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Abstract

This tutorial survey paper reviews several different models for light interaction with volume
densities of absorbing, glowing, reflecting, and/or scattering material. They are, in order of
increasing realism, absorption only, emission only, emission and absorption combined, single
scattering of external illumination without shadows, single scattering with shadows, and multiple
scattering. For each model I give the physical assumptions, describe the applications for which it
is appropriate, derive the differential or integral equations for light transport, present calculations
methods for solving them, and show output images for a data set representing a cloud. Special
attention is given to calculation methods for the multiple scattering model.

1. Introduction

A scalar function on a 3D volume can be visualized in a number of ways, for example by
color contours on a 2D slice, or by a polygonal approximation to a contour surface. Direct volume
rendering refers to techniques which produce a projected image directly from the volume data,
without intermediate constructs such as contour surface polygons. These techniques require some
model of how the data volume generates, reflects, scatters, or occludes light. This paper presents a
sequence of such optical models with increasing degrees of physical realism, which can bring out
different features of the data.

In many applications the data is sampled on a rectilinear grid, for example, the computational
grid from a finite difference simulation, or the grid at which data are reconstructed from X-ray
tomography or X-ray crystallography. In other applications, the samples may be irregular, as in
finite element or free lagrangian simulations, or with unevenly sampled geological or meteorolog-
ical quantities. In all cases, the data must be interpolated between the samples in order to use the
continuous optical models described here. For example, linear interpolation can be used on tetra-
hedra, and trilinear or tricubic interpolation can be used on cubes. A number of other interpolation
methods are given in Nielson and Tvedt [1]. Here I will just assume the interpolation is done
somehow to give a scalar function f(X) defined for all pointsX in the volume.

Optical properties like color and opacity can then be assigned as functions of the interpolated
value f(X). (The physical meaning of these optical properties will be discussed in detail below.)



Interpolatingf first permits the optical properties to change rapidly within a single volume ele-
ment, to emphasize a small range of scalar values. It is possible to compute the optical properties
only at the grid vertices, and then interpolate them instead, but this may eliminate fine detail. The
situation is analogous to the superiority of Phong shading (interpolating the normal) over
Gouraud shading (interpolating the shaded color) for representing fine highlight detail.

To compute an image, the effects of the optical properties must be integrated continuously
along each viewing ray. This does not mean that only ray tracing can be used. Mathematically
equivalent integration can be performed with polyhedron compositing (Shirley and Tuchman [2],
Max et al. [3], Wilhelms and van Gelder [4], Williams and Max [5]). If the integral is approxi-
mated by a Riemann sum, as discussed below, then the plane-by-plane compositing methods of
Drebenet al. [6] and Westover [7] can also produce equivalent approximations. In this paper, I
will not be concerned with the distinctions between these methods. Instead, I will deal with the
mathematical forms that the continuous integral takes, depending on the optical model. Siegel and
Howell [8] is a good general reference for the physics behind these models.

The optical properties which affect the light passing through a “participating medium” are
due to the absorption, scattering, or emission of light from small particles like water droplets, soot
or other suspended solids, or individual molecules in the medium. For the models below, I will
describe the geometric optics effects of the individual particles, and then derive a differential
equation for the light flow in the medium. The differential equations are for a continuous medium,
in the limit where the particles are infinitesimally small, so that the absorption, emission, and scat-
tering take place at every infinitesimal segment of the ray. I will write the equations taking the
intensity and optical properties to be scalars, for black-and-white images. For multiple wave-
length bands (e. g. red, green, and blue) in a color image, the equations are repeated for each
wavelength, so these quantities become vectors.

2. Absorption only

The simplest participating medium has cold perfectly black particles which absorb all the
light that they intercept, and do not scatter or emit any. For simplicity, assume that the particles
are identical spheres, of radiusr and projected areaA =πr2, and letρ be the number of particles
per unit volume. Consider a small cylindrical slab with a baseB of areaE, and thickness∆s, as
shown in figure 1, with the light flowing along the direction∆s, perpendicular to the base. The
slab has volumeE∆s, and thus containsN = ρE∆s particles. If∆s is small enough so that the parti-
cle projections on the baseB have low probability of overlap, the total area that they occlude onB
is approximated byNA = ρAE∆s. Thus the fraction of the light flowing throughB that is occluded
is ρAE∆s/E = ρA∆s. In the limit as∆s approaches zero, and the probability of overlap approaches
zero also, this gives the differential equation

(1)dI
ds
----- ρ s( ) AI s( )– τ s( ) I s( )–= =



wheres is a length parameter along a ray in the direction of the light flow, andI(s) is the light
intensity at distance s. The quantityτ(s) = ρ(s)A is called the extinction coefficient and defines the
rate that light is occluded. The solution to this differential equation is

, (2)

where I0 is the intensity ats = 0, where the ray enters the volume. The quantity

T(s) = exp (3)

is the transparency of the medium between 0 ands. A somewhat different derivation of these
equations is given in Blinn [9]. (See also section 2 of Williams and Max [5].)

In the volume rendering literature the extinction coefficientτ is often simply called opacity.
However, the opacityα of a voxel of sidel, viewed parallel to one edge, is actually

,

or, if τ is constant inside the voxel, . This distinction is
important if the voxel is scaled to a different size, or is viewed diagonally, so that the path length
through it is different froml. Wilhelms and Van Gelder [4] have a user interface in whichα is
specified for a unit lengthl, allowingτ to become infinite whenα = 1. They also suggest that for
small voxels,α can be approximated by min(1, τl), which truncates all but the first term of the
above series, but makes sure thatα never exceeds 1. Max[10] suggests a quadratic approximation
for α(l) arranged to meet the lineα = 1 smoothly atl = 2/τ.

The mapping which assigns a value for an optical property likeτ to each value of the scalarf
being visualized is called a transfer function. The simplest transfer function assignsτ = ∞ if f
exceeds a thresholdK, andτ = 0 otherwise. Thus iff is tomographic density on a medical data set,
K can be chosen to make bone completely opaque, and all other tissues completely transparent.
Many early medical visualizations were produced in this way. If the “interpolation” for f(x) just
setsf to the value at the nearest sample point, so that it is constant inside cubes centered at the
sample points, rendering consists of merely projecting the opaque cubes, or their front faces, onto
the image plane. This can be done using a z-buffer or back-to-front “painter’s algorithm” for visi-
bility determination. If a list of surface voxels can be found [11], the interior voxels, which are
guaranteed to be hidden, need not be projected.

This technique has been useful in visualizing bone or other tissues for medical purposes, and
various shading schemes have been developed [12]. The simplest uses only the z-buffer depth at a
pixel, shading the more distant pixels darker. More realistic surface shading models require the
surface normal vector, which must be estimated. One method uses the z-buffer values at neighbor-
ing pixels to estimate the slope of the projected surface. Surface normals can also be estimated
before projection, according to the orientation of the cube face and its neighbors in the boundary
of the opaque volume. Finally, the normals can be determined from the gradient off(X), estimated

I s( ) I0exp τ t( ) dt
0

s

∫– 
 =

τ t( ) dt
0

s
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 

α 1 T l( )– 1 exp τ t( ) td
0

l
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 –= =

α 1 exp τl–( )– τl τl( ) 2
2⁄ ...+–= =



by finite differences off at neighboring voxels. Note that these shading functions are applied after
the thresholded opaque volume has been determined, and are not the same as the shading for
direct volume rendering to be discussed below.

The more sophisticated optical models use the transfer function to specify the extinction
coefficient as a finite, continuously varying functionτ(f) of the scalarf. When the integration in
equation (2) is carried out along each viewing ray, the result is an X-ray-like image, which
accounts for the attenuation of the X-rays from the source ats = 0 by the density between the
source and the film plane. Iff is the X-ray absorption density reconstructed by Computed Tomog-
raphy,τ(f) can be taken as the identity function, to produce a new simulated X-ray image from
any specified direction. Other assignments ofτ(f) can isolate a density range of interest, and ren-
der all other densities as transparent. Such images can be used for medical diagnosis and non-
destructive testing.

Alternatively, I0 can represent a background intensity, varying from pixel to pixel, and the
resulting image represents the volume density as a cloud of black smoke obscuring the back-
ground. To illustrate the optical models in this paper, I have modelled an atmospheric cloud as a
sum of ellipsoidal densities. I have added a 3-D noise texture from Perlin [13], to give a natural
fractal appearance to its edges. Fig. 2 shows this cloud represented with equation (2), as black
smoke hiding the ground, an aerial phhoto of Washington, DC.

The problems of computing these X-ray like images are basically those of computing the
integrals appearing in equations (2) and (3), since the exponential function need be done only
once per output pixel, and can even be performed by a “gamma correction” table lookup as part of
the video output process. Malzbender [14] and Totsuka and Levoy [15] have shown how to use
the fourier projection slice theorem and fast fourier transforms to compute these integrals very
rapidly.

3. Emission only

In addition to extinction, the medium may also add light to the ray by emission or reflection
of external illumination. The simplest case is emission, as by hot soot particles in a flame. Of
course, real particles absorb as well as emit light, but in the limit as the particle size or number
density approaches zero, while the emission goes to infinity in a compensating manner, we can
neglect the absorption. This is the case for a very hot tenuous gas, which glows but is almost
transparent. In this section, we will model this case by assuming the small spherical particles dis-
cussed above are transparent, and then in the next section we will include their absorption.

If the particles in fig. 1 are transparent, but glow diffusely with an intensityC per unit pro-
jected area, their projected areaρAE∆s derived above will contribute a glow fluxCρAE∆s to the
base areaE, for an added flux per unit areaCρA∆s. Thus the differential equation forI(s) is



(4)

The termg(s) is called the source term, and later we will let it include reflection as well as emis-
sion. The solution to this differential equation is simply

. (5)

Fig. 3 shows the cloud of fig. 2 drawn in this way, withg proportional tof. Note that the fou-
rier methods of Malzbender [14] can also be used to produce such images, which are like the X-
ray negatives commonly viewed by radiologists. This sort of image is useful for simulating the
glow from fluorescent stains in reconstructed micrographs, or in any situation when the glowing
material is not too extensive. However, unlike the exponentials in equations (2) and (3), the inte-
gral in (5) has no upper bound, because the intensity can be added across an arbitrary thickness
without attenuation. The accumulated intensity can easily exceed the representable range of the
output devise. The cloud in figure 3 is too tenuous at the edges because I had to set the constantC
very small in order not to exceed the available intensity range at the center of the cloud.

4. Absorption plus emission

The particles in an actual cloud occlude incoming light, as well as add their own glow. Thus a
realistic differential equation should include both source and attenuation terms:

. (6)

In section 4.2 we will consider as a special case the model whereg(s) = C(s) τ(s), as in equation
(4), but for now, let the source termg(s) be an arbitrary function of position, perhaps specified by
an independent transfer functiong(f). The absorption plus emission model is useful for volume
rendering continuous scalar fields from numerical simulations, or medical data that has been seg-
mented into different tissue types which can be given different values ofτ andg.

Equation (6) can be solved by bringing the term to the left hand side, and multiply-
ing by the integrating factor , giving

or

.

Integrating froms = 0 at the edge of the volume to s = D at the eye, we get

.

Bringing theI0 to the other side, and multiplying by , we can solve forI(D):

. (7)
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The first term represents the light coming from the background, multiplied by the cloud’s trans-
parency, as in equation (2). The second term is the integral for the contribution of the source term
g(s) at each positions, multiplied by the transparency  betweens and
the eye. Thus

.

4.1 Calculation methods

For certain transfer functions and interpolation methods, the integrals in equation (7) can be
calculated analytically, as will be discussed in section 4.2. For more general cases, however,

numerical integration is required. The simplest numerical approximation to an integral

is the Riemann sum . The interval from 0 to D is divided up inton equal segments, of

length∆x = D/n, and a samplexi is chosen in each segment, so that (i-1)∆x ≤ xi ≤ i∆x. To simplify

the following formulas, I will choosexi = i∆x. Then exp  is approximated by

whereti = exp(-τ (i∆x) ∆x) can be thought of as the transparency of theith segment along the ray.
As noted above,ti depends not only onτ(f) but also on the ray segment length∆x.

Similarly, for the final integral in equation (7), we can letgi = g(i∆t), and approximate the

transparency exp  betweenxi and D by . The Riemann sum for

 then becomes . Thus the final estimate is
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This gives the familiar back-to-front compositing algorithm:

I = I 0;
for( i = 1; i <= n; ++i )

I = t[i]*I + g[i];

or the front-to-back compositing algorithm:

I = 0.;
T = 1.;
i = n;
while( T > small_threshold && i >= 1 )

{

I = T*I + g[i];

T = T*t[i];

--i;

}

I = I + T*I 0;.

4.2 The Particle Model

The derivation ofg(s) in equation (4), based on identical spherical particles, definesg(s) =
C(s) τ(s). A particularly simple case is whenC is constant along the ray, or at least along the seg-
ment within a certain material region assigned the colorC. This makes the second integral in
equation (7) much simpler:

Making the above substitution in equation (7) and using the total transparencyT(D) from equation
(3), we get

. (8)

This is the simple compositing of the colorC on top of the backgroundI0, using the transparency
T(D). Conceptually, the opacityα = (1. -T(D)) represents the probability that a ray from the eye
will hit a particle, and “see” colorC.

If I0 = 0, and τ is proportional tof, the result is like an X-ray negative, brightest where there is
most density, but saturating at the maximum intensityC, as shown in fig. 4. Fig. 5 shows the cloud
over the ground, according to equation (8).

Instead of constantC, a somewhat more general assumption is thatC(s) andτ(s) vary linearly
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along a ray segment. This will be the case if bothC(f) andτ(f) are linear or piecewise linear func-
tions of the scalar fieldf, and if f is interpolated linearly across tetrahedral cells joining points
wheref is sampled. In this case,g(s) will be a quadratic function on a ray segment, and Williams
and Max [5] give a rather complicated analytic formula for the integral, involving tables or sub-
routines for the normal error integral erf(x), and for .

The particle model corresponds to a physical situation with glowing particles, but sometimes
it is convenient to defineg(s) independently ofτ(s). For example,g could be given directly in
terms of the scalar fieldf, or even in terms of a different scalar field unrelated to the one determin-
ing τ. This gives slightly more flexibility than the particle model, because it allowsg to be non-
zero even whenτ is zero, permitting completely transparent glowing gas, without needing an infi-
nitely brightC(s). Even with non-zeroτ, it will have different interpolation properties. For exam-
ple, in the situation in the previous paragraph, the interpolatedg(s) was quadratic on a ray
segment, while an independently defined and interpolatedg(s) would be linear.

5. Scattering and Shading

The next step toward greater realism is to include scattering of illumination external to the
voxel. In the simplest model, sometimes called the “Utah approximation” after early shaded
images from the University of Utah, the external illumination is assumed to reach the voxel from
a distant source, unimpeded by any intervening objects or volume absorption. We will consider
this case first, and deal with shadows in the next section.

A general shading rule for the scattered lightS(X, ω) at positionX in directionω is

(9)

wherei(X, ω′) is the incoming illumination reachingX flowing in directionω′, and  is
the bidirectional reflection distribution function, which depends on the direction ω of the reflected
light, the directionω′ of the incoming light, and on other properties likef or its gradient that vary
with positionX. For light scattered by a density of particles,

= a(X) τ(X) p(ω, ω′),

wherea(X) is the particle albedo, giving the fraction of the extinctionτ which represents scatter-
ing rather than absorption, andp is the phase function, which specifies the directionality of the
scattering. For spherical particles, or randomly oriented particles of any shape,p will depend only
on the angleα betweenω andω′, i. e., onx = cosα= ω ⋅ ω′. A common formula forp, which can
approximate the Mie scattering for spherical particles comparable in size to the light wavelength,
is the Henyey-Greenstein function [16]

. (10)
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Herec is an adjustable constant between -1 and 1, which is positive for forward scattering, nega-
tive for backward scattering, and zero for isotropic scattering, which is equal in all directions. An
even simpler formula (see Blinn[9]) can be derived by geometric optics for a spherical particle
much larger than the light wavelength, whose surface scatters diffusely by Lambert’s law:

p(ω, ω′) = (8/3π) ( sinα + (π-α) cosα).

In volume rendering, one often wants to produce the visual effect of a shaded contour sur-
face, without actually constructing surface polygons. One can then claim to be rendering directly
from the actual data, without introducing artifacts from polygonalization. Such shading is a spe-
cial case of a general volume scattering termS(X, ω), and requires the contour surface normalN,
which is equal to the direction of the gradient∇f, i. e., N = ∇f /|∇f|. The gradient∇f can be esti-
mated by central differences between regularly spaced gridded data values, and then interpolated
between the grid vertices.

To simulate shading effects from contour surfaces at sharp changes in the scalar functionf,
one could use |∇f| to measure surface “strength”. Then a simple Lambert diffuse shading formula
max(N ⋅ ω′, 0), multiplied by the “strength”, gives

. (11)

More sophisticated formulas involvingω, ω′, andN can be used, like Phong or Cook-Tor-
rance shading. One can also make the “strength” depend onf, in order to localize the surface shad-
ing near a contour value for f. Details of such shading algorithms can be found in Levoy [17] and
Drebenet al. [6]. The most general source termg(X, ω) is the sum of a non-directional internal
glow or emissivityE(X) as in section 3, and the reflection or scattering termS(X, ω) of this sec-
tion:

. (12)

6. Shadows

The shading effects discussed above are unrealistic, since they replace an internal glow by a
reflection of external illumination, but take no account of shadows. Ifg(X) is to model the reflec-
tions from surfaces or particles, one should account for the transparency of the volume density
between the light source and the pointX, as well as fromX to the viewpoint. IfL is the intensity
from an infinite light source in the direction -ω′, the illuminationi(X, ω′) which reachesX is

. (13)

In practice, the integral does not run to , but only to the edge of the data volume.

At this point, it is convenient to reverse the meaning of the parameters in equation (7), so
that it starts at a viewpointX and goes out in direction -ω opposite to the light flow, reaching

r X ω ω′, ,( ) max ∇f ω′ 0,⋅( )=

g X ω,( ) E X( ) S X ω,( )+=

i X ω′,( ) L exp τ X tω′–( ) td
0

∞
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X - sω at distances. Rewriting equation (7) with this reversed ray parametrization,s′ = D - s, t′ =
D - t, we have

. (14)

Removing the primes ons andt, and substituting equations (9) and (13), we get

.

The factor corresponds to the “shadow feelers” used in recursive
ray tracing, except that a shadow feeler is sent to the light source at each pointX - tω along the
primary ray, and returns a fractional transparency. In Max [10] and [18] I show how these inte-
grals can be evaluated under particular conditions, for example, whenτ is constant or varies only
along one dimension. Kanedaet al. [19] also describe a case of one-dimensional variation, and
Nishita et al. [20] consider multiple light sources whenτ is constant and opaque polygonal
objects are present.

A more general two-pass numerical algorithm was suggested by Kajiya and Von Herzen [21].
The first pass computes the illuminationi(X, ω) reachingX, as in equation (2). It propagates the
flux from the light source through the volume, one voxel layer at a time, and accounts for the
transparency of the layer before propagating to the next one. In the second pass, this illumination
is reflected or scattered to the viewpoint by a shading ruleg(X, ω) = r(X, ω, ω′) i(X, ω′). The
reflected intensityg(X, ω) is then gathered along viewing rays according to equation (7). Figure 6
shows the cloud rendered in this way. The shading used a Henyey-Greenstein phase functionp as
in equation (10), with a peak in the forward scattering direction, consistent with the light scatter-
ing properties of small water droplets.

Shadows give useful cues about the shape of opaque objects, and are necessary for photoreal-
istic rendering of opaque objects in the presence of smoke, fog, clouds, turbid water, and other
“participating media”. The two pass method takes only twice as long as the gathering pass with-
out shadows, and the illumination pass can be amortized over several animated frames if only the
viewpoint moves. The “Heidelberg ray tracing model” of Meinzeret al. [22] systematically
applies this two pass method to medical images. However, its utility in general volume rendering
applications has not yet been demonstrated.

7. Multiple Scattering

This two pass method is a single-scattering model, because it accounts for only one reflection
or scattering event from the illumination ray to the observer. It is only valid if the albedo or the
density is low, so that multiple scattering is unlikely. This is not usually the case in atmospheric
clouds, so the side of the cloud away from the light source looks unnaturally dark in figure 6. To
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correct this and account for multiple scattering, one may apply the “radiosity” methods originally
developed in the field of thermal radiation heat transport. Multiple scattering calculations are
important for realistic rendering of high albedo participating media, but are expensive in com-
puter time, and are overkill for most scientific visualization applications.

Multiple scattering involves directionally dependent light flow, so it is necessary to findI(X,
ω), the intensity at each pointX in each light flow directionω. The point at distances along the
viewing ray fromX, opposite to the light flow, is X - sω. Integrating the scattering atX - sω of light
from all possible incoming directionsω′ on the 4π unit sphere, the added scattered intensity gives
the source term

.

Substituting this into equation (14) gives

, (15)

whereX - Dω is the point at the edge of the volume density, reached by the ray fromX in direction
-ω, andI0(X - Dω, ω) is the external illumination there flowing in directionω.

7.1 The zonal method

Note that the unknownI(X, ω) appears on both sides of this integral equation, making its
solution more difficult. The situation is simplifies slightly if the scattering is isotropic, so that
g(X,ω) depends only onX. In this case the method of diffuse radiosity for interreflecting surfaces
can be extended to volumes. Rushmeier and Torrance [23] and Hottel and Sarofim[24] call this
the zonal method, and assume that g(X) is piecewise constant on volume elements. These will
usually be the voxels in a volume rendering application. For simplicity, I will assume their vol-
umes are the unit volume.

The total contribution of all voxelsXj to the isotropic scatteringS(Xi) atXi is

where the “form factor”Fij  represents the fraction of the flux originating at voxelXj that is inter-
cepted by voxelXi, and the albedoa(Xi) is the portion of this intercepted flux that is scattered.
Rushmeier and Torrance [23] also consider the scattering from surfaces, but for rendering an iso-
lated volume, it is convenient to propagate the external illumination as in the first pass of Kajiya
and Von Herzen [21], and include the first bounce of external illumination in the emissivityE(Xi)
at Xi. Using equation (12), this then gives a system of simultaneous linear equations for the
unknownsg(Xi):
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The form factorFij  is actually a 7 dimensional integral over the voxelsXi, Xj, and the rays
between them. For each pair of points, one inXi and one inXj, the transparency along the ray
between them must be found as in equation (3) by integratingτ across the intervening voxels.
Rushmeier approximates this 7D integral using a single 1D integral along the ray between the
voxel centers. If a cubic data volume isn voxels on a side, there are O(n) intervening voxels along
this ray, and a total ofn3 voxels, so it takes time O(n7) to compute the O(n6) necessary form fac-
tors. Iterative methods, computing one scattering bounce for each of the O(n6) form factors per
iteration, can converge in O(1) iterations if the albedosa(Xi) are bounded by a constant r < 1.
Thus the computation time is dominated by the O(n7) cost of determining the form factors.

Rushmeier combined this volume-to-volume scattering with the earlier surface-to-surface
scattering of Goralet al. [25], adding surface-to-surface, surface-to-volume, and volume-to-sur-
face terms to equation (16). Sobierajski [26] further generalized this method to include terms
from voxels shaded according to equation (11), which scatter diffusely into a hemisphere instead
of a full sphere. Hanrahanet al. [27] have proposed a hierarchical method to group surface-to-sur-
face interactions to reduce the number of form factors from O(N2) to O(N), whereN is the number
of total elements, so that N = n3 in the cubic volume case. Bhate [28] and Sobierajski [26] have
extended these hierarchies to volume scattering.

Once the source termsg(Xi) have been determined, equation (7) can be used to produce an
output image from any desired viewpoint, with any desired camera parameters. In this pass, the
presumed constant voxel valuesg(Xi) can be interpolated to give a smoother rendering. This final
view-dependent pass is also used in surface radiosity algorithms.

7.2 The Monte Carlo method

For directional scattering with a non-isotropic phase function,g(X, ω) depends on the scatter-
ing directionω, and it is easier to deal directly with equation (15), where the unknown isI(X, ω).
There are three popular methods for solving this integral equation, all explained in Siegel and
Howell [8].

The first is the Monte Carlo method, originally developed by physicists for neutron transport,
and applied to rendering surface interreflection by Cooket al. [29] and Kajiya [30], and to volume
applications by Rushmeier [31]. Sample rays are traced from the eye through a pixel, and undergo
random absorption or scattering, with probabilities based on the extinction coefficientτ, the
albedoa, and the phase functionp. Those rays that end up at a light source or volume emitter con-
tribute flux to the pixel intensity. Since these contributing rays are in general a small fraction of all
those considered, and many ray samples are required to decrease the variance of the mean of their
contributions, the resulting images tend to appear noisy and/or take a very long time to compute.

Rushmeier [31] suggested calculating theg(X, ω) by the zonal method and then doing the
final rendering pass using the Monte Carlo method, for one extra directional bounce toward the



viewpoint. Shirley [32] and Chenet al. [33] also use such a final Monte Carlo bounce in rendering
images of interreflecting surfaces. These two references, and also Heckbert [34], propose “caustic
texture maps” to capture directional interreflection propagated by Monte Carlo means from the
light sources, and contributing to the final rendering pass. Thus rays propagating from the lights
and rays propagating from the eye meet in the middle at the caustic map. This partially solves the
problem that rays originating from the eye rarely end up at a light source, while rays from a light
source rarely end up at the eye. For volume rendering, Blasiet al. [35] used a similar approach,
analogous to the two pass algorithm in [21]. In the first Monte Carlo pass, light was propagated
from the light sources, and any light scattering at voxelXi was added to a texture map, which was
used in a final rendering pass with rays from the eye, using equation (7). Blasiet al. only stored an
isotropic scattering texture, but their methods could be generalized to store a directionally scat-
tered textureI(Xi, ω).

7.3 The P-N method

The second method, called the P-N, or PN method in thermal engineering, was originally
developed by Chandrasekhar [36] for stellar atmospheres, and was applied to computer graphics
by Kajiya and Von Herzen [21]. At each pointX, it expandsI(X, ω) in spherical harmonics in the
unit sphere directionω, getting a coupled system of partial differential equations for the spherical
harmonic expansion coefficients, which can be solved by finite difference methods.

7.4 The discrete ordinates method

The third alternative is the discrete ordinates method, which uses a collection ofM discrete
directions, chosen to give optimal Gaussian quadrature in the integrals over a solid angle. Lathrop
[37] points out that this process produces ray effects, because it is equivalent to shooting the
energy from an element in narrow beams along the discrete directions, missing the regions
between them. He presents modifications to avoid these ray effects, but the resulting equations are
mathematically equivalent to the P-N method. This implies thatM properly placed directions
specify the directional intensity distribution to the same detail asM spherical harmonic coeffi-
cients. Languénouet al. [38] have applied the discrete ordinates method to volume rendering
images of clouds.

If the volume is divided intoN = n3 cubical voxels, there are a finite numberNM of unknown
intensities in the discrete ordinates method. These are related by a system of linear equations,
whose coefficients are the form factorsFklij  for i, k, = 1, ... ,N, andj, l = 1, ... ,M. As shown in fig.
7, Fklij  represents the effect of the intensityI(Xi, ωj) in directionωj at voxelXi, on the intensity
I(Xk, ωl) in directionωl at voxelXk, taking into account the extinction between the voxels. In
order to reduce the ray effect, it is necessary to spread the intensityI(Xi, ωj) into the solid angle in
a direction bin aboutωj, instead of along a discrete ray. Thus every voxel can propagate flux to
every other voxel through at least one direction bin.



The flux I(Xi, ωj) can hit voxelXk only if there is a ray in the direction binωj connecting a
point inXi to a point inXk. For distant pairs of voxels, this is usually only possible for one direc-
tion bin ωj, and even at the bin corners, it is possible for at most four. Thus for fixedi, theM
fluxes I(Xi, ωj) affect only O(N) other voxelsXk. As in Rushmeier’s method, one must compute
for each pair of voxelsXi andXk, an integral for the transparency across the O(n) voxels along the
line between their centers (lineCD in figure 7). Once the flux reaches voxelXk, it is scattered to
each of the reflected directionsωl, using anM x M bin-to-bin matrix version of the phase function
p(ωj, ωl). This gives O(N2M) non-zero coefficients, costing O(n7 + n6M) time. As in the case of
glossy surface radiosity studied by Immelet al. [39], the matrixFklij  is sparse, and sparse solution
methods apply. Aupperle and Hanrahan [40] have shown that the hierarchical methods of [27] can
be applied to glossy surfaces, and presumably they could also be applied to anisotropic volume
scattering.

I have found a way to approximate the effects of the coefficientsFkijl  as the flux in direction
bin ωj propagates from voxel to voxel in the volume. Basically, the flux entering each voxel is
multiplied by the voxel’s transparency and then distributed to four adjacent voxels, determined by
the direction binωj. Since this arithmetic is independent of the location of the shooting voxelXi,
the flux from all voxelsXi in a layer can be propagated simultaneously, effectively computingN2

interactions in time O(N logN). (See Max[41] for details.)

When the flux reaches a voxelXk, it is deposited into a temporary array of received flux.
After the flux in direction binωj from all layers is received at voxelXk, it is scattered to theM
direction bins ωl, using a row from theM x M matrix version of the scattering phase function.
This takes time O(MN). Thus one iteration through allM shooting binsωj takes time O(MN logN
+ M2N) = O(Mn3logn + M2n3). These iterations must be repeated until convergence, but when the
number of iterations required is small compared toN, this is faster then computing all the coeffi-
cientsFklij  in advance. As in the other radiosity methods, once the light flow distributionI(X,ω) is
approximated, a final gathering pass along viewing rays using the right hand side of equation (15)
can be performed quickly from any viewpoint, giving one final directional scattering bounce.

In my implementation, I used direction bins arranged on the 96 exterior faces of a 4x4x4
block of cubes. These bins contain unequal solid angles, but this is taken into account in the defi-
nition of theM x M phase function matrixp(ωi, ωj). Fig. 8 was produced by this method, using the
same forward scattering function as in fig. 6. The increase in brightness comes from the higher
order scattering. The albedoa was .99, but only 15 iterations were needed for convergence,
because much of the flux exited at the edges of the cloud. The cloud density was defined on a 24 x
24 x 18 voxel volume, and each iteration took 15 minutes on an SGI Personal Iris 4D/35 with a
Mips 3000 processor. The final rendering, at 512 x 384 pixel resolution, took 5 minutes.
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Fig. 1. A slab of base areaE and thickness∆s.
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Fig. 2. Black smoke cloud over the ground. Fig. 3. Emission only cloud.

Fig. 4. Cloud with emission and extinction. Fig. 5. Cloud of fig. 4 over the ground.

Fig. 6. Cloud with single scattering. Fig. 8. Cloud with multiple scattering.



Fig. 7. Geometry forFklij showing direction binωj at pixelXi and direction binωl at pixelXk. The
flux from Xi to Xk lies in four different direction bins, becauseXk is at the corner of binωj.
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