.all ;
ENTITY row1 IS

PORT (qj, cin, mk, BitPPi : IN STD LOGIC ;
s, cout : OUT STD LOGIC) ;

END row1 ;

ARCHITECTURE LogicFunc OF row1 IS
SIGNAL a0 : STD LOGIC ;

BEGIN
a0 <= qj AND mk ;
s <= cin XOR a0 XOR BitPPi ;
cout <= (cin AND a0) OR (cin AND BitPPi) OR (a0 AND BitPPi) ;

END LogicFunc ;

(c) LIBRARY ieee ;
USE ieee.std logic 1164.all ;
ENTITY mult4x4 IS

PORT (cin : IN STD LOGIC ;
M, Q : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
P : OUT STD LOGIC VECTOR(7 DOWNTO 0));

END mult4x4 ;

ARCHITECTURE Structure OF mult4x4 IS
COMPONENT row0

PORT (q0, q1, cin, mk, mkp1 : IN STD LOGIC ;
s, cout : OUT STD LOGIC) ;

END COMPONENT ;
COMPONENT row1

PORT (qj, cin, mk, BitPPi : IN STD LOGIC ;
s, cout : OUT STD LOGIC) ;

END COMPONENT ;
SIGNAL PP1 : STD LOGIC VECTOR(5 DOWNTO 2) ;
SIGNAL PP2 : STD LOGIC VECTOR(6 DOWNTO 3) ;
SIGNAL Crow0, Crow1, Crow2 : STD LOGIC VECTOR(1 TO 3) ;

BEGIN
P(0) <= Q(0) AND M(0) ;
row0 1: row0 PORT MAP (Q(0), Q(1), cin, M(0), M(1), P(1), Crow0(1)) ;
row0 2: row0 PORT MAP (Q(0), Q(1), Crow0(1), M(1), M(2), PP1(2), Crow0(2)) ;
row0 3: row0 PORT MAP (Q(0), Q(1), Crow0(2), M(2), M(3), PP1(3), Crow0(3)) ;
row0 4: row0 PORT MAP (Q(0), Q(1), Crow0(3), M(3), cin, PP1(4), PP1(5)) ;
row1 2: row1 PORT MAP (Q(2), cin, M(0), PP1(2), P(2), Crow1(1)) ;
row1 3: row1 PORT MAP (Q(2), Crow1(1), M(1), PP1(3), PP2(3), Crow1(2)) ;
row1 4: row1 PORT MAP (Q(2), Crow1(2), M(2), PP1(4), PP2(4), Crow1(3)) ;
row1 5: row1 PORT MAP (Q(2), Crow1(3), M(3), PP1(5), PP2(5), PP2(6)) ;
row2 3: row1 PORT MAP (Q(3), cin, M(0), PP2(3), P(3), Crow2(1)) ;
row2 4: row1 PORT MAP (Q(3), Crow2(1), M(1), PP2(4), P(4), Crow2(2)) ;
row2 5: row1 PORT MAP (Q(3), Crow2(2), M(2), PP2(5), P(5), Crow2(3)) ;
row2 6: row1 PORT MAP (Q(3), Crow2(3), M(3), PP2(6), P(6), P(7)) ;

END Structure ;

5-5

5.17. The code in Figure P5.2 represents a multiplier. It multiplies the lower two bits of Input by the upper two
bits of Input, producing the four-bit Output. The style of code is poor, because it is not readily apparent what
is being described.

5.18. Let Y = y3y2y1y0 be the 9’s complement of the BCD digitX = x3x2x1x0. Then, Y is defined by the truth
table

x3 x2 x1 x0 y3 y2 y1 y0
0 0 0 0 1 0 0 1
0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0
0 1 1 0 0 0 1 1
0 1 1 1 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0

This gives

y0 = x0

y1 = x1

y2 = x2x1 + x2x1

y3 = x3x2x1

5.19. BCD subtraction can be performed using 10’s complement representation, using an approach that is similar
to 2’s complement subtraction. Note that 10’s and 2’s complements are the radix complements in number
systems where the radices are 10 and 2, respectively. Let X and Y be BCD numbers given in 10’s comple-
ment representation, such that the sign (left-most) BCD digit is 0 for positive numbers and 9 for negative
numbers. Then, the subtraction operation S = X � Y is performed by finding the 10’s complement of Y
and adding it to X, ignoring any carry-out from the sign-digit position.

For example, let X = 068 and Y = 043. Then, the 10’s complement of Y is 957, and S0 = 068 + 957 =
1025. Dropping the carry-out of 1 from the sign-digit position gives S = 025.

As another example, let X = 032 and Y = 043. Then, S = 032 + 957 = 989, which represents �1110.

The 10’s complement of Y can be formed by adding 1 to the 9’s complement of Y . Therefore, a circuit that
can add and subtract BCD operands can be designed as follows:

5-6

BCD Adder

MUX

9’s complementer

S

X Y

Add Sub⁄

For the 9’s complementer one can use the circuit designed in problem 5.18. The BCD adder is a circuit based
on the approach illustrated in Figure 5.40.

5.21. A full-adder circuit can be used, such that two of the bits of the number are connected as inputsx and y, while
the third bit is connected as the carry-in. Then, the carry-out and sum bits will indicate how many input bits
are equal to 1.

z0

z1z2

cout
cin

yx

s

Result

5-7

5.22. Using the approach explained in the solution to problem 5.21, the desired circuit can be built as follows:

z2z4z5

Result

FA FA

z1

2-bit
0

z0z3

adder

5.23. Using the approach explained in the solutions to problems 5.21 and 5.22, the desired circuit can be built as
follows:

z2z4z5

Result

FA FA

z1

2-bit

0

z0z3

adder

HA

2-bit
adder 0

s s

z6z7

5-8

5.24. The graphical representation is

000 001
002

003

004

999
998

997

996

900 099
098

097

096

901
902

903

904

For example, the addition �3 + (+5) = 2 involves starting at 997 (= �3) and going clockwise 5 numbers,
which gives the result 002 (= +2). Similarly, the subtraction 4� (+8) = �4 involves starting at 004 (= +4)
and going counterclockwise 8 numbers, which gives the result 996 (= �4).

5.25. The ternary half-adder in Figure P5.3 can be defined using binary-encoded signals as follows:

A B Carry Sum
a1 a0 b1 b0 cout s1 s0

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 1 0 0
1 0 0 0 0 1 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1

The remaining 7 (out of 16) valuations, where either a1 = a0 = 1, or b1 = b0 = 1, can be treated as don’t
care conditions. Then, the minimum cost expressions are:

cout = a0b1 + a1b1 + a1b0

s1 = a0b0 + a1a0b1 + a1b1b0

s0 = a1b1 + a1a0b0 + a0b1b0

5-9

5.26. Ternary full-adder is defined by the truth table:

cin A B cout Sum

0 0 0 0 0
0 0 1 0 1
0 0 2 0 2
0 1 0 0 1
0 1 1 0 2
0 1 2 1 0
0 2 0 0 2
0 2 1 1 0
0 2 2 1 1
1 0 0 0 1
1 0 1 0 2
1 0 2 1 0
1 1 0 0 2
1 1 1 1 0
1 1 2 1 1
1 2 0 1 0
1 2 1 1 1
1 2 2 1 2

Using binary-encoded signals for this full-adder gives the following truth table:

A B Sum
cin a1 a0 b1 b0 cout s1 s0

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0
0 0 1 1 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1
1 0 0 0 0 0 0 1
1 0 0 0 1 0 1 0
1 0 0 1 0 1 0 0
1 0 1 0 0 0 1 0
1 0 1 0 1 1 0 0
1 0 1 1 0 1 0 1
1 1 0 0 0 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 0 1 1 0

5-10

Treating the 14 (out of 32) valuations where either a1 = a0 = 1 or b1 = b0 = 1 as don’t care conditions,
leads to the minimum cost expressions

cout = a0b1 + a1b0 + a1b1 + a1cin + b1cin + a0b0cin

s1 = a0b0cin + a1a0b1cin + a1b1b0cin + a1b1cin + a1a0b0cin + a0b1b0cin

s0 = a1b1cin + a1a0b0cin + a0b1b0cin + a1b0cin + a0b1cin + a1a0b1b0cin

5.27. The subtractions 26 � 27 = 99 and 18 � 34 = 84 make sense if the two-digit numbers 00 to 99 are in-
terpreted so that the numbers 00 to 49 are positive integers from 0 to +49, while the numbers 50 to 99 are
negative integers from �50 to �1. This scheme can be illustrated graphically as follows:

00 01

02

03

99

98

97

50 49

48

51

52

48+
49+

48–
49– 50–

2+
1+

2–
1– 0

3+3–

5-11

