{
"cells": [
{
"cell_type": "code",
"execution_count": 17,
"id": "cbc29f8a",
"metadata": {},
"outputs": [],
"source": [
"# 패키지 로딩하기\n",
"import pandas as pd # data handling and data analysis\n",
"import seaborn as sns # data visualization\n",
"import matplotlib.pyplot as plt # data visualization"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0a3514a9",
"metadata": {},
"outputs": [],
"source": [
"# 데이터 읽어오기\n",
"# 데이터의이름 = pandas.read_excel(io = \"directory/filename.xlsx\",\n",
"# sheet_name = \"sheet name\" or sheet index,\n",
"# header = 0)\n",
"\n",
"hope = pd.read_excel(io = \"d:/GNU/hope.xlsx\",\n",
" sheet_name = \"Sheet1\",\n",
" header = 0)\n",
"\n",
"# hope : python data : RAM에 저장되어 있음\n",
"# pd : pandas : 패키지\n",
"# read_excel() : 함수\n",
"# io, sheet_name : 함수의 parameter"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a3a13f96",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" idol | \n",
" year | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 강동원 | \n",
" 30 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 차은우 | \n",
" 32 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 김범 | \n",
" 35 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 정해인 | \n",
" 32 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 송강 | \n",
" 32 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id idol year\n",
"0 1 강동원 30\n",
"1 2 차은우 32\n",
"2 3 김범 35\n",
"3 4 정해인 32\n",
"4 5 송강 32"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 데이터 보기\n",
"# data.head() or data.tail()\n",
"hope.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "70866e24",
"metadata": {},
"outputs": [],
"source": [
"# 데이터 저장하기 : 하드(HDD)\n",
"# 메모리(RAM)에 있는 파이썬 데이터를 하드에 저장\n",
"# data.to_excel(excel_writer = \"directory/filename.xlsx\",\n",
"# header = True,\n",
"# index = False)\n",
"hope.to_excel(excel_writer = \"d:/GNU/hope_2022_0818_1555.xlsx\",\n",
" header = True,\n",
" index = False)"
]
},
{
"cell_type": "markdown",
"id": "4e0a5aa6",
"metadata": {},
"source": [
"### 탐색적 데이터 분석(EDA : Exploratory Data Analysis)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8b1cb259",
"metadata": {},
"outputs": [],
"source": [
"# 데이터의 종류\n",
"# 데이터 : 통계 관점\n",
"\n",
"# 범주형 자료(Categorical Data) : 질적 자료 : 문자, 숫자(숫자의 의미는 없음)\n",
"# 수치형 자료(Numerical Data) : 양적 자료 : 숫자(숫자의 의미가 있음)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2d4fea13",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carat | \n",
" cut | \n",
" color | \n",
" clarity | \n",
" depth | \n",
" table | \n",
" price | \n",
" x | \n",
" y | \n",
" z | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.23 | \n",
" Ideal | \n",
" E | \n",
" SI2 | \n",
" 61.5 | \n",
" 55.0 | \n",
" 326 | \n",
" 3.95 | \n",
" 3.98 | \n",
" 2.43 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.21 | \n",
" Premium | \n",
" E | \n",
" SI1 | \n",
" 59.8 | \n",
" 61.0 | \n",
" 326 | \n",
" 3.89 | \n",
" 3.84 | \n",
" 2.31 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.23 | \n",
" Good | \n",
" E | \n",
" VS1 | \n",
" 56.9 | \n",
" 65.0 | \n",
" 327 | \n",
" 4.05 | \n",
" 4.07 | \n",
" 2.31 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.29 | \n",
" Premium | \n",
" I | \n",
" VS2 | \n",
" 62.4 | \n",
" 58.0 | \n",
" 334 | \n",
" 4.20 | \n",
" 4.23 | \n",
" 2.63 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.31 | \n",
" Good | \n",
" J | \n",
" SI2 | \n",
" 63.3 | \n",
" 58.0 | \n",
" 335 | \n",
" 4.34 | \n",
" 4.35 | \n",
" 2.75 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" carat cut color clarity depth table price x y z\n",
"0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43\n",
"1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31\n",
"2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31\n",
"3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63\n",
"4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 예제 데이터\n",
"# diamonds = seaborn.load_dataset(\"diamonds\")\n",
"diamonds = sns.load_dataset(\"diamonds\")\n",
"diamonds.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "696feddf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 53940 entries, 0 to 53939\n",
"Data columns (total 10 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 carat 53940 non-null float64 \n",
" 1 cut 53940 non-null category\n",
" 2 color 53940 non-null category\n",
" 3 clarity 53940 non-null category\n",
" 4 depth 53940 non-null float64 \n",
" 5 table 53940 non-null float64 \n",
" 6 price 53940 non-null int64 \n",
" 7 x 53940 non-null float64 \n",
" 8 y 53940 non-null float64 \n",
" 9 z 53940 non-null float64 \n",
"dtypes: category(3), float64(6), int64(1)\n",
"memory usage: 3.0 MB\n"
]
}
],
"source": [
"# 데이터의 정보(Infomation)\n",
"# data.info()\n",
"diamonds.info()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "933e7aa8",
"metadata": {},
"outputs": [],
"source": [
"# 1. 범주형 자료의 분석(1개의 열)\n",
"# (1) 표 = 빈도표(Frequency Table)\n",
"# i. 빈도(Frequency)\n",
"# ii. 백분율(Percent) : (빈도/합계)*100(%)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "0efa04ad",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Ideal 21551\n",
"Premium 13791\n",
"Very Good 12082\n",
"Good 4906\n",
"Fair 1610\n",
"Name: cut, dtype: int64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 범주형 자료 : cut(품질, 5개), color(색, 7개), clarity(투명도, 8개)\n",
"# i. 빈도\n",
"# data[\"열의이름\"].value_counts()\n",
"# data.열의이름.value_counts()\n",
"diamonds.cut.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b9fb30de",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Ideal 39.953652\n",
"Premium 25.567297\n",
"Very Good 22.398962\n",
"Good 9.095291\n",
"Fair 2.984798\n",
"Name: cut, dtype: float64"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ii. 백분율\n",
"# data.열의이름.value_counts(normalize = True)*100\n",
"diamonds.cut.value_counts(normalize = True)*100"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "deca8b89",
"metadata": {},
"outputs": [],
"source": [
"# (2) 그래프\n",
"# i. 막대그래프(Bar Plot, Bar Chart)\n",
"# ii. 원그래프(Pie Chart) : 가금적이면 지양함"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "b4b9b757",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Ideal 21551\n",
"Premium 13791\n",
"Very Good 12082\n",
"Good 4906\n",
"Fair 1610\n",
"Name: cut, dtype: int64"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# i. matplotlib.pyplot.bar(x = 범주의이름,\n",
"# height = 범주의빈도)\n",
"# matplotlib.pyplot.show()\n",
"cut = diamonds.cut.value_counts()\n",
"cut"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "cf68785d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CategoricalIndex(['Ideal', 'Premium', 'Very Good', 'Good', 'Fair'], categories=['Ideal', 'Premium', 'Very Good', 'Good', 'Fair'], ordered=False, dtype='category')"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cut.index # 범주의 이름"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "1a0417bb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([21551, 13791, 12082, 4906, 1610], dtype=int64)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cut.values # 범주의 빈도"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "e853eeaa",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAASf0lEQVR4nO3dfbBcdX3H8feniUIUQR4Cgwk1VKJTQEWJKT6MhdJKWjsDtDANOgKWGmXQ0bGdNtRa7UzTwrRKB5U4VBRwFEhRBIsWGVBRi8AFkfCoqUSNpBAfimAFGvj2j/O7srnsfb65m5D3a2Znz37P+Z39nb2793PO75y9N1WFJEm/NugOSJK2DQaCJAkwECRJjYEgSQIMBElSM3fQHZiqvfbaqxYtWjTobkjSduXmm2/+cVXN7zdvuw2ERYsWMTQ0NOhuSNJ2Jcn3R5vnkJEkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJ2I6/qTwdi1ZeOeguzJj1Z7x+0F2Q9DThEYIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSc24gZBkvyRfTnJXkjuSvLPV90hydZLvtvvde9qcnmRdknuSHNVTPzTJ2jbv7CRp9Z2SXNLqNyRZtBW2VZI0hokcIWwG/ryqfhM4DDgtyYHASuCaqloMXNMe0+YtBw4ClgHnJJnT1rUaWAEsbrdlrX4K8LOqOgA4CzhzBrZNkjQJ4wZCVW2sqlva9EPAXcAC4GjggrbYBcAxbfpo4OKqerSq7gXWAUuT7AvsWlXXV1UBF45oM7yuS4Ejh48eJEmzY1LnENpQzsuAG4B9qmojdKEB7N0WWwD8sKfZhlZb0KZH1rdoU1WbgQeBPSfTN0nS9Ew4EJLsAnwGeFdV/XysRfvUaoz6WG1G9mFFkqEkQ5s2bRqvy5KkSZhQICR5Bl0YfKqqPtvK97dhINr9A62+Adivp/lC4L5WX9invkWbJHOB3YCfjuxHVZ1bVUuqasn8+fMn0nVJ0gRN5CqjAOcBd1XVB3tmXQGc1KZPAi7vqS9vVw7tT3fy+MY2rPRQksPaOk8c0WZ4XccB17bzDJKkWTKR/5j2auBNwNokt7baXwNnAGuSnAL8ADgeoKruSLIGuJPuCqXTqurx1u5U4HxgHvDFdoMucD6ZZB3dkcHy6W2WJGmyxg2Eqvo6/cf4AY4cpc0qYFWf+hBwcJ/6I7RAkSQNht9UliQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqRm3EBI8vEkDyS5vaf2/iQ/SnJru/1Bz7zTk6xLck+So3rqhyZZ2+adnSStvlOSS1r9hiSLZngbJUkTMJEjhPOBZX3qZ1XVIe32BYAkBwLLgYNam3OSzGnLrwZWAIvbbXidpwA/q6oDgLOAM6e4LZKkaRg3EKrqOuCnE1zf0cDFVfVoVd0LrAOWJtkX2LWqrq+qAi4Ejulpc0GbvhQ4cvjoQZI0e6ZzDuHtSW5rQ0q7t9oC4Ic9y2xotQVtemR9izZVtRl4ENiz3xMmWZFkKMnQpk2bptF1SdJIUw2E1cALgEOAjcAHWr3fnn2NUR+rzVOLVedW1ZKqWjJ//vxJdViSNLYpBUJV3V9Vj1fVE8C/AkvbrA3Afj2LLgTua/WFfepbtEkyF9iNiQ9RSZJmyJQCoZ0TGHYsMHwF0hXA8nbl0P50J49vrKqNwENJDmvnB04ELu9pc1KbPg64tp1nkCTNornjLZDkIuBwYK8kG4D3AYcnOYRuaGc98FaAqrojyRrgTmAzcFpVPd5WdSrdFUvzgC+2G8B5wCeTrKM7Mlg+A9slSZqkcQOhqk7oUz5vjOVXAav61IeAg/vUHwGOH68fkqSty28qS5IAA0GS1BgIkiTAQJAkNQaCJAmYwFVGevpZtPLKQXdhRqw/4/WD7oL0tOIRgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1/oMc7VCeLv8cCPwHQZp5HiFIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUjNuICT5eJIHktzeU9sjydVJvtvud++Zd3qSdUnuSXJUT/3QJGvbvLOTpNV3SnJJq9+QZNEMb6MkaQImcoRwPrBsRG0lcE1VLQauaY9JciCwHDiotTknyZzWZjWwAljcbsPrPAX4WVUdAJwFnDnVjZEkTd24gVBV1wE/HVE+GrigTV8AHNNTv7iqHq2qe4F1wNIk+wK7VtX1VVXAhSPaDK/rUuDI4aMHSdLsmeo5hH2qaiNAu9+71RcAP+xZbkOrLWjTI+tbtKmqzcCDwJ79njTJiiRDSYY2bdo0xa5LkvqZ6ZPK/fbsa4z6WG2eWqw6t6qWVNWS+fPnT7GLkqR+phoI97dhINr9A62+AdivZ7mFwH2tvrBPfYs2SeYCu/HUISpJ0lY21UC4AjipTZ8EXN5TX96uHNqf7uTxjW1Y6aEkh7XzAyeOaDO8ruOAa9t5BknSLJo73gJJLgIOB/ZKsgF4H3AGsCbJKcAPgOMBquqOJGuAO4HNwGlV9Xhb1al0VyzNA77YbgDnAZ9Mso7uyGD5jGyZJGlSxg2EqjphlFlHjrL8KmBVn/oQcHCf+iO0QJEkDY7fVJYkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgRMMxCSrE+yNsmtSYZabY8kVyf5brvfvWf505OsS3JPkqN66oe29axLcnaSTKdfkqTJm4kjhCOq6pCqWtIerwSuqarFwDXtMUkOBJYDBwHLgHOSzGltVgMrgMXttmwG+iVJmoStMWR0NHBBm74AOKanfnFVPVpV9wLrgKVJ9gV2rarrq6qAC3vaSJJmyXQDoYAvJbk5yYpW26eqNgK0+71bfQHww562G1ptQZseWX+KJCuSDCUZ2rRp0zS7LknqNXea7V9dVfcl2Ru4OsndYyzb77xAjVF/arHqXOBcgCVLlvRdRtLoFq28ctBdmBHrz3j9oLvwtDStI4Squq/dPwBcBiwF7m/DQLT7B9riG4D9epovBO5r9YV96pKkWTTlQEjy7CTPGZ4GXgfcDlwBnNQWOwm4vE1fASxPslOS/elOHt/YhpUeSnJYu7roxJ42kqRZMp0ho32Ay9oVonOBT1fVfyS5CViT5BTgB8DxAFV1R5I1wJ3AZuC0qnq8retU4HxgHvDFdpMkzaIpB0JVfQ94aZ/6T4AjR2mzCljVpz4EHDzVvkiSps9vKkuSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktTMHXQHJGk2LFp55aC7MGPWn/H6rbJejxAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkpptJhCSLEtyT5J1SVYOuj+StKPZJgIhyRzgI8DvAwcCJyQ5cLC9kqQdyzYRCMBSYF1Vfa+qHgMuBo4ecJ8kaYeSqhp0H0hyHLCsqv6sPX4T8FtV9fYRy60AVrSHLwLumdWOTt5ewI8H3YkBcdt3XDvy9m8P2/78qprfb8a28g9y0qf2lKSqqnOBc7d+d2ZGkqGqWjLofgyC275jbjvs2Nu/vW/7tjJktAHYr+fxQuC+AfVFknZI20og3AQsTrJ/kmcCy4ErBtwnSdqhbBNDRlW1OcnbgauAOcDHq+qOAXdrJmw3w1tbgdu+49qRt3+73vZt4qSyJGnwtpUhI0nSgBkIkiTAQJiUJA+PUj+/fZdiKut8f5K/mF7PpifJ40luTXJ7kn9L8qyt8BxvS3LiTK93Cv34SpKjRtTeleScrfBc705yd5K1Sb6d5INJnjED6z05yYdnoo8TfL59knw6yfeS3Jzk+iTHzsB6v5Jku7pEs+ezMnxbNMay/zmLXZsRBoIAfllVh1TVwcBjwNt6Z7Y/LTItVfXRqrpwuuuZARfRXcXWa3mrj2uir0WStwGvAw6rqhcDrwAeAOZNvKuDlyTA54Drquo3qupQutdr4UA7NjjDn5Xh2/rRFqyqV42szcRnaWsyEKYgnQ8nuTPJlcDePfMOTfLVtid1VZJ9W/0tSW5qe4qf2Rp74TPka8ABSQ5P8uUknwbWJpmT5J/aNtyW5K0AbbmvJlmT5DtJzkjyxiQ3tj3jF7TlfnUk1LtnmGSvJOvb9MlJPpfk80nuTfL2tpf9rSTfTLLHDGzfpcAfJtmpPeci4HnA15O8ru393tKOlHZpy6xP8rdJvg6sTHLL8MqSLE5yc5/neQ9walX9D0BVPVZVZ1TVz1u7E9rrc3uSM3vWN1r9ze31/Srw6hl4HSbqd4DHquqjw4Wq+n5VfSjJzkk+0fr7rSRHtL6OVp+X5OL2/rmE7Swc+0myS5Jr2ntmbZKje+Y93O63+CwNrLMTYCBMzbF0fzrjxcBbgFcBtOGADwHHtT2pjwOrWpvPVtUrquqlwF3AKbPe63EkmUv3BwaH37RLgfdU1YF0/X2wql5Bt7f7liT7t+VeCryT7vV4E/DCqloKfAx4xyS7cTDwhvbcq4D/raqXAdcD0x5yqqqfADcCy1ppOXAJsCfwN8DvVtXLgSHg3T1NH6mq11TVKuDBJIe0+puB83ufI8lzgF2q6t5+fUjyPOBMul+2hwCvSHLMGPV9gb+jC4Lfo/sDkLPlIOCWUeadBtCOgE4ALkiy8xj1U+l+ni+h+9keupX7vjXM6xkuugx4BDi2vWeOAD7QjqpG6v0sbbO2ie8hbIdeC1xUVY8D9yW5ttVfRPcL7er2npgDbGzzDk7y98BzgV3ovnOxrZiX5NY2/TXgPLqQu7Hnl9rrgJfkyXMluwGL6YaYbqqqjQBJ/gv4UltmLd2HZDK+XFUPAQ8leRD4fM+6XjLJdY1meNjo8nb/p8BhdL9ov9F+ds+kC6Fhl/RMfwx4c5J3A39C92HvFXr+9Eq6cxZn0v3s3wDMB75SVZva/E/RvadqlDoj6pcAL5zy1k9Dko8Ar6H7uW+g2wGiqu5O8v3Wr9eMUn8tcHar35bkttnfgmn7ZVUdMvyg7QT+Q5LXAk8AC4B9gP8e0e7G0XYQtiUGwtT1+wJHgDuq6pV95p0PHFNV305yMnD41uvapG3xJgdovxR/0VsC3lFVV41Y7nDg0Z7SEz2Pn6D/e2wzTx6d7jxi3mTXNRWfAz6Y5OXAvKq6JckC4OqqOmGUNr2vxWeA9wHXAje3o45fqaqfJ/lFkv2r6t72ml2V5N/pgqbfHiRj1KH/+2023AH88a86UXVakr3ojqB+NEqbbXE7tpY30gX8oVX1f234c+R7GrZ8/2yzHDKamuuA5enG1fflyb3ge4D5SV4J3d5DkoPavOcAG9sexRtnvcfTdxVwaus/SV6Y5NlTXNd6nhwumNLVWdNRVQ8DX6Eb0hs+mfxN4NVJDgBI8qwkfffCq+oRutdjNfCJUZ7mH4HVSZ7b1hee/EVxA/Db7fzJHLphla+OUz88yZ7t9T9+qts+BdcCOyc5tac2fP7rOtp7ub1Wv073GZhI/WBm7ohvkHYDHmhhcATw/EF3aDo8Qpiay+jGedcC36H70FJVj7UhlbOT7Eb3+v4L3V7We+k+2N9v7Z4z+92elo8Bi4Bb2i+3TcAxU1zXPwNr0v2Z82vHW3gruQj4LO2Ko6ra1I7cLko74Ux3TuE7o7T/FPBHPDk8NtJqul+cNyR5FHgY+Abwrap6MMnpwJfp9qa/UFWXA4xRfz/dENZGujH9WblapaoqyTHAWUn+ku7n/gvgr+iG3D6aZC3dUd/JVfVoukt4+9VXA59oQ0W30p3L2d59Cvh8kiG6bbp7sN2ZHv90hTQF6a6Y2q2q3jvovkgzxSMEaZLa1SUvoDtKlJ42PEKQJAGeVJYkNQaCJAkwECRJjYEgSQIMBElS8/86zBmIdEgxwAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.bar(x = cut.index,\n",
" height = cut.values)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "5fbae6a9",
"metadata": {},
"outputs": [],
"source": [
"# 2. 수치형 자료의 분석(1개의 열)\n",
"# (1) 표 = 빈도표\n",
"# i. 구간의 빈도\n",
"# ii. 구간의 백분율\n",
"\n",
"# (2) 그래프\n",
"# i. 히스토그램(Histogram)\n",
"# ii. 상자그림(Boxplot)\n",
"\n",
"# (3) 기술통계량 = 요약통계량\n",
"# i. 중심 = 대표값\n",
"# ii. 퍼짐 = 산포 = 다름 : *****\n",
"# iii. 분포의 모양"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "d12c17de",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carat | \n",
" cut | \n",
" color | \n",
" clarity | \n",
" depth | \n",
" table | \n",
" price | \n",
" x | \n",
" y | \n",
" z | \n",
" carat_group | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.23 | \n",
" Ideal | \n",
" E | \n",
" SI2 | \n",
" 61.5 | \n",
" 55.0 | \n",
" 326 | \n",
" 3.95 | \n",
" 3.98 | \n",
" 2.43 | \n",
" Light | \n",
"
\n",
" \n",
" 1 | \n",
" 0.21 | \n",
" Premium | \n",
" E | \n",
" SI1 | \n",
" 59.8 | \n",
" 61.0 | \n",
" 326 | \n",
" 3.89 | \n",
" 3.84 | \n",
" 2.31 | \n",
" Light | \n",
"
\n",
" \n",
" 2 | \n",
" 0.23 | \n",
" Good | \n",
" E | \n",
" VS1 | \n",
" 56.9 | \n",
" 65.0 | \n",
" 327 | \n",
" 4.05 | \n",
" 4.07 | \n",
" 2.31 | \n",
" Light | \n",
"
\n",
" \n",
" 3 | \n",
" 0.29 | \n",
" Premium | \n",
" I | \n",
" VS2 | \n",
" 62.4 | \n",
" 58.0 | \n",
" 334 | \n",
" 4.20 | \n",
" 4.23 | \n",
" 2.63 | \n",
" Light | \n",
"
\n",
" \n",
" 4 | \n",
" 0.31 | \n",
" Good | \n",
" J | \n",
" SI2 | \n",
" 63.3 | \n",
" 58.0 | \n",
" 335 | \n",
" 4.34 | \n",
" 4.35 | \n",
" 2.75 | \n",
" Light | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" carat cut color clarity depth table price x y z \\\n",
"0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 \n",
"1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 \n",
"2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 \n",
"3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 \n",
"4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 \n",
"\n",
" carat_group \n",
"0 Light \n",
"1 Light \n",
"2 Light \n",
"3 Light \n",
"4 Light "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# (1) 빈도표\n",
"# 수치형 자료를 이용해서 구간의 정보를 갖는 새로운 범주형 자료를 만듬\n",
"\n",
"# 0이상 ~ 2미만 : \"Light\"\n",
"# 2이상 ~ 4미만 : \"Middle\"\n",
"# 4이상 ~ 6미만 : \"Heavy\"\n",
"\n",
"# carat -> carat_group\n",
"\n",
"# data[\"새로운열의이름\"] = pandas.cut(data.수치형자료,\n",
"# bins = 구간의 정보,\n",
"# right = False,\n",
"# labels = 구간의 이름)\n",
"\n",
"diamonds[\"carat_group\"] = pd.cut(diamonds.carat,\n",
" bins = [0, 2, 4, 6],\n",
" right = False,\n",
" labels = [\"Light\", \"Middle\", \"Heavy\"])\n",
"diamonds.head()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "d6079b67",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Light 51786\n",
"Middle 2148\n",
"Heavy 6\n",
"Name: carat_group, dtype: int64"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diamonds.carat_group.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "9de4d0b2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Light 96.006674\n",
"Middle 3.982202\n",
"Heavy 0.011123\n",
"Name: carat_group, dtype: float64"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diamonds.carat_group.value_counts(normalize = True)*100"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "c332e396",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQSklEQVR4nO3df6jd9X3H8edriXNiq7N6lZCku1LDaBSWzksWEEY3t5rVsVhQuMJq/gikSAqWFUbsP+3+COgfrUM2hXQRo+sag7YYZu0q6iiCS3rTpY0xzXqpWU0TTDqdjX/oSPreH+dzt5PkeH/nnlzv8wFfzve8v9/P93y+BH2d7+fzPd+bqkKSpN/odwckSRcGA0GSBBgIkqTGQJAkAQaCJKlZ3O8OTNdVV11Vg4OD/e6GJM0re/fu/WVVDfTaNm8DYXBwkJGRkX53Q5LmlST/+X7bHDKSJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBEwiEJIsT/JikoNJDiS5p9W/kuQXSfa15dNdbe5NMprkUJJbuuo3Jtnftj2YJK1+cZInWn13ksHzcK6SpHFM5grhFPDFqvo4sAbYlGRl2/ZAVa1qy3cA2rZh4HpgLfBQkkVt/4eBjcCKtqxt9Q3AW1V1HfAAcP/MT02SNBUT/lK5qo4Bx9r6ySQHgaXjNFkH7Kiq94DXkowCq5McBi6rqpcBkjwG3AY829p8pbV/Evi7JKnz9Nd7Bjc/cz4OOymH77u1b58tSeOZ0hxCG8r5BLC7lT6f5MdJHklyRastBV7vanak1Za29bPrZ7SpqlPA28CVPT5/Y5KRJCMnTpyYStclSROYdCAk+RDwFPCFqvoVneGfjwGr6FxBfHVs1x7Na5z6eG3OLFRtraqhqhoaGOj5bCZJ0jRNKhCSXEQnDL5RVd8CqKo3qup0Vf0a+Dqwuu1+BFje1XwZcLTVl/Won9EmyWLgcuDN6ZyQJGl6JnOXUYBtwMGq+lpXfUnXbp8BXmnru4DhdufQtXQmj/e0uYiTSda0Y94FPN3VZn1bvx144XzNH0iSepvM469vAj4L7E+yr9W+BNyZZBWdoZ3DwOcAqupAkp3Aq3TuUNpUVadbu7uBR4FL6EwmP9vq24DH2wT0m3TuUpIkzaHJ3GX0Er3H+L8zTpstwJYe9RHghh71d4E7JuqLJOn88ZfKkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUTBgISZYneTHJwSQHktzT6h9J8lySn7bXK7ra3JtkNMmhJLd01W9Msr9tezBJWv3iJE+0+u4kg+fhXCVJ45jMFcIp4ItV9XFgDbApyUpgM/B8Va0Anm/vaduGgeuBtcBDSRa1Yz0MbARWtGVtq28A3qqq64AHgPtn4dwkSVMwYSBU1bGq+mFbPwkcBJYC64DtbbftwG1tfR2wo6req6rXgFFgdZIlwGVV9XJVFfDYWW3GjvUkcPPY1YMkaW5MaQ6hDeV8AtgNXFNVx6ATGsDVbbelwOtdzY602tK2fnb9jDZVdQp4G7iyx+dvTDKSZOTEiRNT6bokaQKTDoQkHwKeAr5QVb8ab9cetRqnPl6bMwtVW6tqqKqGBgYGJuqyJGkKJhUISS6iEwbfqKpvtfIbbRiI9nq81Y8Ay7uaLwOOtvqyHvUz2iRZDFwOvDnVk5EkTd9k7jIKsA04WFVf69q0C1jf1tcDT3fVh9udQ9fSmTze04aVTiZZ045511ltxo51O/BCm2eQJM2RxZPY5ybgs8D+JPta7UvAfcDOJBuAnwN3AFTVgSQ7gVfp3KG0qapOt3Z3A48ClwDPtgU6gfN4klE6VwbDMzstSdJUTRgIVfUSvcf4AW5+nzZbgC096iPADT3q79ICRZLUH/5SWZIEGAiSpMZAkCQBBoIkqTEQJEnA5G471Swa3PxMXz738H239uVzJc0fXiFIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUTBgISR5JcjzJK121ryT5RZJ9bfl017Z7k4wmOZTklq76jUn2t20PJkmrX5zkiVbfnWRwls9RkjQJk7lCeBRY26P+QFWtast3AJKsBIaB61ubh5Isavs/DGwEVrRl7JgbgLeq6jrgAeD+aZ6LJGkGJgyEqvo+8OYkj7cO2FFV71XVa8AosDrJEuCyqnq5qgp4DLitq832tv4kcPPY1YMkae7MZA7h80l+3IaUrmi1pcDrXfscabWlbf3s+hltquoU8DZwZa8PTLIxyUiSkRMnTsyg65Kks003EB4GPgasAo4BX231Xt/sa5z6eG3OLVZtraqhqhoaGBiYUoclSeObViBU1RtVdbqqfg18HVjdNh0Blnftugw42urLetTPaJNkMXA5kx+ikiTNkmkFQpsTGPMZYOwOpF3AcLtz6Fo6k8d7quoYcDLJmjY/cBfwdFeb9W39duCFNs8gSZpDiyfaIck3gU8CVyU5AnwZ+GSSVXSGdg4DnwOoqgNJdgKvAqeATVV1uh3qbjp3LF0CPNsWgG3A40lG6VwZDM/CeUmSpmjCQKiqO3uUt42z/xZgS4/6CHBDj/q7wB0T9UOSdH75S2VJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWomDIQkjyQ5nuSVrtpHkjyX5Kft9YqubfcmGU1yKMktXfUbk+xv2x5Mkla/OMkTrb47yeAsn6MkaRImc4XwKLD2rNpm4PmqWgE8396TZCUwDFzf2jyUZFFr8zCwEVjRlrFjbgDeqqrrgAeA+6d7MpKk6ZswEKrq+8CbZ5XXAdvb+nbgtq76jqp6r6peA0aB1UmWAJdV1ctVVcBjZ7UZO9aTwM1jVw+SpLkz3TmEa6rqGEB7vbrVlwKvd+13pNWWtvWz62e0qapTwNvAlb0+NMnGJCNJRk6cODHNrkuSepntSeVe3+xrnPp4bc4tVm2tqqGqGhoYGJhmFyVJvUw3EN5ow0C01+OtfgRY3rXfMuBoqy/rUT+jTZLFwOWcO0QlSTrPphsIu4D1bX098HRXfbjdOXQtncnjPW1Y6WSSNW1+4K6z2owd63bghTbPIEmaQ4sn2iHJN4FPAlclOQJ8GbgP2JlkA/Bz4A6AqjqQZCfwKnAK2FRVp9uh7qZzx9IlwLNtAdgGPJ5klM6VwfCsnJkkaUomDISquvN9Nt38PvtvAbb0qI8AN/Sov0sLFElS//hLZUkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJKaCf+Epj4YBjc/07fPPnzfrX37bEmT5xWCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSgBkGQpLDSfYn2ZdkpNU+kuS5JD9tr1d07X9vktEkh5Lc0lW/sR1nNMmDSTKTfkmSpm42rhD+qKpWVdVQe78ZeL6qVgDPt/ckWQkMA9cDa4GHkixqbR4GNgIr2rJ2FvolSZqC8zFktA7Y3ta3A7d11XdU1XtV9RowCqxOsgS4rKperqoCHutqI0maIzMNhAK+l2Rvko2tdk1VHQNor1e3+lLg9a62R1ptaVs/uy5JmkMz/YtpN1XV0SRXA88l+ck4+/aaF6hx6uceoBM6GwE++tGPTrWvkqRxzOgKoaqOttfjwLeB1cAbbRiI9nq87X4EWN7VfBlwtNWX9aj3+rytVTVUVUMDAwMz6bok6SzTDoQklyb58Ng68CngFWAXsL7tth54uq3vAoaTXJzkWjqTx3vasNLJJGva3UV3dbWRJM2RmQwZXQN8u90huhj4p6r6bpIfADuTbAB+DtwBUFUHkuwEXgVOAZuq6nQ71t3Ao8AlwLNtkSTNoWkHQlX9DPi9HvX/Am5+nzZbgC096iPADdPtiyRp5vylsiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1M/mLadKkDG5+pi+fe/i+W/vyudJ85RWCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktT4+Gt9YPnYbWlqvEKQJAEXUCAkWZvkUJLRJJv73R9JWmguiEBIsgj4e+DPgJXAnUlW9rdXkrSwXChzCKuB0ar6GUCSHcA64NW+9kqahn7NXYDzF5qZCyUQlgKvd70/AvzB2Tsl2QhsbG/fSXKorV8F/PK89vDC5bkvTD3PPff3oSf94b/99P3O+224UAIhPWp1TqFqK7D1nMbJSFUNnY+OXeg8d899IVrI538+z/2CmEOgc0WwvOv9MuBon/oiSQvShRIIPwBWJLk2yW8Cw8CuPvdJkhaUC2LIqKpOJfk88C/AIuCRqjowhUOcM4y0gHjuC9NCPndY2Od/3s49VecM1UuSFqALZchIktRnBoIkCZjngbCQH3eR5JEkx5O80u++zLUky5O8mORgkgNJ7ul3n+ZKkt9KsifJj9q5/02/+zTXkixK8u9J/rnffZlrSQ4n2Z9kX5KRWT/+fJ1DaI+7+A/gT+nctvoD4M6qWhC/bk7yh8A7wGNVdUO/+zOXkiwBllTVD5N8GNgL3LYQ/u2TBLi0qt5JchHwEnBPVf1bn7s2Z5L8FTAEXFZVf97v/sylJIeBoao6Lz/Km89XCP/3uIuq+h9g7HEXC0JVfR94s9/96IeqOlZVP2zrJ4GDdH7t/oFXHe+0txe1ZX5+q5uGJMuAW4F/6HdfPojmcyD0etzFgvifgv5fkkHgE8DuPndlzrQhk33AceC5qlow5w78LfDXwK/73I9+KeB7Sfa2R/nMqvkcCJN63IU+uJJ8CHgK+EJV/arf/ZkrVXW6qlbR+UX/6iQLYsgwyZ8Dx6tqb7/70kc3VdXv03ky9KY2dDxr5nMg+LiLBayNnz8FfKOqvtXv/vRDVf038K/A2v72ZM7cBPxFG0ffAfxxkn/sb5fmVlUdba/HgW/TGTqfNfM5EHzcxQLVJla3AQer6mv97s9cSjKQ5Lfb+iXAnwA/6Wun5khV3VtVy6pqkM5/7y9U1V/2uVtzJsml7SYKklwKfAqY1bsM520gVNUpYOxxFweBnVN83MW8luSbwMvA7yY5kmRDv/s0h24CPkvnG+K+tny6352aI0uAF5P8mM6XoueqasHdfrlAXQO8lORHwB7gmar67mx+wLy97VSSNLvm7RWCJGl2GQiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLzv49xgTUlkvy3AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# (2) 데이터 시각화\n",
"# i. 히스토그램(Histogram)\n",
"# plt.hist(x = data.수치형자료,\n",
"# bins = 구간의 정보 또는 구간의 개수)\n",
"# plt.show()\n",
"\n",
"plt.hist(x = diamonds.carat) # Sturge's Formula\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "fe59ac3e",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ60lEQVR4nO3cf4hd5Z3H8feniWtd21h/RAmZsONiWFaFag1ZF6F0m27NrqXxD4UptIYlEBB3sexCSfpP6R8B/acWYRWC6RrtDw22Yuiu3YZY6Rbc2ElrN40/1qG6OiRrptVaXdAS+90/5hm4GW+SO3cmuTOZ9wsu55zvPc+Z5yHo5z7POfemqpAk6QOD7oAkaX4wECRJgIEgSWoMBEkSYCBIkpqlg+5Avy666KIaHh4edDckaUHZv3//r6tqebf3FmwgDA8PMzo6OuhuSNKCkuR/jveeS0aSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkYAF/U3k2hrf866C7oC5evuOGQXdBWtScIUiSAANBktQYCJIkoMdASPJykgNJnkky2moXJNmT5MW2Pb/j/K1JxpK8kOT6jvo17TpjSe5OklY/O8nDrb4vyfAcj1OSdBIzmSH8VVVdVVVr2vEWYG9VrQb2tmOSXA6MAFcA64F7kixpbe4FNgOr22t9q28C3qiqy4C7gDv7H5IkqR+zWTLaAOxs+zuBGzvqD1XVu1X1EjAGrE2yAlhWVU9VVQEPTGszda1HgHVTswdJ0unRayAU8MMk+5NsbrVLquowQNte3OorgVc72o632sq2P71+TJuqOgq8CVw4vRNJNicZTTI6MTHRY9clSb3o9XsI11XVoSQXA3uSPH+Cc7t9sq8T1E/U5thC1XZgO8CaNWve974kqX89zRCq6lDbHgEeBdYCr7VlINr2SDt9HFjV0XwIONTqQ13qx7RJshQ4D3h95sORJPXrpIGQ5NwkH57aBz4N/BLYDWxsp20EHmv7u4GR9uTQpUzePH66LSu9leTadn/glmltpq51E/BEu88gSTpNelkyugR4tN3jXQp8u6p+kOSnwK4km4BXgJsBqupgkl3As8BR4Laqeq9d61bgfuAc4PH2AtgBPJhkjMmZwcgcjE2SNAMnDYSq+hXw0S713wDrjtNmG7CtS30UuLJL/R1aoEiSBsNvKkuSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCZhAISZYk+XmS77fjC5LsSfJi257fce7WJGNJXkhyfUf9miQH2nt3J0mrn53k4Vbfl2R4DscoSerBTGYItwPPdRxvAfZW1WpgbzsmyeXACHAFsB64J8mS1uZeYDOwur3Wt/om4I2qugy4C7izr9FIkvrWUyAkGQJuAO7rKG8Adrb9ncCNHfWHqurdqnoJGAPWJlkBLKuqp6qqgAemtZm61iPAuqnZgyTp9Oh1hvB14EvAHzpql1TVYYC2vbjVVwKvdpw33mor2/70+jFtquoo8CZw4fROJNmcZDTJ6MTERI9dlyT14qSBkOQzwJGq2t/jNbt9sq8T1E/U5thC1faqWlNVa5YvX95jdyRJvVjawznXAZ9N8rfAB4FlSb4JvJZkRVUdbstBR9r548CqjvZDwKFWH+pS72wznmQpcB7wep9jkiT14aQzhKraWlVDVTXM5M3iJ6rq88BuYGM7bSPwWNvfDYy0J4cuZfLm8dNtWemtJNe2+wO3TGszda2b2t943wxBknTq9DJDOJ47gF1JNgGvADcDVNXBJLuAZ4GjwG1V9V5rcytwP3AO8Hh7AewAHkwyxuTMYGQW/ZIk9WFGgVBVTwJPtv3fAOuOc942YFuX+ihwZZf6O7RAkSQNht9UliQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgT0EAhJPpjk6SS/SHIwyVdb/YIke5K82Lbnd7TZmmQsyQtJru+oX5PkQHvv7iRp9bOTPNzq+5IMn4KxSpJOoJcZwrvAJ6vqo8BVwPok1wJbgL1VtRrY245JcjkwAlwBrAfuSbKkXeteYDOwur3Wt/om4I2qugy4C7hz9kOTJM3ESQOhJr3dDs9qrwI2ADtbfSdwY9vfADxUVe9W1UvAGLA2yQpgWVU9VVUFPDCtzdS1HgHWTc0eJEmnR0/3EJIsSfIMcATYU1X7gEuq6jBA217cTl8JvNrRfLzVVrb96fVj2lTVUeBN4MIu/dicZDTJ6MTERE8DlCT1pqdAqKr3quoqYIjJT/tXnuD0bp/s6wT1E7WZ3o/tVbWmqtYsX778JL2WJM3EjJ4yqqrfAk8yufb/WlsGom2PtNPGgVUdzYaAQ60+1KV+TJskS4HzgNdn0jdJ0uz08pTR8iQfafvnAJ8Cngd2AxvbaRuBx9r+bmCkPTl0KZM3j59uy0pvJbm23R+4ZVqbqWvdBDzR7jNIkk6TpT2cswLY2Z4U+gCwq6q+n+QpYFeSTcArwM0AVXUwyS7gWeAocFtVvdeudStwP3AO8Hh7AewAHkwyxuTMYGQuBidJ6t1JA6Gq/gu4ukv9N8C647TZBmzrUh8F3nf/oareoQWKJGkw/KayJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJKCHQEiyKsmPkjyX5GCS21v9giR7krzYtud3tNmaZCzJC0mu76hfk+RAe+/uJGn1s5M83Or7kgyfgrFKkk6glxnCUeCfqurPgWuB25JcDmwB9lbVamBvO6a9NwJcAawH7kmypF3rXmAzsLq91rf6JuCNqroMuAu4cw7GJkmagZMGQlUdrqqftf23gOeAlcAGYGc7bSdwY9vfADxUVe9W1UvAGLA2yQpgWVU9VVUFPDCtzdS1HgHWTc0eJEmnx4zuIbSlnKuBfcAlVXUYJkMDuLidthJ4taPZeKutbPvT68e0qaqjwJvAhV3+/uYko0lGJyYmZtJ1SdJJ9BwIST4EfBf4YlX97kSndqnVCeonanNsoWp7Va2pqjXLly8/WZclSTPQUyAkOYvJMPhWVX2vlV9ry0C07ZFWHwdWdTQfAg61+lCX+jFtkiwFzgNen+lgJEn96+UpowA7gOeq6msdb+0GNrb9jcBjHfWR9uTQpUzePH66LSu9leTads1bprWZutZNwBPtPoMk6TRZ2sM51wFfAA4keabVvgzcAexKsgl4BbgZoKoOJtkFPMvkE0q3VdV7rd2twP3AOcDj7QWTgfNgkjEmZwYjsxuWJGmmThoIVfUTuq/xA6w7TpttwLYu9VHgyi71d2iBIkkaDL+pLEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAnoIRCSfCPJkSS/7KhdkGRPkhfb9vyO97YmGUvyQpLrO+rXJDnQ3rs7SVr97CQPt/q+JMNzPEZJUg96mSHcD6yfVtsC7K2q1cDedkySy4ER4IrW5p4kS1qbe4HNwOr2mrrmJuCNqroMuAu4s9/BSJL6d9JAqKofA69PK28Adrb9ncCNHfWHqurdqnoJGAPWJlkBLKuqp6qqgAemtZm61iPAuqnZgyTp9On3HsIlVXUYoG0vbvWVwKsd54232sq2P71+TJuqOgq8CVzY7Y8m2ZxkNMnoxMREn12XJHUz1zeVu32yrxPUT9Tm/cWq7VW1pqrWLF++vM8uSpK66TcQXmvLQLTtkVYfB1Z1nDcEHGr1oS71Y9okWQqcx/uXqCRJp1i/gbAb2Nj2NwKPddRH2pNDlzJ58/jptqz0VpJr2/2BW6a1mbrWTcAT7T6DJOk0WnqyE5J8B/gEcFGSceArwB3AriSbgFeAmwGq6mCSXcCzwFHgtqp6r13qViafWDoHeLy9AHYADyYZY3JmMDInI5MkzchJA6GqPnect9Yd5/xtwLYu9VHgyi71d2iBIkkaHL+pLEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCYOmgOyBNGd7yr4PugqZ5+Y4bBt0FnUbOECRJgIEgSWoMBEkSYCBIkhoDQZIEzKNASLI+yQtJxpJsGXR/JGmxmReBkGQJ8M/A3wCXA59LcvlgeyVJi8u8CARgLTBWVb+qqt8DDwEbBtwnSVpU5ssX01YCr3YcjwN/Mf2kJJuBze3w7SQv9Pn3LgJ+3Wfb+caxzD9nyjjInWfOWDiD/l2Y3Vj+5HhvzJdASJdava9QtR3YPus/loxW1ZrZXmc+cCzzz5kyDnAs89WpGst8WTIaB1Z1HA8BhwbUF0lalOZLIPwUWJ3k0iR/BIwAuwfcJ0laVObFklFVHU3y98C/A0uAb1TVwVP4J2e97DSPOJb550wZBziW+eqUjCVV71uqlyQtQvNlyUiSNGAGgiQJWISBcKb8REaSbyQ5kuSXg+7LbCRZleRHSZ5LcjDJ7YPuU7+SfDDJ00l+0cby1UH3aTaSLEny8yTfH3RfZivJy0kOJHkmyeig+9OvJB9J8kiS59t/M385p9dfTPcQ2k9k/Dfw10w+6vpT4HNV9exAO9aHJB8H3gYeqKorB92ffiVZAayoqp8l+TCwH7hxgf6bBDi3qt5OchbwE+D2qvrPAXetL0n+EVgDLKuqzwy6P7OR5GVgTVUt6C+mJdkJ/EdV3deeyPzjqvrtXF1/sc0QzpifyKiqHwOvD7ofs1VVh6vqZ23/LeA5Jr+5vuDUpLfb4VnttSA/cSUZAm4A7ht0XzQpyTLg48AOgKr6/VyGASy+QOj2ExkL8n8+Z6Ikw8DVwL4Bd6VvbZnlGeAIsKeqFupYvg58CfjDgPsxVwr4YZL97SdwFqI/BSaAf2lLefclOXcu/8BiC4SefiJDp1+SDwHfBb5YVb8bdH/6VVXvVdVVTH7bfm2SBbecl+QzwJGq2j/ovsyh66rqY0z+ovJtbcl1oVkKfAy4t6quBv4PmNP7oIstEPyJjHmorbd/F/hWVX1v0P2ZC20q/ySwfrA96ct1wGfbuvtDwCeTfHOwXZqdqjrUtkeAR5lcPl5oxoHxjlnnI0wGxJxZbIHgT2TMM+1G7A7guar62qD7MxtJlif5SNs/B/gU8PxAO9WHqtpaVUNVNczkfyNPVNXnB9ytviU5tz2wQFti+TSw4J7Oq6r/BV5N8mettA6Y04cv5sVPV5wuA/iJjFMmyXeATwAXJRkHvlJVOwbbq75cB3wBONDW3gG+XFX/Nrgu9W0FsLM9zfYBYFdVLfhHNs8AlwCPTn72YCnw7ar6wWC71Ld/AL7VPtD+Cvi7ubz4onrsVJJ0fIttyUiSdBwGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1Pw/KEXcIdG4ZGIAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(x = diamonds.carat,\n",
" bins = [0, 2, 4, 6]) # 구간의 정보\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "5ced066a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAO20lEQVR4nO3dcajd5X3H8fdnSWutXahilCwJuw5CNxW21otzE8qY3cxqafxHyKA1DCEgbrProIv7p+yPgINRWmEKoe2MtFRC22Go2FXSllFw2hu1szF1hur0zszcbnTV/WGn/e6P+1TOkpvcc+e9v3Pvfd4vOJzf+Z7n9zvPQ8jnPOc5v/O7qSokSX34hUl3QJI0HENfkjpi6EtSRwx9SeqIoS9JHdk46Q4s5uKLL66pqalJd0OS1pSjR4/+qKo2n15f9aE/NTXFzMzMpLshSWtKkn9dqO7yjiR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdWTV/yJ3JUzte/DN7efvvGGCPZGkYTnTl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdGSv0k/xZkmNJvp/kS0nekeSiJA8nebbdXzjS/o4kJ5I8k+T6kfpVSZ5qz92VJCsxKEnSwhYN/SRbgT8FpqvqSmADsBvYBxypqh3AkfaYJJe3568AdgJ3J9nQDncPsBfY0W47l3U0kqRzGnd5ZyNwfpKNwDuBl4BdwMH2/EHgxra9C7i/ql6rqueAE8DVSbYAm6rqkaoq4L6RfSRJA1g09Kvq34C/AV4ATgL/VVXfAC6tqpOtzUngkrbLVuDFkUPMttrWtn16/QxJ9iaZSTIzNze3tBFJks5qnOWdC5mfvV8G/BJwQZKPnGuXBWp1jvqZxaoDVTVdVdObN29erIuSpDGNs7zzAeC5qpqrqv8Bvgr8NvByW7Kh3Z9q7WeB7SP7b2N+OWi2bZ9elyQNZJzQfwG4Jsk729k21wHHgcPAntZmD/BA2z4M7E5yXpLLmP/C9rG2BPRKkmvacW4e2UeSNICNizWoqkeTfBl4HHgdeAI4ALwLOJTkFubfGG5q7Y8lOQQ83drfVlVvtMPdCtwLnA881G6SpIEsGvoAVfVJ4JOnlV9jfta/UPv9wP4F6jPAlUvsoyRpmfiLXEnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUkbFCP8m7k3w5yQ+SHE/yW0kuSvJwkmfb/YUj7e9IciLJM0muH6lfleSp9txdSbISg5IkLWzcmf5ngK9X1a8Cvw4cB/YBR6pqB3CkPSbJ5cBu4ApgJ3B3kg3tOPcAe4Ed7bZzmcYhSRrDoqGfZBPwfuBzAFX106r6MbALONiaHQRubNu7gPur6rWqeg44AVydZAuwqaoeqaoC7hvZR5I0gHFm+r8CzAF/l+SJJJ9NcgFwaVWdBGj3l7T2W4EXR/afbbWtbfv0+hmS7E0yk2Rmbm5uSQOSJJ3dOKG/EXgfcE9VvRf4b9pSzlkstE5f56ifWaw6UFXTVTW9efPmMbooSRrHOKE/C8xW1aPt8ZeZfxN4uS3Z0O5PjbTfPrL/NuClVt+2QF2SNJBFQ7+q/h14Mcl7Wuk64GngMLCn1fYAD7Ttw8DuJOcluYz5L2wfa0tAryS5pp21c/PIPpKkAWwcs92fAF9M8nbgh8AfMf+GcSjJLcALwE0AVXUsySHm3xheB26rqjfacW4F7gXOBx5qN0nSQMYK/ap6Ephe4KnrztJ+P7B/gfoMcOUS+idJWkb+IleSOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdWTs0E+yIckTSb7WHl+U5OEkz7b7C0fa3pHkRJJnklw/Ur8qyVPtubuSZHmHI0k6l6XM9G8Hjo883gccqaodwJH2mCSXA7uBK4CdwN1JNrR97gH2Ajvabedb6r0kaUk2jtMoyTbgBmA/8PFW3gX8Tts+CHwb+ItWv7+qXgOeS3ICuDrJ88CmqnqkHfM+4EbgoWUYx7KY2vfgm9vP33nDxI8jSctt3Jn+p4FPAD8bqV1aVScB2v0lrb4VeHGk3WyrbW3bp9clSQNZNPSTfAg4VVVHxzzmQuv0dY76Qq+5N8lMkpm5ubkxX1aStJhxlneuBT6c5IPAO4BNSb4AvJxkS1WdTLIFONXazwLbR/bfBrzU6tsWqJ+hqg4ABwCmp6cXfGMYkss1ktaLRWf6VXVHVW2rqinmv6D9ZlV9BDgM7GnN9gAPtO3DwO4k5yW5jPkvbB9rS0CvJLmmnbVz88g+OoupfQ++eZOkt2qsL3LP4k7gUJJbgBeAmwCq6liSQ8DTwOvAbVX1RtvnVuBe4Hzmv8BdNV/iSlIPlhT6VfVt5s/Soar+A7juLO32M3+mz+n1GeDKpXZSkrQ8/EWuJHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHVk46Q7MGlT+x6cdBckaTDO9CWpI93P9NeS0U8lz995wwR7ImmtcqYvSR0x9CWpI4a+JHXE0Jekjhj6ktQRz95Zoh7PoOlxzNJ6ZeivEgarpCG4vCNJHTH0Jakjhr4kdcTQl6SOLBr6SbYn+VaS40mOJbm91S9K8nCSZ9v9hSP73JHkRJJnklw/Ur8qyVPtubuSZGWGJUlayDgz/deBP6+qXwOuAW5LcjmwDzhSVTuAI+0x7bndwBXATuDuJBvase4B9gI72m3nMo5FkrSIRUO/qk5W1eNt+xXgOLAV2AUcbM0OAje27V3A/VX1WlU9B5wArk6yBdhUVY9UVQH3jewjSRrAktb0k0wB7wUeBS6tqpMw/8YAXNKabQVeHNltttW2tu3T6wu9zt4kM0lm5ubmltJFSdI5jB36Sd4FfAX4WFX95FxNF6jVOepnFqsOVNV0VU1v3rx53C5KkhYxVugneRvzgf/FqvpqK7/clmxo96dafRbYPrL7NuClVt+2QF2SNJBxzt4J8DngeFV9auSpw8Cetr0HeGCkvjvJeUkuY/4L28faEtArSa5px7x5ZB9J0gDGufbOtcBHgaeSPNlqfwncCRxKcgvwAnATQFUdS3IIeJr5M39uq6o32n63AvcC5wMPtZskaSCLhn5VfYeF1+MBrjvLPvuB/QvUZ4Arl9JBSdLy8Re5ktQRQ1+SOmLoS1JHDH1J6oh/OWuF+RexJK0mzvQlqSPO9Neos32C8JOFpHNxpi9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI91chmH08gTrzdnG5iUZJJ2um9BfCUsNVUNY0qS5vCNJHXGmr1XNT0fS8nKmL0kdMfQlqSOGviR1xNCXpI4Y+pLUEc/e6YRnwUiCdR766/lXuJL0/+HyjiR1ZF3P9LX8XCaS1jZD/yzW89LQSge3bwzS6uXyjiR1xJn+KrSeP2W8FX6CkN46Q39C1kOwG8LS2uPyjiR1xJn+MlkPM3dJ65+h37m1ukSzVvstTZqhrxVlOEury+Chn2Qn8BlgA/DZqrpz6D5oYW8loCe5vHW21/ZNRjrToKGfZAPwt8DvAbPAd5Mcrqqnh+yHFrcSIT70rN83A+lMQ8/0rwZOVNUPAZLcD+wCDP3OrMZPBku10m8eLo1pJQwd+luBF0cezwK/eXqjJHuBve3hq0meAS4GfrTiPVy9eh7/qhx7/nqQl7kY+NFAr7XarMp/9wG91fH/8kLFoUM/C9TqjELVAeDA/9kxmamq6ZXq2GrX8/gdu2Pv0UqNf+gfZ80C20cebwNeGrgPktStoUP/u8COJJcleTuwGzg8cB8kqVuDLu9U1etJ/hj4B+ZP2fx8VR0bc/cDizdZ13oev2PvU89jhxUaf6rOWFKXJK1TXnBNkjpi6EtSR9ZE6CfZmeSZJCeS7Jt0f4aS5PNJTiX5/qT7MrQk25N8K8nxJMeS3D7pPg0pyTuSPJbke238fzXpPg0tyYYkTyT52qT7MqQkzyd5KsmTSWaW/firfU2/XbrhXxi5dAPwhz1cuiHJ+4FXgfuq6spJ92dISbYAW6rq8SS/CBwFbuzh3x0gSYALqurVJG8DvgPcXlX/NOGuDSbJx4FpYFNVfWjS/RlKkueB6apakR+mrYWZ/puXbqiqnwI/v3TDuldV/wj856T7MQlVdbKqHm/brwDHmf9Fdxdq3qvt4dvabXXP0JZRkm3ADcBnJ92X9WYthP5Cl27o5j+/IMkU8F7g0Ql3ZVBteeNJ4BTwcFX1NP5PA58AfjbhfkxCAd9IcrRdkmZZrYXQH+vSDVqfkrwL+Arwsar6yaT7M6SqeqOqfoP5X65fnaSLJb4kHwJOVdXRSfdlQq6tqvcBfwDc1pZ5l81aCH0v3dCptpb9FeCLVfXVSfdnUqrqx8C3gZ2T7clgrgU+3Na27wd+N8kXJtul4VTVS+3+FPD3zC9xL5u1EPpeuqFD7YvMzwHHq+pTk+7P0JJsTvLutn0+8AHgBxPt1ECq6o6q2lZVU8z/f/9mVX1kwt0aRJIL2okLJLkA+H1gWc/eW/WhX1WvAz+/dMNx4NASLt2wpiX5EvAI8J4ks0lumXSfBnQt8FHmZ3lPttsHJ92pAW0BvpXkn5mf+DxcVV2dutipS4HvJPke8BjwYFV9fTlfYNWfsilJWj6rfqYvSVo+hr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqyP8Cqb3uG97CVf4AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(x = diamonds.carat,\n",
" bins = 100) # 구간의 개수\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "fe3519c5",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAN10lEQVR4nO3dX2hc6XnH8d8jafBo7aaSkC5MlF3TCwcFkazDEAq72GhbitOWVjcLVWkxWKALt4PLBoS8usgf0F4YIwrrGtVUQ2zsKhTa3OSmjvEsQTikkbJu4rXSEtKIyilYy7obVbZ2R/bTC/9ZO5GlI2tG5zlH3w8ISzPj0cOyfPfdM+ec19xdAIC4mtIeAACwPkINAMERagAIjlADQHCEGgCCa2nEm3Z2dvq+ffsa8dYAkEuzs7Pvu3vXWs81JNT79u3TzMxMI94aAHLJzOaf9RyHPgAgOEINAMERagAIjlADQHCEGgCCSxRqM/uFmf3EzK6ZGadzIHOmpqbU29ur5uZm9fb2ampqKu2RgMQ2c3pen7u/37BJgAaZmprS6OioJicn9eqrr2p6elqDg4OSpIGBgZSnAzbGoQ/k3tjYmCYnJ9XX16dCoaC+vj5NTk5qbGws7dGARCzJ/ajN7L8k3Zbkkv7e3c+u9/pSqeRc8IIompubtbKyokKh8PixWq2mYrGoe/fupTgZ8Akzm3X30lrPJV1Rv+LuX5T0ZUl/ZWYH1/glQ2Y2Y2Yzi4uLWxgXqK+enh5NT08/9dj09LR6enpSmgjYnEShdvdfPvzzlqRvS/rSGq856+4ldy91da15uTqQitHRUQ0ODqparapWq6larWpwcFCjo6NpjwYksuGHiWa2W1KTuy89/P4PJH2j4ZMBdfLoA8Nyuay5uTn19PRobGyMDxKRGRseozaz39GDVbT0IOz/6O7rfgrDMWoA2Jz1jlFvuKJ2959L+kLdpwIAJMLpeQAQHKEGgOAINQAER6gBIDhCDQDBEWoACI5QA0BwhBoAgiPUABAcoQaA4Ag1AARHqAEgOEKNHYHNbZFlm9ncFsgkNrdF1iXaM3GzuB81Iunt7dXbb7+tvr6+x49Vq1WVy2Vdv349xcmAT6x3P2pCjdxjc1tkQT02twUyi81tkXWEGrnH5rbIOj5MRO6xuS2yjmPUABAAx6gBIMMINQAER6gBIDhCDQDBEWoACI5QA0BwhBoAgiPU2BG4zSmyjCsTkXvc5hRZx5WJyD1uc4os4Dan2NG4zSmygEvIsaNxm1NkHceokXujo6Pq7+/X3bt3VavVVCgU1NraqomJibRHAxJJvKI2s2Yze9fMvtPIgYB6u3r1qpaWlvToMJ+7a2lpSVevXk15MiCZzRz6OC5prlGDAI0yMTGh9vZ2Xbp0SR9//LEuXbqk9vZ2VtTIjEShNrNuSX8k6R8aOw5Qf6urq7pw4YL6+vpUKBTU19enCxcuaHV1Ne3RgESSrqj/VtKwpPvPeoGZDZnZjJnNLC4u1mM2oG5+/TQ8TstDlmwYajP7Y0m33H12vde5+1l3L7l7qaurq24DAlvV0dGhkZERjY+P686dOxofH9fIyIg6OjrSHg1IJMmK+hVJf2Jmv5D0LUmvmdmFhk4F1NHp06e1Z88ejYyMaPfu3RoZGdGePXt0+vTptEcDEtkw1O5+wt273X2fpD+TdMXd/6LhkwF1MjAwoImJCe3fv19NTU3av3+/JiYmuHwcmcF51NgRBgYGCDMya1Ohdvd3JL3TkEkAAGviEnIACI5QA0BwhBoAgiPUABAcocaOwFZcyDJCjdybmprS8ePHtby8LHfX8vKyjh8/TqyRGYQauTc8PKzm5mZVKhV99NFHqlQqam5u1vDwcNqjAYkQauTewsKCzp8//9Td886fP6+FhYW0RwMSIdQAEByhRu51d3fryJEjqlarqtVqqlarOnLkiLq7u9MeDUiEUCP3Tp48qdXVVR09elTFYlFHjx7V6uqqTp48mfZoQCKEGrk3MDCgAwcOaH5+Xvfv39f8/LwOHDjATZqQGYQauVcul3XlyhWdOnVKy8vLOnXqlK5cuaJyuZz2aEAi9mhn5noqlUo+MzNT9/cFnkexWNRbb72lN9544/Fj4+PjevPNN7WyspLiZMAnzGzW3UtrPkeokXdmpuXlZb3wwguPH7tz5452796tRvz7DzyP9ULNxgHIvV27dmloaEjXrl3T3Nycenp69PLLL2vXrl1pjwYkwjFq5N6hQ4d08eJFHTx4UB988IEOHjyoixcv6tChQ2mPBiRCqJF7N2/eVH9/vyqVitra2lSpVNTf36+bN2+mPRqQCIc+kHtzc3N69913VSgUHj9Wq9VULBZTnApIjhU1cq+np0fT09NPPTY9Pa2enp6UJgI2h1Aj90ZHRzU4OPjUJeSDg4MaHR1NezQgEQ59IPceXYFYLpcfn/UxNjbGlYnIDFbUABAcoUbuPbnDiyR2eEHmEGrk3vDwsFpaWlSpVLSysqJKpaKWlhZ2eEFmEGrk3sLCgs6dO/fUDi/nzp1jhxdkBqEGgOA46wO5193drddff13t7e2an5/XSy+9pNu3b7PDCzKDFTVyr7+/X0tLS7p7964k6e7du1paWlJ/f3+6gwEJEWrkXrVa1YkTJ9TZ2SkzU2dnp06cOKFqtZr2aEAiHPpA7s3NzWnv3r26ceOG3F03btzQ3r17NTc3l/ZoQCKsqJF7ra2tunz58uNNAtxdly9fVmtra8qTAclsGGozK5rZv5nZv5vZe2b29e0YDKiXRxe6JH0ciCbJivojSa+5+xckvSzpsJn9bkOnAhqgqanpqT+BrNjwGLU/+P/F/3v4Y+HhFxvNIXPu3bv3+HszS3ESYHMSLS3MrNnMrkm6Jem77v6DNV4zZGYzZjazuLhY5zGBrTt27Jg+/PBDHTt2LO1RgE3Z1C7kZtYm6duSyu5+/VmvYxdyRLLe6pldyBHFeruQb+pgnbv/r6R3JB3e+ljA9njWbuPsQo6sSHLWR9fDlbTMrFXS70v6aYPnAupmZWXlN6K8a9curayspDQRsDlJLnjZK+mcmTXrQdj/yd2/09ixgPoiysiyDVfU7v5jdz/g7p939153/8Z2DAbUU7lcVrFYlJmpWCyqXC6nPRKQGCeUIvfK5bLOnDmjtrY2SVJbW5vOnDlDrJEZmzrrIynO+kAkhUJBTU1NcnfVajUVCgWZme7fv69arZb2eICk9c/64KZMyL3V1dWnfibOyBoOfQBAcIQaAIIj1AAQHKEGgOAINQAER6gBIDhCDQDBEWoACI5QA0BwhBoAgiPUABAcoQaA4Ag1AARHqAEgOEINAMERagAIjlADQHCEGgCCI9QAEByhBoDgCDUABEeoASA4Qg0AwRFqAAiOUANAcIQaAIIj1AAQHKEGgOAINQAEt2GozewzZlY1szkze8/Mjm/HYACAB1oSvGZV0lfc/Udm9luSZs3su+5+o8GzAQCUYEXt7v/j7j96+P2SpDlJn270YACAB5KsqB8zs32SDkj6wRrPDUkakqQXX3yxHrMB6zKzbXsPd9/y7wKeV+IPE81sj6R/lvQ37v6rX3/e3c+6e8ndS11dXfWcEViTuyf6avR7AI2WKNRmVtCDSF90939p7EgAgCclOevDJE1KmnP38caPBNTXs1bErJSRFUlW1K9I+ktJr5nZtYdff9jguYC6evIQBoczkDUbfpjo7tOStv6pDQDguXBlIgAER6gBIDhCDQDBEWoACI5QA0BwhBoAgiPUABAcoQaA4Ag1AARHqAEgOEINAMERagAIjlADQHCEGgCCI9QAEByhBoDgCDUABEeoASA4Qg0AwRFqAAiOUANAcIQaAIIj1AAQHKEGgOAINQAER6gBIDhCDQDBEWoACI5QA0BwhBoAgiPUABAcoQaA4DYMtZlVzOyWmV3fjoEAAE9LsqL+pqTDDZ4DUEdHh8ysoV+SGv47Ojo6Uv4nibxp2egF7v49M9u3DbNgh7t9+7bcPe0xtuzRfxCAeqnbMWozGzKzGTObWVxcrNfbAsCOV7dQu/tZdy+5e6mrq6tebwsAOx5nfQBAcIQaAIJLcnrelKTvS/qsmS2Y2WDjxwIAPJLkrI+B7RgEALA2Dn0AQHCEGgCCI9QAEByhBoDgCDUABEeoASC4DU/PA7aLf/VT0td+O+0xtsy/+qm0R0DOEGqEYV//VW7unudfS3sK5AmHPgAgOEINAMERagAIjlADQHCEGgCCI9QAEByhBoDgCDUABEeoASA4Qg0AwRFqAAiOe30gFDNLe4Qta29vT3sE5AyhRhjbcUMmM8vFjZ+ws3DoAwCCI9QAEByhBoDgCDUABEeoASA4Qg0AwXF6HjLrec+5fp6/xyl9SBOhRmYRT+wUHPoAgOAINQAER6gBILhEoTazw2b2H2b2MzMbafRQAIBPbBhqM2uW9HeSvizpc5IGzOxzjR4MAPBAkhX1lyT9zN1/7u4fS/qWpD9t7FgAgEeShPrTkv77iZ8XHj72FDMbMrMZM5tZXFys13wAsOMlCfVaVwf8xgms7n7W3UvuXurq6tr6ZAAASckueFmQ9Jknfu6W9Mv1/sLs7Oz7Zja/lcGABumU9H7aQwBreOlZT9hGV3eZWYuk/5T0e5JuSvqhpD939/fqOSGwHcxsxt1Lac8BbMaGK2p3XzWzv5b0r5KaJVWINABsnw1X1ECesKJGFnFlInaas2kPAGwWK2oACI4VNQAER6gBIDhCjR3BzCpmdsvMrqc9C7BZhBo7xTclHU57COB5EGrsCO7+PUkfpD0H8DwINQAER6gBIDhCDQDBEWoACI5QY0cwsylJ35f0WTNbMLPBtGcCkuIScgAIjhU1AARHqAEgOEINAMERagAIjlADQHCEGgCCI9QAENz/A6DSZ4pZUg6KAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# ii. 상자그림(Boxplot)\n",
"# 이상치(outlier) 유무를 시각화\n",
"# plt.boxplot(x = data.수치형자료)\n",
"# plt.show()\n",
"\n",
"plt.boxplot(x = diamonds.carat)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ff2be99",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}