{ "cells": [ { "cell_type": "markdown", "id": "8424b0de", "metadata": {}, "source": [ "### 문제정의\n", "- 머신러닝을 통해서 어떤 문제를 해결할 것인가?\n", "- 지도 vs 비지도 vs 강화\n", "- 지도학습 - 분류\n", "- 비만을 판단하는 모델" ] }, { "cell_type": "markdown", "id": "55babf60", "metadata": {}, "source": [ "### 데이터 수집\n", "- csv파일로 이루어진 데이터 수집\n", "- 500명의 성별, 키, 몸무게, 비만도 등급" ] }, { "cell_type": "code", "execution_count": 1, "id": "ebb931a7", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:11:45.179204Z", "start_time": "2023-01-26T01:11:44.331549Z" }, "collapsed": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
GenderHeightWeightLabel
0Male17496Obesity
1Male18987Normal
2Female185110Obesity
3Female195104Overweight
4Male14961Overweight
...............
495Female150153Extreme Obesity
496Female184121Obesity
497Female141136Extreme Obesity
498Male15095Extreme Obesity
499Male173131Extreme Obesity
\n", "

500 rows × 4 columns

\n", "
" ], "text/plain": [ " Gender Height Weight Label\n", "0 Male 174 96 Obesity\n", "1 Male 189 87 Normal\n", "2 Female 185 110 Obesity\n", "3 Female 195 104 Overweight\n", "4 Male 149 61 Overweight\n", ".. ... ... ... ...\n", "495 Female 150 153 Extreme Obesity\n", "496 Female 184 121 Obesity\n", "497 Female 141 136 Extreme Obesity\n", "498 Male 150 95 Extreme Obesity\n", "499 Male 173 131 Extreme Obesity\n", "\n", "[500 rows x 4 columns]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "bmi = pd.read_csv('./data/bmi_500.csv')\n", "bmi" ] }, { "cell_type": "markdown", "id": "78a6a1ec", "metadata": {}, "source": [ "### 데이터 전처리\n", "- 결측치 처리 : 비어있는 데이터를 채워주기\n", "- 이상치 처리 : 정상적인 범위를 벗어난 데이터 수정하기" ] }, { "cell_type": "markdown", "id": "e95f876b", "metadata": {}, "source": [ "#### 결측치 확인\n", "- info() 함수 사용" ] }, { "cell_type": "code", "execution_count": 2, "id": "fc1ab187", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:15:21.164058Z", "start_time": "2023-01-26T01:15:21.134025Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 500 entries, 0 to 499\n", "Data columns (total 4 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Gender 500 non-null object\n", " 1 Height 500 non-null int64 \n", " 2 Weight 500 non-null int64 \n", " 3 Label 500 non-null object\n", "dtypes: int64(2), object(2)\n", "memory usage: 15.8+ KB\n" ] } ], "source": [ "bmi.info()" ] }, { "cell_type": "markdown", "id": "951cccf6", "metadata": {}, "source": [ "#### 이상치 확인\n", "- describe() : 수치형 데이터만 분석가능" ] }, { "cell_type": "code", "execution_count": 3, "id": "7e2cf11e", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:17:33.634993Z", "start_time": "2023-01-26T01:17:33.612994Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
HeightWeight
count500.000000500.000000
mean169.944000106.000000
std16.37526132.382607
min140.00000050.000000
25%156.00000080.000000
50%170.500000106.000000
75%184.000000136.000000
max199.000000160.000000
\n", "
" ], "text/plain": [ " Height Weight\n", "count 500.000000 500.000000\n", "mean 169.944000 106.000000\n", "std 16.375261 32.382607\n", "min 140.000000 50.000000\n", "25% 156.000000 80.000000\n", "50% 170.500000 106.000000\n", "75% 184.000000 136.000000\n", "max 199.000000 160.000000" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 거의 다 정상적인 데이터로 판단됨\n", "bmi.describe()" ] }, { "cell_type": "markdown", "id": "fd51aa5f", "metadata": {}, "source": [ "### 탐색적 데이터 분석(Exploratory Data Analysis)\n", "- 데이터 자세히 살펴보기\n", "- 비만도별로 데이터가 잘 나뉘어져 있는지" ] }, { "cell_type": "markdown", "id": "4a0625ab", "metadata": {}, "source": [ "#### 비만도 등급 확인" ] }, { "cell_type": "code", "execution_count": 4, "id": "e6f45bb3", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:24:18.240283Z", "start_time": "2023-01-26T01:24:18.230283Z" } }, "outputs": [ { "data": { "text/plain": [ "array(['Obesity', 'Normal', 'Overweight', 'Extreme Obesity', 'Weak',\n", " 'Extremely Weak'], dtype=object)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 중복 제거하고 값을 확인\n", "bmi['Label'].unique()" ] }, { "cell_type": "markdown", "id": "a23c8176", "metadata": {}, "source": [ "#### Label이 Weak인 사람들만 추리기" ] }, { "cell_type": "code", "execution_count": 5, "id": "ac95f263", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:26:03.723664Z", "start_time": "2023-01-26T01:26:03.701662Z" }, "collapsed": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
GenderHeightWeightLabel
0Male17496Obesity
1Male18987Normal
2Female185110Obesity
3Female195104Overweight
4Male14961Overweight
...............
495Female150153Extreme Obesity
496Female184121Obesity
497Female141136Extreme Obesity
498Male15095Extreme Obesity
499Male173131Extreme Obesity
\n", "

500 rows × 4 columns

\n", "
" ], "text/plain": [ " Gender Height Weight Label\n", "0 Male 174 96 Obesity\n", "1 Male 189 87 Normal\n", "2 Female 185 110 Obesity\n", "3 Female 195 104 Overweight\n", "4 Male 149 61 Overweight\n", ".. ... ... ... ...\n", "495 Female 150 153 Extreme Obesity\n", "496 Female 184 121 Obesity\n", "497 Female 141 136 Extreme Obesity\n", "498 Male 150 95 Extreme Obesity\n", "499 Male 173 131 Extreme Obesity\n", "\n", "[500 rows x 4 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bmi" ] }, { "cell_type": "code", "execution_count": 8, "id": "c3f1fb61", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:29:02.226541Z", "start_time": "2023-01-26T01:29:02.204572Z" }, "collapsed": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
GenderHeightWeightLabel
27Male18762Weak
31Male17852Weak
32Female19565Weak
51Female17654Weak
98Male19569Weak
200Male18457Weak
242Male19162Weak
269Male16850Weak
279Male18857Weak
280Male19365Weak
308Male19669Weak
358Female18058Weak
360Female19361Weak
372Male18560Weak
381Male19162Weak
410Male17956Weak
420Female19561Weak
424Male17454Weak
425Female18059Weak
438Male18865Weak
462Male17956Weak
493Female17053Weak
\n", "
" ], "text/plain": [ " Gender Height Weight Label\n", "27 Male 187 62 Weak\n", "31 Male 178 52 Weak\n", "32 Female 195 65 Weak\n", "51 Female 176 54 Weak\n", "98 Male 195 69 Weak\n", "200 Male 184 57 Weak\n", "242 Male 191 62 Weak\n", "269 Male 168 50 Weak\n", "279 Male 188 57 Weak\n", "280 Male 193 65 Weak\n", "308 Male 196 69 Weak\n", "358 Female 180 58 Weak\n", "360 Female 193 61 Weak\n", "372 Male 185 60 Weak\n", "381 Male 191 62 Weak\n", "410 Male 179 56 Weak\n", "420 Female 195 61 Weak\n", "424 Male 174 54 Weak\n", "425 Female 180 59 Weak\n", "438 Male 188 65 Weak\n", "462 Male 179 56 Weak\n", "493 Female 170 53 Weak" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 불리언 인덱싱\n", "bolWeak = bmi['Label'] == 'Weak'\n", "scatter_data = bmi.loc[bolWeak]\n", "scatter_data" ] }, { "cell_type": "markdown", "id": "c79876ba", "metadata": {}, "source": [ "#### Weak인 사람들을 그래프로 그리기" ] }, { "cell_type": "code", "execution_count": 9, "id": "e7602dc3", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:30:09.847467Z", "start_time": "2023-01-26T01:30:09.094466Z" } }, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 11, "id": "36240b14", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:34:08.625995Z", "start_time": "2023-01-26T01:34:08.494145Z" }, "collapsed": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1ZElEQVR4nO3deXQUZaL+8afTJIFwSRCEpEM3gYkoi1z2xWQCidcFPSjeGEBQAnMYHK86EAHR/I6ewbkzIHrhRly4wnVEziBwhKCMDrIcFqMsgyxeUYQocbKYwMiBNGsTk/r90ZOWzt6kk650vp9z6kC/9VbVW+/UWA+1vGUxDMMQAACAiYUEugEAAAD1IbAAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTaxPoBvhLRUWFfvjhB3Xo0EEWiyXQzQEAAA1gGIbOnz+v2NhYhYTUfh0laALLDz/8IIfDEehmAACA61BQUCC73V7r/KAJLB06dJDk3uHIyMgAtwYAADSE0+mUw+HwnMdrEzSBpfI2UGRkJIEFAIAWpr7HOXjoFgAAmB6BBQAAmB6BBQAAmF7QPMPSEOXl5SorKwt0M4KK1WpVmzZteJUcANCkWk1guXDhggoLC2UYRqCbEnQiIiJks9kUFhYW6KYAAIJUqwgs5eXlKiwsVEREhLp06cLVAD8xDENXr17VP/7xD+Xl5alXr151DvoDAMD1ahWBpaysTIZhqEuXLmrXrl2gmxNU2rVrp9DQUP3973/X1atX1bZt20A3CQAQhFrVP4e5stI0uKoCAGhqreIKCwAArVV5uZSTIxUXSzablJQkWa3Nt7y/EFgAAAhS2dnSrFlSYeHPZXa79MorUmpq0y/vT1zLRzXJycnKyMgIdDMAAI2QnS2lpXmHDUkqKnKXZ2c37fL+RmAxsf/5n/9Rhw4d9NNPP3nKLly4oNDQUCUlJXnVzcnJkcVi0YkTJ5q7mQAAkykvd18ZqWkkj8qyjAx3vaZYvikQWHxQXi7t2iWtWeP+s6n/h0pJSdGFCxf0+eefe8pycnIUExOjAwcO6NKlS57yXbt2KTY2VjfffHPTNgoAYHo5OdWvjFzLMKSCAne9pli+KRBYGig7W+rRQ0pJkSZPdv/Zo0fTXhK75ZZbFBsbq127dnnKdu3apXHjxik+Pl579uzxKk9JSdHVq1c1b948devWTe3bt9eIESO8lj9z5owmTZoku92uiIgI9e/fX2vWrKmzHR9//LGioqK0atUqf+8iAKAJFBc3rl5jl28KBJYGCOR9vOTkZO3cudPze+fOnUpOTtbo0aM95VevXtXevXuVkpKiX/3qV/rss8+0du1a/d///Z/Gjx+vMWPGKDc3V5J05coVDRkyRB9++KGOHj2qRx99VFOmTNH+/ftr3P7atWs1YcIErVq1Sunp6U23owAAv7HZGlevscs3CSNIlJaWGpKM0tLSavMuX75sfP3118bly5d9Xu9PPxmG3W4Y7gtg1SeLxTAcDne9prB8+XKjffv2RllZmeF0Oo02bdoYp06dMtauXWskJCQYhmEYu3fvNiQZ3377rWGxWIyioiKvdfzbv/2bkZmZWes27r33XmPOnDme36NHjzZmzZplvP7660ZUVJSxY8eOOtvYmP4FAPhf5bnLYrm+c1djl/dFXefva/Facz18uY+XnOz/7aekpOjixYs6cOCAzp49q5tvvlldu3bV6NGjNWXKFF28eFG7du1S9+7ddejQIRmGUe05FpfLpc6dO0tyf6bgxRdf1Lp161RUVCSXyyWXy6X27dt7LbNhwwadOnVKn376qYYPH+7/HQMANBmr1f3qcVqaZLF4PzxbOYZqVlbt46k0dvmmQGCpR6Dv4910002y2+3auXOnzp49q9GjR0uSYmJi1LNnT3322WfauXOnbr/9dlVUVMhqtergwYOyVjmK/uVf/kWStHjxYv33f/+3srKy1L9/f7Vv314ZGRm6evWqV/2BAwfq0KFDevvttzVs2DBGCQaAFiY1VVq/vuZxVLKy6h9HpbHL+xuBpR5muI+XkpKiXbt26ezZs3r66ac95aNHj9aWLVu0b98+/epXv9KgQYNUXl6u06dPV3vtuVJOTo7GjRunRx55RJJUUVGh3Nxc9enTx6tefHy8Fi9erOTkZFmtVr322mtNt4MAgCaRmiqNG3f9I9U2dnl/IrDUIynJnSaLimp+H91icc+vJR/4RUpKip544gmVlZV5rrBI7sDyH//xH7py5YpSUlLkcDj08MMPKz09XYsXL9agQYP0448/aseOHerfv7/uvfde3XTTTdqwYYP27NmjG264QUuWLFFJSUm1wCJJN998s+ch3zZt2igrK6vpdhIA0CSs1sY9stDY5f2Ft4TqUXkfT/r5vl2l5rqPl5KSosuXL+umm25SdHS0p3z06NE6f/684uPj5XA4JElvv/220tPTNWfOHN1yyy26//77tX//fs/8559/XoMHD9bdd9+t5ORkxcTE6IEHHqh127fccot27NihNWvWaM6cOU23kwAA1MFiGDVdN2h5nE6noqKiVFpaqsjISK95V65cUV5ennr27Km2bdte1/pr+p6CwxGY+3hm44/+BQC0TnWdv6/FLaEGMtN9PAAAWhsCiw/Mch8PAIDWhmdYAACA6RFYAACA6bWqwBIkzxebDv0KAGhqrSKwVI76WnU0V/jHpUuXJEmhoaEBbgkAIFi1iodu27Rpo4iICP3jH/9QaGioQkJaRU5rcoZh6NKlSzp9+rQ6duxY7XMAAAD4S6sILBaLRTabTXl5efr73/8e6OYEnY4dOyomJibQzQAABLFWEVgkKSwsTL169eK2kJ+FhoZyZQUA0ORaTWCRpJCQEEZiBQCgBeJhDgAAYHoEFgAAYHoEFgAAYHoEFgAAYHo+B5aioiI98sgj6ty5syIiIjRw4EAdPHjQM99isdQ4vfzyy7Wuc+XKlTUuc+XKlevbKwAAEFR8ekvo7NmzSkxMVEpKijZv3qyuXbvqu+++U8eOHT11iouLvZbZvHmzpk+frgcffLDOdUdGRur48eNeZbzRAwAAJB8Dy6JFi+RwOPT22297ynr06OFVp+oAYh988IFSUlL0i1/8os51WywWBh8DAAA18umW0KZNmzR06FCNHz9eXbt21aBBg7RixYpa6586dUofffSRpk+fXu+6L1y4oLi4ONntdo0dO1aHDx+us77L5ZLT6fSaAABAcPIpsJw8eVLLli1Tr169tGXLFj322GOaOXOmVq1aVWP9d955Rx06dFBqamqd6+3du7dWrlypTZs2ac2aNWrbtq0SExOVm5tb6zILFy5UVFSUZ3I4HL7sCgAAaEEshmEYDa0cFhamoUOHas+ePZ6ymTNn6sCBA9q7d2+1+r1799add96pV1991adGVVRUaPDgwRo1apSWLl1aYx2XyyWXy+X57XQ65XA4VFpaqsjISJ+2BwAAAsPpdCoqKqre87dPz7DYbDb17dvXq6xPnz7asGFDtbo5OTk6fvy41q1b58smJLmH0B82bFidV1jCw8MVHh7u87oBAEDL49MtocTExGpv8pw4cUJxcXHV6r711lsaMmSIBgwY4HOjDMPQkSNHZLPZfF4WAAAEH58Cy1NPPaV9+/ZpwYIF+vbbb/Xuu+9q+fLleuKJJ7zqOZ1Ovffee/r1r39d43rS09OVmZnp+f3CCy9oy5YtOnnypI4cOaLp06fryJEjeuyxx65jlwAAQLDx6ZbQsGHDtHHjRmVmZur3v/+9evbsqaysLD388MNe9dauXSvDMDRp0qQa15Ofn6+QkJ+z0rlz5/Too4+qpKREUVFRGjRokD755BMNHz78OnYJAAAEG58eujWzhj60AwAAzKOh52++JQQAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyvTaAbAAAwr/JyKSdHKi6WbDYpKUmyWgPdqpYl0H0Y6O37i89XWIqKivTII4+oc+fOioiI0MCBA3Xw4EHP/GnTpslisXhNI0eOrHe9GzZsUN++fRUeHq6+fftq48aNvjYNAOBH2dlSjx5SSoo0ebL7zx493OVomED3YaC3708+BZazZ88qMTFRoaGh2rx5s77++mstXrxYHTt29Ko3ZswYFRcXe6a//vWvda537969mjhxoqZMmaIvvvhCU6ZM0YQJE7R//36fdwgA0HjZ2VJamlRY6F1eVOQub4knvOYW6D4M9Pb9zWIYhtHQys8++6w+++wz5eTk1Fpn2rRpOnfunN5///0GN2LixIlyOp3avHmzp2zMmDG64YYbtGbNmgatw+l0KioqSqWlpYqMjGzwtgEA3srL3f8Kr3qiq2SxSHa7lJfXMm8tNIdA92Ggt++Lhp6/fbrCsmnTJg0dOlTjx49X165dNWjQIK1YsaJavV27dqlr1666+eabNWPGDJ0+fbrO9e7du1d33XWXV9ndd9+tPXv21LqMy+WS0+n0mgAAjZeTU/uJTpIMQyoocNdDzQLdh4HeflPwKbCcPHlSy5YtU69evbRlyxY99thjmjlzplatWuWpc88992j16tXasWOHFi9erAMHDuj222+Xy+Wqdb0lJSWKjo72KouOjlZJSUmtyyxcuFBRUVGeyeFw+LIrAIBaFBf7t15rFOg+DPT2m4JPbwlVVFRo6NChWrBggSRp0KBB+uqrr7Rs2TKlp6dLct/eqXTrrbdq6NChiouL00cffaTU1NRa122xWLx+G4ZRrexamZmZmj17tue30+kktACAH9hs/q3XGgW6DwO9/abg0xUWm82mvn37epX16dNH+fn5dS4TFxen3NzcWuvExMRUu5py+vTpalddrhUeHq7IyEivCQDQeElJ7ucbavs3o8UiORzueqhZoPsw0NtvCj4FlsTERB0/ftyr7MSJE4qLi6t1mTNnzqigoEC2OmLcbbfdpm3btnmVbd26VQkJCb40DwDgB1ar9Mor7r9XPeFV/s7KCvzDmmYW6D4M9PabhOGDv/3tb0abNm2MP/7xj0Zubq6xevVqIyIiwvjzn/9sGIZhnD9/3pgzZ46xZ88eIy8vz9i5c6dx2223Gd26dTOcTqdnPVOmTDGeffZZz+/PPvvMsFqtxosvvmgcO3bMePHFF402bdoY+/bta3DbSktLDUlGaWmpL7sEAKjFhg2GYbcbhvsRTffkcLjL0TCB7sNAb78hGnr+9um1Zkn68MMPlZmZqdzcXPXs2VOzZ8/WjBkzJEmXL1/WAw88oMOHD+vcuXOy2WxKSUnRf/7nf3o9X5KcnKwePXpo5cqVnrL169frueee08mTJxUfH68//vGPdT7zUhWvNQOA/wXLKKmBFOg+DPT269PQ87fPgcWsCCwAALQ8TTIOCwAAQCAQWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOn5HFiKior0yCOPqHPnzoqIiNDAgQN18OBBSVJZWZmeeeYZ9e/fX+3bt1dsbKzS09P1ww8/1LnOlStXymKxVJuuXLlyfXsFAACCShtfKp89e1aJiYlKSUnR5s2b1bVrV3333Xfq2LGjJOnSpUs6dOiQnn/+eQ0YMEBnz55VRkaG7r//fn3++ed1rjsyMlLHjx/3Kmvbtq1vewMAAIKST4Fl0aJFcjgcevvttz1lPXr08Pw9KipK27Zt81rm1Vdf1fDhw5Wfn6/u3bvXum6LxaKYmBhfmgMAAFoJn24Jbdq0SUOHDtX48ePVtWtXDRo0SCtWrKhzmdLSUlksFs9VmNpcuHBBcXFxstvtGjt2rA4fPlxnfZfLJafT6TUBAIDg5FNgOXnypJYtW6ZevXppy5YteuyxxzRz5kytWrWqxvpXrlzRs88+q8mTJysyMrLW9fbu3VsrV67Upk2btGbNGrVt21aJiYnKzc2tdZmFCxcqKirKMzkcDl92BQAAtCAWwzCMhlYOCwvT0KFDtWfPHk/ZzJkzdeDAAe3du9erbllZmcaPH6/8/Hzt2rWrzsBSVUVFhQYPHqxRo0Zp6dKlNdZxuVxyuVye306nUw6HQ6WlpT5tCwAABI7T6VRUVFS952+frrDYbDb17dvXq6xPnz7Kz8/3KisrK9OECROUl5enbdu2+RwgQkJCNGzYsDqvsISHhysyMtJrAgAAwcmnwJKYmFjtTZ4TJ04oLi7O87syrOTm5mr79u3q3Lmzz40yDENHjhyRzWbzeVkAABB8fHpL6KmnnlJCQoIWLFigCRMm6G9/+5uWL1+u5cuXS5J++uknpaWl6dChQ/rwww9VXl6ukpISSVKnTp0UFhYmSUpPT1e3bt20cOFCSdILL7ygkSNHqlevXnI6nVq6dKmOHDmi119/3Z/7CgCtTnm5lJMjFRdLNpuUlCRZrYFuVfO6elV64w3pu++k+Hjp8celf56O0JIYPvrLX/5i3HrrrUZ4eLjRu3dvY/ny5Z55eXl5hqQap507d3rqjR492pg6darnd0ZGhtG9e3cjLCzM6NKli3HXXXcZe/bs8aldpaWlhiSjtLTU110CgKC0YYNh2O2GIf082e3u8tbi6acNw2r17gOr1V0Oc2jo+dunh27NrKEP7QBAa5CdLaWluU/R17JY3H+uXy+lpjZ/u5rTvHnSyy/XPv/pp6WXXmq+9qBmDT1/E1gAIMiUl0s9ekiFhTXPt1gku13Kywve20NXr0oREe6+qI3VKl26xO2hQGuSt4QAAOaXk1N7WJHcV10KCtz1gtUbb9QdViT3/DfeaJ72oPEILAAQZIqL/VuvJfruO//WQ+ARWAAgyDR0RIhgHjkiPt6/9RB4PMMCAEGm8hmWoqLqD91KPMNSiWdYzIFnWACglbJapVdecf+98q2gSpW/s7KCN6xI7hAye3bddWbPJqy0JAQWAAhCqanuV5e7dfMut9tbxyvNkvuV5aefrh7MrFZeaW6JuCUEAEGMkW4Z6dbsGIcFAACYHs+wAACAoEFgAQAApkdgAQAApkdgAQAApkdgAQAApkdgAQAAptcm0A0AACCYBXosnEBv318ILAAANJHsbGnWLKmw8Ocyu9396YTmGG040Nv3J24JAQDQBLKzpbQ077AguT9KmZbmnh/M2/c3RroFAMDPKr+YXTUsVGrqL2YHevu+YKRbAAACJCen9rAgSYYhFRS46wXj9psCgQUAAD8rLvZvvZa2/aZAYAEAwM9sNv/Wa2nbbwoEFgAA/Cwpyf2MiMVS83yLRXI43PWCcftNgcACAICfWa3uV4el6qGh8ndWVtM98Bro7TcFAgsAAE0gNVVav17q1s273G53lzf1OCiB3r6/8VozAABNKNAjzQZ6+/Vp6PmbkW4BAGhCVquUnNx6t+8v3BICAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACm53NgKSoq0iOPPKLOnTsrIiJCAwcO1MGDBz3zDcPQ/PnzFRsbq3bt2ik5OVlfffVVvevdsGGD+vbtq/DwcPXt21cbN270tWkAYDrl5dKuXdKaNe4/y8sD3SKgZfIpsJw9e1aJiYkKDQ3V5s2b9fXXX2vx4sXq2LGjp85LL72kJUuW6LXXXtOBAwcUExOjO++8U+fPn691vXv37tXEiRM1ZcoUffHFF5oyZYomTJig/fv3X/eOAUCgZWdLPXpIKSnS5MnuP3v0cJcD8I1PI90+++yz+uyzz5STk1PjfMMwFBsbq4yMDD3zzDOSJJfLpejoaC1atEi/+c1valxu4sSJcjqd2rx5s6dszJgxuuGGG7RmzZoGtY2RbgGYSXa2lJYmVf0vbOV3XFri0OhAU2jo+dunKyybNm3S0KFDNX78eHXt2lWDBg3SihUrPPPz8vJUUlKiu+66y1MWHh6u0aNHa8+ePbWud+/evV7LSNLdd99d5zIAYFbl5dKsWdXDivRzWUYGt4cAX/gUWE6ePKlly5apV69e2rJlix577DHNnDlTq1atkiSVlJRIkqKjo72Wi46O9syrSUlJic/LuFwuOZ1OrwkAzCAnRyosrH2+YUgFBe56ABrGp28JVVRUaOjQoVqwYIEkadCgQfrqq6+0bNkypaene+pZqnzL2jCMamVV+brMwoUL9cILL/jSfABoFsXF/q0HwMcrLDabTX379vUq69Onj/Lz8yVJMTExklTtysjp06erXUG5VkxMjM/LZGZmqrS01DMVFBT4sisA0GRsNv/WA+BjYElMTNTx48e9yk6cOKG4uDhJUs+ePRUTE6Nt27Z55l+9elW7d+9WQkJCreu97bbbvJaRpK1bt9a5THh4uCIjI70mADCDpCTJbv/5AduqLBbJ4XDXA9AwPgWWp556Svv27dOCBQv07bff6t1339Xy5cv1xBNPSHLf1snIyNCCBQu0ceNGHT16VNOmTVNERIQmT57sWU96eroyMzM9v2fNmqWtW7dq0aJF+uabb7Ro0SJt375dGRkZ/tlLAGhGVqv0yivuv1cNLZW/s7Lc9QA0kOGjv/zlL8att95qhIeHG7179zaWL1/uNb+iosL43e9+Z8TExBjh4eHGqFGjjC+//NKrzujRo42pU6d6lb333nvGLbfcYoSGhhq9e/c2NmzY4FO7SktLDUlGaWmpr7sEAE1iwwbDsNsNw/2YrXtyONzlANwaev72aRwWM2McFgBmVF7ufhuouNj9zEpSEldWgGs19Pzt01tCAADfWK1ScnKgWwG0fHz8EAAAmB6BBQAAmB6BBQAAmB6BBQAAmB6BBQAAmB5vCQGoE6/lAjADAguAWmVnS7NmeX952G53j+Kamhq4dgFofbglBKBG2dlSWpp3WJGkoiJ3eXZ2YNoFoHUisACoprzcfWWlpnGwK8syMtz1AKA5EFgAVJOTU/3KyrUMQyoocNcDgOZAYAFQTXGxf+sBQGMRWABUY7P5tx4ANBaBBUA1SUnut4EslprnWyySw+GuBwDNgcACoBqr1f3qslQ9tFT+zspiPBYAzYfAAqBGqanS+vVSt27e5Xa7u5xxWAA0JwaOA1Cr1FRp3DhGugUQeAQWAHWyWqXk5EC3AkBrxy0hAABgegQWAABgegQWAABgegQWAABgegQWAABgegQWAABgerzWDKBO5eWMwwIg8AgsAGqVnS3NmiUVFv5cZre7h+1npFsAzYlbQgBqlJ0tpaV5hxVJKipyl2dnB6ZdAFonAguAasrL3VdWDKP6vMqyjAx3PQBoDgQWANXk5FS/snItw5AKCtz1AKA5EFgAVFNc7N96ANBYBBYA1dhs/q0HAI1FYAFQTVKS+20gi6Xm+RaL5HC46wFAcyCwAKjGanW/uixVDy2Vv7OyGI8FQPMhsACoUWqqtH691K2bd7nd7i5nHBYAzcmnwDJ//nxZLBavKSYmxjO/6rzK6eWXX651nStXrqxxmStXrlz/XgHwi9RU6fvvpZ07pXffdf+Zl0dYAdD8fB7ptl+/ftq+fbvnt/Waa8LFVV4Z2Lx5s6ZPn64HH3ywznVGRkbq+PHjXmVt27b1tWkAmoDVKiUnB7oVAFo7nwNLmzZtvK6qXKtq+QcffKCUlBT94he/qHOdVa/UAAAAXMvnZ1hyc3MVGxurnj176qGHHtLJkydrrHfq1Cl99NFHmj59er3rvHDhguLi4mS32zV27FgdPny43mVcLpecTqfXBAAAgpNPgWXEiBFatWqVtmzZohUrVqikpEQJCQk6c+ZMtbrvvPOOOnTooNR6bnb37t1bK1eu1KZNm7RmzRq1bdtWiYmJys3NrXO5hQsXKioqyjM5HA5fdgUAALQgFsOo6WshDXPx4kXFx8dr3rx5mj17tte83r17684779Srr77q0zorKio0ePBgjRo1SkuXLq21nsvlksvl8vx2Op1yOBwqLS1VZGSkbzsCAAACwul0Kioqqt7zt8/PsFyrffv26t+/f7WrITk5OTp+/LjWrVvn8zpDQkI0bNiweq+whIeHKzw83Of1AwCAlqdR47C4XC4dO3ZMtirjc7/11lsaMmSIBgwY4PM6DcPQkSNHqq0TAAC0Xj5dYZk7d67uu+8+de/eXadPn9Yf/vAHOZ1OTZ061VPH6XTqvffe0+LFi2tcR3p6urp166aFCxdKkl544QWNHDlSvXr1ktPp1NKlS3XkyBG9/vrrjdgtAPCP8nL3V6mLi93fTkpKal0j/Lb2/Yd5+BRYCgsLNWnSJP3444/q0qWLRo4cqX379ikuLs5TZ+3atTIMQ5MmTapxHfn5+QoJ+fnCzrlz5/Too4+qpKREUVFRGjRokD755BMNHz78OncJAPwjO1uaNUsqLPy5zG53f7agNQye19r3H+bSqIduzaShD+0AQENkZ0tpaVLV/0JWfksp2D9P0Nr3H82noedvAgsAVFFeLvXo4X1l4VoWi/tKQ15ecN4eae37j+bV0PM3Hz8EgCpycmo/WUvuqw4FBe56wai17z/MicACAFVU+Sxao+u1NK19/2FOBBYAqKKhoyoE6+gLrX3/YU4EFgCoIinJ/YxG5QOmVVksksPhrheMWvv+w5wILABQhdXqfnVXqn7SrvydlRW8D5y29v2HORFYAKAGqanuV3e7dfMut9tbxyu9rX3/YT681gwAdWjtI7229v1H02uWjx8CQLCzWqXk5EC3InBa+/7DPLglBAAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI+3hIAgdvWq9MYb0nffSfHx0uOPS2FhgW4VAPiOwAIEqXnzpCVL3ONoVJo7V5o9W3rppcC1CwCuB4EFCELz5kkvv1y9vLz853JCC4CWhJFugSBz9aoUEeF9ZaUqq1W6dInbQwACr6Hnbx66BYLMG2/UHVYk9/w33mie9gCAPxBYgCDz3Xf+rQcAZkBgAYJMfLx/6wGAGfAMCxBkeIYFQEvCMyxAKxUW5n51uS6zZxNWALQsvNYMBKHKV5arjsNitTIOC4CWiVtCQBBjpFsAZtfQ8zdXWIAgFhYmZWQEuhUA0Hg8wwIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEzPp8Ayf/58WSwWrykmJsYzf9q0adXmjxw5st71btiwQX379lV4eLj69u2rjRs3+r4nAAAgaPl8haVfv34qLi72TF9++aXX/DFjxnjN/+tf/1rn+vbu3auJEydqypQp+uKLLzRlyhRNmDBB+/fv97VpAAAgSPk80m2bNm28rqpUFR4eXuf8qrKysnTnnXcqMzNTkpSZmandu3crKytLa9as8bV5AAAgCPl8hSU3N1exsbHq2bOnHnroIZ08edJr/q5du9S1a1fdfPPNmjFjhk6fPl3n+vbu3au77rrLq+zuu+/Wnj176lzO5XLJ6XR6TQAAIDj5FFhGjBihVatWacuWLVqxYoVKSkqUkJCgM2fOSJLuuecerV69Wjt27NDixYt14MAB3X777XK5XLWus6SkRNHR0V5l0dHRKikpqbMtCxcuVFRUlGdyOBy+7AoAAGhBGvW15osXLyo+Pl7z5s3T7Nmzq80vLi5WXFyc1q5dq9TU1BrXERYWpnfeeUeTJk3ylK1evVrTp0/XlStXat22y+XyCkJOp1MOh4OvNQMA0II0y9ea27dvr/79+ys3N7fG+TabTXFxcbXOl6SYmJhqV1NOnz5d7apLVeHh4QoPD/e90QAAoMVp1DgsLpdLx44dk81mq3H+mTNnVFBQUOt8Sbrtttu0bds2r7KtW7cqISGhMU0DAABBxKfAMnfuXO3evVt5eXnav3+/0tLS5HQ6NXXqVF24cEFz587V3r179f3332vXrl267777dOONN+rf//3fPetIT0/3vBEkSbNmzdLWrVu1aNEiffPNN1q0aJG2b9+ujIwMv+0kAABo2Xy6JVRYWKhJkybpxx9/VJcuXTRy5Ejt27dPcXFxunz5sr788kutWrVK586dk81mU0pKitatW6cOHTp41pGfn6+QkJ9zUkJCgtauXavnnntOzz//vOLj47Vu3TqNGDHCf3sJAABatEY9dGsmDX1oBwAAmEdDz998SwgAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJheo4bmB5paebmUkyMVF0s2m5SUJFmtrWf7AAA3AgtMKztbmjVLKiz8ucxul155RarlW5pBtX0AwM+4JQRTys6W0tK8w4IkFRW5y7Ozg3v7AABvjHQL0ykvl3r0qB4WKlks7isdeXlNc3sm0NsHgNaEkW7RYuXk1B4WJMkwpIICd71g3D4AoDoCC0ynuNi/9Vra9gEA1RFYYDo2m3/rtbTtAwCqI7DAdJKS3M+IWCw1z7dYJIfDXS8Ytw8AqI7AAtOxWt2vDkvVQ0Pl76yspnvgNdDbBwBUR2CBKaWmSuvXS926eZfb7e7yph4HJdDbBwB447VmmFqgR5oN9PYBINg19PzNSLcwNatVSk5uvdsHALhxSwgAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgebwmZGK/UAgDgRmAxqexsadYs768G2+3uEVgZtAwA0NpwS8iEsrOltDTvsCJJRUXu8uzswLQLAIBAIbCYTHm5+8pKTeMPV5ZlZLjrAQDQWhBYTCYnp/qVlWsZhlRQ4K4HAEBrQWAxmeJi/9YDACAYEFhMxmbzbz0AAIIBgcVkkpLcbwNZLDXPt1gkh8NdDwCA1oLAYjJWq/vVZal6aKn8nZXFeCwAgNaFwGJCqanS+vVSt27e5Xa7u5xxWAAArY1PgWX+/PmyWCxeU0xMjCSprKxMzzzzjPr376/27dsrNjZW6enp+uGHH+pc58qVK6ut02Kx6MqVK9e/V0EgNVX6/ntp507p3Xfdf+blEVYAAK2TzyPd9uvXT9u3b/f8tv7z3sSlS5d06NAhPf/88xowYIDOnj2rjIwM3X///fr888/rXGdkZKSOHz/uVda2bVtfmxZ0rFYpOTnQrQAAIPB8Dixt2rTxXFW5VlRUlLZt2+ZV9uqrr2r48OHKz89X9+7da13ntVdqAAAAqvL5GZbc3FzFxsaqZ8+eeuihh3Ty5Mla65aWlspisahjx451rvPChQuKi4uT3W7X2LFjdfjw4Xrb4XK55HQ6vSYAABCcfAosI0aM0KpVq7RlyxatWLFCJSUlSkhI0JkzZ6rVvXLlip599llNnjxZkZGRta6zd+/eWrlypTZt2qQ1a9aobdu2SkxMVG5ubp1tWbhwoaKiojyTw+HwZVcAAEALYjGMmr5a0zAXL15UfHy85s2bp9mzZ3vKy8rKNH78eOXn52vXrl11BpaqKioqNHjwYI0aNUpLly6ttZ7L5ZLL5fL8djqdcjgcKi0t9Wl7AAAgcJxOp6Kiouo9f/v8DMu12rdvr/79+3tdDSkrK9OECROUl5enHTt2+BweQkJCNGzYsHqvsISHhys8PPy62g0AAFqWRo3D4nK5dOzYMdn+OU58ZVjJzc3V9u3b1blzZ5/XaRiGjhw54lknAACAT1dY5s6dq/vuu0/du3fX6dOn9Yc//EFOp1NTp07VTz/9pLS0NB06dEgffvihysvLVVJSIknq1KmTwsLCJEnp6enq1q2bFi5cKEl64YUXNHLkSPXq1UtOp1NLly7VkSNH9Prrr/t5V4GWp7zc/WXu4mL396OSkhjlGEDr5FNgKSws1KRJk/Tjjz+qS5cuGjlypPbt26e4uDh9//332rRpkyRp4MCBXsvt3LlTyf8cUCQ/P18hIT9f2Dl37pweffRRlZSUKCoqSoMGDdInn3yi4cOHN27PgBYuO1uaNUsqLPy5zG53f7qBAQQBtDaNeujWTBr60A7QEmRnS2lpUtX/d1Z+T4pPNAAIFg09f/MtIcBkysvdV1Zq+qdEZVlGhrseALQWBBbAZHJyvG8DVWUYUkGBux4AtBYEFsBkiov9Ww8AggGBBTCZhr7Rz5v/AFoTAgtgMklJ7reBKh+wrcpikRwOdz0AaC0ILIDJWK3uV5el6qGl8ndWFuOxAGhdCCyACaWmul9d7tbNu9xu55VmAK1To74lBKDppKZK48Yx0i0ASAQWwNSsVumfg0QDQKvGLSEAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6bQLdADMrL5dycqTiYslmk5KSJKs10K0CAKD18ekKy/z582WxWLymmJgYz3zDMDR//nzFxsaqXbt2Sk5O1ldffVXvejds2KC+ffsqPDxcffv21caNG33fEz/LzpZ69JBSUqTJk91/9ujhLgcAAM3L51tC/fr1U3FxsWf68ssvPfNeeuklLVmyRK+99poOHDigmJgY3XnnnTp//nyt69u7d68mTpyoKVOm6IsvvtCUKVM0YcIE7d+///r2yA+ys6W0NKmw0Lu8qMhdTmgBAKB5WQzDMBpaef78+Xr//fd15MiRavMMw1BsbKwyMjL0zDPPSJJcLpeio6O1aNEi/eY3v6lxnRMnTpTT6dTmzZs9ZWPGjNENN9ygNWvWNHhHnE6noqKiVFpaqsjIyAYvV1V5uftKStWwUslikex2KS+P20MAADRWQ8/fPl9hyc3NVWxsrHr27KmHHnpIJ0+elCTl5eWppKREd911l6dueHi4Ro8erT179tS6vr1793otI0l33313nctI7jDkdDq9Jn/Iyak9rEiSYUgFBe56AACgefgUWEaMGKFVq1Zpy5YtWrFihUpKSpSQkKAzZ86opKREkhQdHe21THR0tGdeTUpKSnxeRpIWLlyoqKgoz+RwOHzZlVoVF/u3HgAAaDyfAss999yjBx98UP3799cdd9yhjz76SJL0zjvveOpYLBavZQzDqFZW1fUsk5mZqdLSUs9UUFDgy67Uymbzbz0AANB4jRqHpX379urfv79yc3M9bwtVvTJy+vTpaldQrhUTE+PzMpL7dlNkZKTX5A9JSe5nVGrLSxaL5HC46wEAgObRqMDicrl07Ngx2Ww29ezZUzExMdq2bZtn/tWrV7V7924lJCTUuo7bbrvNaxlJ2rp1a53LNCWrVXrlFfffq4aWyt9ZWTxwCwBAc/IpsMydO1e7d+9WXl6e9u/fr7S0NDmdTk2dOlUWi0UZGRlasGCBNm7cqKNHj2ratGmKiIjQ5MmTPetIT09XZmam5/esWbO0detWLVq0SN98840WLVqk7du3KyMjw2876avUVGn9eqlbN+9yu91dnpoamHYBANBa+TTSbWFhoSZNmqQff/xRXbp00ciRI7Vv3z7FxcVJkubNm6fLly/r8ccf19mzZzVixAht3bpVHTp08KwjPz9fISE/56SEhAStXbtWzz33nJ5//nnFx8dr3bp1GjFihJ928fqkpkrjxjHSLQAAZuDTOCxm5q9xWAAAQPNpsnFYAAAAmhuBBQAAmB6BBQAAmB6BBQAAmB6BBQAAmB6BBQAAmB6BBQAAmB6BBQAAmB6BBQAAmJ5PQ/ObWeWAvU6nM8AtAQAADVV53q5v4P2gCSznz5+XJDkcjgC3BAAA+Or8+fOKioqqdX7QfEuooqJCP/zwgzp06CCLxRLo5viN0+mUw+FQQUEB30i6TvRh49GHjUP/NR592Dhm7j/DMHT+/HnFxsZ6fRy5qqC5whISEiK73R7oZjSZyMhI0x1kLQ192Hj0YePQf41HHzaOWfuvrisrlXjoFgAAmB6BBQAAmB6BxeTCw8P1u9/9TuHh4YFuSotFHzYefdg49F/j0YeNEwz9FzQP3QIAgODFFRYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BJYA+eSTT3TfffcpNjZWFotF77//vtd8i8VS4/Tyyy976rhcLv32t7/VjTfeqPbt2+v+++9XYWFhM+9JYPij/5KTk6vNf+ihh5p5TwKnvj68cOGCnnzySdntdrVr1059+vTRsmXLvOpwDDau/zgG6+7DU6dOadq0aYqNjVVERITGjBmj3Nxcrzocg43rv5Z0DBJYAuTixYsaMGCAXnvttRrnFxcXe01/+tOfZLFY9OCDD3rqZGRkaOPGjVq7dq0+/fRTXbhwQWPHjlV5eXlz7UbA+KP/JGnGjBle9d58883maL4p1NeHTz31lD7++GP9+c9/1rFjx/TUU0/pt7/9rT744ANPHY7BxvWfxDFYWx8ahqEHHnhAJ0+e1AcffKDDhw8rLi5Od9xxhy5evOipxzHYuP6TWtAxaCDgJBkbN26ss864ceOM22+/3fP73LlzRmhoqLF27VpPWVFRkRESEmJ8/PHHTdVUU7qe/jMMwxg9erQxa9aspmtYC1JTH/br18/4/e9/71U2ePBg47nnnjMMg2PwWtfTf4bBMXitqn14/PhxQ5Jx9OhRT9lPP/1kdOrUyVixYoVhGByD17qe/jOMlnUMcoWlBTh16pQ++ugjTZ8+3VN28OBBlZWV6a677vKUxcbG6tZbb9WePXsC0UzTqqn/Kq1evVo33nij+vXrp7lz53q++g3pl7/8pTZt2qSioiIZhqGdO3fqxIkTuvvuuyVxDNanvv6rxDFYM5fLJUlq27atp8xqtSosLEyffvqpJI7BujSk/yq1lGMwaD5+GMzeeecddejQQampqZ6ykpIShYWF6YYbbvCqGx0drZKSkuZuoqnV1H+S9PDDD6tnz56KiYnR0aNHlZmZqS+++ELbtm0LUEvNZenSpZoxY4bsdrvatGmjkJAQ/e///q9++ctfSuIYrE99/SdxDNald+/eiouLU2Zmpt588021b99eS5YsUUlJiYqLiyVxDNalIf0ntaxjkMDSAvzpT3/Sww8/7JWUa2MYhiwWSzO0quWorf9mzJjh+futt96qXr16aejQoTp06JAGDx7c3M00naVLl2rfvn3atGmT4uLi9Mknn+jxxx+XzWbTHXfcUetyHINuDek/jsHahYaGasOGDZo+fbo6deokq9WqO+64Q/fcc0+9y3IMNrz/WtIxyC0hk8vJydHx48f161//2qs8JiZGV69e1dmzZ73KT58+rejo6OZsoqnV1n81GTx4sEJDQ6s9Rd8aXb58Wf/v//0/LVmyRPfdd5/+9V//VU8++aQmTpyo//qv/5LEMViXhvRfTTgGvQ0ZMkRHjhzRuXPnVFxcrI8//lhnzpxRz549JXEM1qe+/quJmY9BAovJvfXWWxoyZIgGDBjgVT5kyBCFhoZ6XbYrLi7W0aNHlZCQ0NzNNK3a+q8mX331lcrKymSz2ZqhZeZWVlamsrIyhYR4/yfCarWqoqJCEsdgXRrSfzXhGKxZVFSUunTpotzcXH3++ecaN26cJI7Bhqqt/2pi5mOQW0IBcuHCBX377bee33l5eTpy5Ig6deqk7t27S5KcTqfee+89LV68uNryUVFRmj59uubMmaPOnTurU6dOmjt3rvr371/n5fpg0dj+++6777R69Wrde++9uvHGG/X1119rzpw5GjRokBITE5ttPwKpvj4cPXq0nn76abVr105xcXHavXu3Vq1apSVLlkjiGGxs/3EM1t+H7733nrp06aLu3bvryy+/1KxZs/TAAw94HrLlGGxc/7W4YzCg7yi1Yjt37jQkVZumTp3qqfPmm28a7dq1M86dO1fjOi5fvmw8+eSTRqdOnYx27doZY8eONfLz85tpDwKrsf2Xn59vjBo1yujUqZMRFhZmxMfHGzNnzjTOnDnTjHsRWPX1YXFxsTFt2jQjNjbWaNu2rXHLLbcYixcvNioqKjzr4Bi8/v7jGKy/D1955RXDbrcboaGhRvfu3Y3nnnvOcLlcXuvgGLz+/mtpx6DFMAyjOYIRAADA9eIZFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHr/H8JThwb31uZcAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plt.scatter(x,y)\n", "plt.scatter(scatter_data['Height'], scatter_data['Weight'],\n", " color='blue', label='Weak')\n", "plt.legend() # 차트에서 그린 label 출력\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "0a195230", "metadata": {}, "source": [ "#### OverWeight 그래프 그리기\n", "- 초록색으로 그리기" ] }, { "cell_type": "code", "execution_count": 12, "id": "e5801c1f", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:41:25.485130Z", "start_time": "2023-01-26T01:41:25.351342Z" }, "collapsed": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGdCAYAAAA1/PiZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+x0lEQVR4nO3de3xU9Z3/8fcwkJBoJhgumYQEkkVUKqgo/hAUSSzXFQVT6gXbwlat21QlRAhF24o30FAjqWnUulZZRa1rA7rqItFCxAYtWG0BWUUMV5OmhZgJQjNkcn5/sBkZcs+cuZyZ1/PxmMfDOed7znzPN5H55Hw/38+xGYZhCAAAwAJ6hboDAAAAXUXgAgAALIPABQAAWAaBCwAAsAwCFwAAYBkELgAAwDIIXAAAgGUQuAAAAMvoHeoO9ERzc7O+/PJLJSQkyGazhbo7AACgCwzDUENDg1JTU9WrV8/unVgycPnyyy+Vnp4e6m4AAIAe2L9/v9LS0np0rCUDl4SEBEknLtzhcIS4NwAAoCtcLpfS09O93+M9YcnApWV6yOFwELgAAGAx/qR5kJwLAAAsg8AFAABYBoELAACwDEvmuHSFYRhqamqSx+MJdVcQAna7Xb1792a5PABEmIgMXNxut6qrq3X06NFQdwUhFB8fr5SUFMXExIS6KwAAk0Rc4NLc3KyqqirZ7XalpqYqJiaGv7qjjGEYcrvd+vvf/66qqioNHz68x4WOAADhJeICF7fbrebmZqWnpys+Pj7U3UGIxMXFqU+fPtq7d6/cbrf69u0b6i4BAEwQsX+G8hc2+B0AgMgTcXdcAIQ3T7NHm/ZtUnVDtVISUjRhyATZe9lD3S0AFsGfpAiYpUuX6oILLujWMVlZWcrLywtIfxB6ZTvLlFGcoexV2ZpTNkfZq7KVUZyhsp1loe4aAIsgcAkz+/fv10033eRNLB46dKjmz5+vQ4cOhbpr3bZw4UK98847pp/XZrNp7dq1pp8XgVW2s0yzX56tA64DPtsPug5q9suzCV4AdAmBSxj54osvNGbMGH322Wd68cUX9fnnn+uJJ57QO++8o3Hjxunw4cMB++zjx4+bfs7TTz9d/fv3N/28sB5Ps0fz182XIaPVvpZteevy5Gmm7hKAjhG4dMDT7NHGPRv14rYXtXHPxoD/o/qTn/xEMTExWr9+vSZOnKghQ4Zo+vTpevvtt3Xw4EHdfffdWrJkiS655JJWx5533nm65557vO+feeYZjRgxQn379tU555yj0tJS7749e/bIZrPp5ZdfVlZWlvr27avnn39eAwcO1O9//3tvuwsuuECDBg3yvt+8ebP69OmjI0eOSJLq6+v1ox/9SIMGDZLD4dAVV1yhv/zlL972p04VNTU16Y477lC/fv3Uv39/LV68WHPnztWsWbN8rqW5uVkFBQVKSkqS0+nU0qVLvfsyMjIkSddcc41sNpv3PcLbpn2bWt1pOZkhQ/td+7Vp36Yg9gqAFRG4tCPYc/GHDx/WW2+9pdzcXMXFxfnsczqduvHGG/W73/1Oc+bM0QcffKDdu3d79+/YsUPbtm3TjTfeKEl66qmndPfdd+vBBx/Uzp07tWzZMv385z/XqlWrfM67ePFi3XHHHdq5c6emTp2qyy+/XBs3bpQk1dXV6ZNPPtHx48f1ySefSJI2btyoiy66SKeffroMw9CVV16pmpoavfnmm/rwww914YUX6tvf/na7d4YefvhhrV69Ws8884z++Mc/yuVytTnls2rVKp122mn64IMPVFhYqPvuu0/l5eWSpC1btkg6EZhVV1d73yO8VTdUm9oOQPQicGlDKObid+3aJcMwNGLEiDb3jxgxQnV1dUpOTtZ5552nF154wbtv9erVuvjii3XWWWdJku6//3498sgjysnJUWZmpnJycrRgwQI9+eSTPufMy8vztklNTVVWVpY3cHn33Xd1/vnn64orrvBu27hxo7KysiRJGzZs0LZt2/Rf//VfGjNmjIYPH65f/vKX6tevn1555ZU2r+Gxxx7TkiVLdM011+icc85RSUmJ+vXr16pdy92j4cOH6wc/+IHGjBnjzZUZOHCgJKlfv35yOp3e9whvKQkpprYD0HPBnk0wG4HLKcJ1Lt4wTny2zWbTjTfeqNWrV3u3v/jii967LX//+9+9Cb6nn3669/XAAw/43KWRpDFjxvi8z8rK0o4dO/SPf/xDFRUVysrKUlZWlioqKtTU1KTKykpNnDhRkvThhx/qyJEj6t+/v8/nVFVVtfoc6cS00t/+9jf9v//3/7zb7Ha7LrroolZtzzvvPJ/3KSkpqq2t7e6QIYxMGDJBaY402dR2FWubbEp3pGvCkAlB7hkQXSJhZR91XE7Rnbn4rIws0z73zDPPlM1m0yeffNIq50OS/vd//1dnnHGGBgwYoDlz5uinP/2p/vznP+vYsWPav3+/rr/+ekkn8kOkE9NFY8eO9TmH3e5bK+O0007zeT9y5Ej1799fFRUVqqio0H333af09HQ9+OCD2rJli44dO6bLLrvM+zkpKSneuzEna+suSotTH7/QEpCdrE+fPq2OabkuWJO9l13F04o1++XZssnm84dBSzCzctpK6rkAAdQym3DqH+YtswmvXPuKckbkhKh3Xccdl1OEai6+f//+mjx5skpLS3Xs2DGffTU1NVq9erWuu+462Ww2paWl6fLLL9fq1au1evVqTZo0ScnJyZKk5ORkDR48WF988YXOPPNMn1dmZmaHfbDZbLr88sv16quvavv27ZowYYJGjRql48eP64knntCFF16ohIQESdKFF16ompoa9e7du9XnDBgwoNW5ExMTlZycrD/96U/ebR6PRx999FG3x6pPnz489duCckbk6JVrX9Fgx2Cf7WmONMv8gwlYVbjOJvQEd1xOEcq5+JKSEo0fP15Tp07VAw88oMzMTO3YsUOLFi3S4MGD9eCDD3rb3njjjVq6dKncbrceffRRn/MsXbpUd9xxhxwOh6ZPn67GxkZt3bpVdXV1ys/P77APWVlZWrBggUaPHi2HwyFJ3iDp5GMnTZqkcePGadasWXr44Yd19tln68svv9Sbb76pWbNmtZqGkqTbb79dy5cv15lnnqlzzjlHjz32mOrq6rr9EMyMjAy98847uvTSSxUbG6szzjijW8cjdHJG5Gjm2TOpnAsEWahmEwKBOy6nCOVc/PDhw7V161YNGzZM1113nYYNG6Yf/ehHys7O1ubNm5WUlORt+93vfleHDh3S0aNHW00t3XzzzfqP//gPPfvssxo1apQmTpyoZ599ttM7LpKUnZ0tj8fjTcKVpIkTJ8rj8XjzW6QTd2fefPNNXX755frhD3+os846S9dff7327NnjvftzqsWLF+uGG27QD37wA40bN06nn366pk6d2u0HID7yyCMqLy9Xenq6Ro8e3a1jEXr2XnZlZWTphlE3KCsji6AFCIJIWtlnM9pKMghzLpdLiYmJqq+v994VaPHPf/5TVVVVyszM7PETgVvmASW1ORfPbW1zNDc3a8SIEbr22mt1//33m35+M34XACASbNyzUdmrsjttt2HuhoDeceno+7uruOPSBubiA2Pv3r166qmn9Nlnn2nbtm368Y9/rKqqKs2ZMyfUXQOAiBZJK/vIcWkHc/Hm69Wrl5599lktXLhQhmFo5MiRevvtt9utXQMAMEckrewjcOlAy1w8zJGenq4//vGPoe4GAESlltmE+evm+yTqpjnStHLaSsvMJhC4AAAQJSJhNoHABQCAKGL12YSITc614GIpmIzfAQCIPBEXuLSUiz969GiIe4JQa/kdOPURAgAA64q4qSK73a5+/fp5H8oXHx/f7cqssDbDMHT06FHV1taqX79+rZ7RBACwrogLXCTJ6XRKEk8UjnL9+vXz/i4AACJDRAYuNptNKSkpGjRokI4fPx7q7iAE+vTpw50WAJblafZYeuVPIEVk4NLCbrfz5QUAsJSynWVt1lopnlZsmVorgRRxybkAAFhVy7PyTn2S80HXQc1+ebbKdpaFqGfhg8AFAIAw4Gn2aP66+T7l+Fu0bMtblydPsyfYXQsrBC4AAISBTfs2tbrTcjJDhva79mvTvk1B7FX4IXABACAMVDdUm9ouUnU7cHn33Xd11VVXKTU1VTabTWvXrvXZX1ZWpqlTp2rAgAGy2Wz6+OOPW52jsbFRt99+uwYMGKDTTjtNV199tQ4caD/KBAAg0qUkpJjaLlJ1O3D5+uuvdf7556ukpKTd/Zdeeqkeeuihds+Rl5enNWvW6KWXXtJ7772nI0eOaMaMGfJ4onveDgAQvSYMmaA0R5psartoqk02pTvSNWHIhCD3LLx0ezn09OnTNX369Hb3f//735ck7dmzp8399fX1evrpp/Xcc89p0qRJkqTnn39e6enpevvttzV16tTudgkAAMuz97KreFqxZr88WzbZfJJ0W4KZldNWRn09l6DnuHz44Yc6fvy4pkyZ4t2WmpqqkSNHqrKyss1jGhsb5XK5fF4AAESanBE5euXaVzTYMdhne5ojTa9c+wp1XBSCAnQ1NTWKiYnRGWec4bM9OTlZNTU1bR6zfPly3XvvvcHoHgAAIZUzIkczz54Zssq54V61N2wq5xqG0e7DEJcsWaL8/Hzve5fLpfT09GB1DQCAoLL3sisrIyvon2uFqr1BnypyOp1yu92qq6vz2V5bW6vk5OQ2j4mNjZXD4fB5AQAA81ilam/QA5eLLrpIffr0UXl5uXdbdXW1tm/frvHjxwe7OwAARD0rVe3t9lTRkSNH9Pnnn3vfV1VV6eOPP1ZSUpKGDBmiw4cPa9++ffryyy8lSZ9++qmkE3danE6nEhMTddNNN+nOO+9U//79lZSUpIULF2rUqFHeVUYAACB4ulO1NxRTWCfr9h2XrVu3avTo0Ro9erQkKT8/X6NHj9YvfvELSdJrr72m0aNH68orr5QkXX/99Ro9erSeeOIJ7zkeffRRzZo1S9dee60uvfRSxcfH67//+795kjMAACFgpaq9NsMwWt8XCnMul0uJiYmqr68n3wUAEHb8XZkT7JU9G/dsVPaq7E7bbZi7wa87LmZ8f4fNqiIAACKBvytzQrGyp6Vq70HXwTbzXGyyKc2RFhZVe3nIIgAAJvF3ZU6oVva0VO2V1OqRA+FWtZfABQAAE/i7MifUK3usUrWXqSIAAEzg78qccFjZE+qqvV1B4AIAgAn8XZkTLit7QlW1t6uYKgIAwAQpCSl+tfP3+GhB4AIAgAlaVuacmtzawiab0h3p7a7M8ff4aEHgAgCACfxdmWOllT2hROACAIBJ/F2ZY5WVPaFE5VwAAEzmb+Vbd5NbpVtLtfvwbg1LGqbcMbmK6R0TwB4Hhxnf3wQuAACEkVBUzg0WM76/mSoCACBMhKpyrpUQuAAAEAZCXTnXKghcAAAIA92pnBvNCFwAAAgD4VI5N9xR8h8A0GP+rp4JZ8G+Nirndg2BCwCgRyJ59Usorq2lcu5B18E281xssinNkUbl3FB3AABgPZG8+iVU10bl3K4hcAEAdEskr34J9bVRObdzTBUBALqlO6tfsjKygtcxE4TDteWMyNHMs2dGbO6QvwhcAADdEimrX9pKvg2Xa7P3srcbGEXq4wC6isAFANAtkbD6pb3k21suvKVLx4fq2grKC1S0uUge45upqoXrFyp/XL4KJxeGpE/BRo4LAKBbWla/nJpA2sImm9Id6WG7+qWj5Nt7Nt6j/nH9w/LaCsoLtKJyhU/QIkkew6MVlStUUF4Q9D6FAoELAKBbrLz6pbPk25OvJ5yuzd3kVtHmog7bFG0ukrvJHaQehQ6BCwCg26y6+qUrybeHjh3S0qylYXVtpVtLW91pOZXH8Kh0a2mQehQ65LgAAHrEiqtfuppUOzxpuPbM3xM217b78G5T21kZgQsAoMc6Wv0SjrqTWBxO1zYsaZip7ayMqSIAQNSwamJx7phc2W0d3+2x2+zKHZMbpB6FDoELACBqWDWxOKZ3jPLH5XfYJn9cflTUcyFwAQBEFasmFhdOLtSi8Yta3Xmx2+xaNH5R1NRxsRmG0XpNWJhzuVxKTExUfX29HA5HqLsDALCgtirnhtudlrZYuXKuGd/fBC4AgJDxJ3iwauARzcz4/mZVEQAgJNoru188rbjT6Rp/joW1keMCAAi6jsruz355tsp2lgXkWFgfgQsAIKg6K7svSXnr8uRpbl0p1p9jERkIXAAAQdWVsvv7Xfu1ad8mU49FZCDHBQAQVF0tu99WO3+ODSYrr/wJdwQuAICg6k7ZfTOPDZaC8gIVbS7yeSjiwvULlT8uP2pqrQQSU0UAgKDyp+x+uJfsLygv0IrKFa2e5OwxPFpRuUIF5QUh6VckIXABAASVP2X3w7lkv7vJraLNRR22KdpcJHeTO0g9ikwELgCAoPOn7H64luwv3Vra6k7LqTyGR6VbS4PUo8hEjgsAICRyRuRoxvAZPUpizRmRo5lnz+ywcm6wK+vuPrzb1HZoW7fvuLz77ru66qqrlJqaKpvNprVr1/rsNwxDS5cuVWpqquLi4pSVlaUdO3b4tGlsbNTtt9+uAQMG6LTTTtPVV1+tAwfaX94GAIg8ZTvLNOyxYVrw1gKVbCnRgrcWaNhjw7pcQM7ey66sjCzdMOoGZWVk+QQlZTvLlFGcoexV2ZpTNkfZq7KVUZwR0OJ0w5KGmdoObet24PL111/r/PPPV0lJSZv7CwsLVVRUpJKSEm3ZskVOp1OTJ09WQ0ODt01eXp7WrFmjl156Se+9956OHDmiGTNmyOOhYBAARINAVr8NVWXd3DG5rZ7cfCq7za7cMbkB+fxo4ddDFm02m9asWaNZs2ZJOnG3JTU1VXl5eVq8eLGkE3dXkpOT9fDDD+vWW29VfX29Bg4cqOeee07XXXedJOnLL79Uenq63nzzTU2dOrXTz+UhiwBgXZ5mjzKKM9otJGeTTWmONFXNr+r21E4gz90VLauK2rNo/KKoXhJtxve3qcm5VVVVqqmp0ZQpU7zbYmNjNXHiRFVWVkqSPvzwQx0/ftynTWpqqkaOHOltc6rGxka5XC6fFwDAmgJZ/TbUlXULJxdq0fhFre682G32qA9azGJqcm5NTY0kKTk52Wd7cnKy9u7d620TExOjM844o1WbluNPtXz5ct17771mdhUAECKBrH4bDpV1CycX6oHsB6icGyABWVVks/murTcMo9W2U3XUZsmSJcrPz/e+d7lcSk9P97+jAICgC2T123CprBvTO0Z5l+QF9DOilalTRU6nU5Ja3Tmpra313oVxOp1yu92qq6trt82pYmNj5XA4fF4AAGsKZPXblnN3JJSVdeE/UwOXzMxMOZ1OlZeXe7e53W5VVFRo/PjxkqSLLrpIffr08WlTXV2t7du3e9sAACJXIKvf2nvZdVHKRR22uTDlwpBU1oU5uj1VdOTIEX3++efe91VVVfr444+VlJSkIUOGKC8vT8uWLdPw4cM1fPhwLVu2TPHx8ZozZ44kKTExUTfddJPuvPNO9e/fX0lJSVq4cKFGjRqlSZMmmXdlAICw1VL9dv66+T7JtGmONK2ctrLH1W/dTW69/tnrHbZ5/bPX5W5yk3NiUd0OXLZu3ars7Gzv+5bck7lz5+rZZ59VQUGBjh07ptzcXNXV1Wns2LFav369EhISvMc8+uij6t27t6699lodO3ZM3/72t/Xss8/KbicCBoBo0ZXqt93VnbL75KBYk191XEKFOi4AEBzBLpvvr9vfvF0lW9oukHqy2y6+TY/962NB6JH5rPYzOZkZ3988qwgA0KaynWVtTuUUTysO2YMMOxPpZfet+DMxG3dcAACttJTNN+T7FdGSPBvKpzB3xN3kVvyy+A6ni+w2u47eddRyOS5W/ZmcLOwq5wIArM/T7NH8dfNbfUFK8m7LW5cnT3P4PV8upneM8sfld9gmf1y+5YIWK/9MzEbgAgDwEeqy+f6KxLL7Vv+ZmIkcFwCAj3Aom++vSCu7Hwk/E7MQuAAAfIRL2Xx/RVLZ/Uj5mZiBqSIAgI9AluRHz/Az+QaBCwDARyBL8qNn+Jl8g8AFANBKS0n+wY7BPtvTHGmWWHYbifiZnEAdFwBAu6xcpTVSWflnQuVcAEBA2XvZlZWR1e7+UH6JRutnd/YziXQELgCAHgll+flo/WwwVQQA6IFQlp+P1s+OBJT8BwAEXSjLz0frZ+MbBC4AgG4JZfn5aP1sfIMcFwBAt4Sy/HwwP/vUBNyDroNB+2y0j8AFANAtoSw/H6zPbisBd0D8gKB8NjrGVBEAoFtCWX4+GJ/dkoB76rTQP47+o8PjoqnsfigRuAAAuiWU5ecD/dkdJeC29Vlmfja6hsAFANBtoSw/H8jP7iwBt8Wp00bRVnY/lKjjAgBRzp8qsP5WkPXneHeTW6VbS7X78G4NSxqm3DG5iukd0+XPbsuL217UnLI5nbZ7/prnNdgx2JJl90OJkv8AAL/4WwXWn/Lz/nx2W8c+svkRv6vXdjWxdrBjcFSX3Q8lpooAIEq1l4R60HVQs1+erbKdZWH52YHsdygTj9E1BC4AEIWsWoE20P0OZeIxuobABQCikFUr0Aaj36FMPEbnyHEBgChk1eq3wep3zogczTx7pl+JxwgMAhcAsLierMyxavXbYPbbn8RjBA6BCwBYWE9X5rQkoR50HWwzX8Qmm9IcaQGtftuTzw5lvxEeyHEBAIvyZ3WNVavfkjwLAhcAsCAzVtdYtfotybPRjcq5AGBBG/dsVPaq7E7bbZi7odM8DX+r3/ojlFV7EXxUzgWAKGXm6ppQJqGSAIvuInABAAsK5aqgcODvowpgXeS4AIAFRXNp+lA+qgChR+ACABYUratrQvmoAoQHAhcAsKhoXF0TykcVIDyQ4wIAFhZtpelD+agChAcCFwCwuGhamRPtSclgqggAYCHRnJSMEwhcAACWEa1JyfgGgQsAwFKiMSkZ36DkPwDAkij5bz2U/AeAIHE3uVW6tVS7D+/WsKRhyh2Tq5jeMaHuVlTrLCmZwCYyBWSqqKGhQXl5eRo6dKji4uI0fvx4bdmyxbvfMAwtXbpUqampiouLU1ZWlnbs2BGIrgCA3wrKCxS/LF4L3lqgki0lWvDWAsUvi1dBeUGou4Z2lO0sU0ZxhrJXZWtO2Rxlr8pWRnEGVXUjQEACl5tvvlnl5eV67rnntG3bNk2ZMkWTJk3SwYMHJUmFhYUqKipSSUmJtmzZIqfTqcmTJ6uhoSEQ3QGAHisoL9CKyhXyGL6VWD2GRysqVxC8hCEeCRDZTM9xOXbsmBISEvTqq6/qyiuv9G6/4IILNGPGDN1///1KTU1VXl6eFi9eLElqbGxUcnKyHn74Yd16662dfgY5LgCCwd3kVvyy+FZBy8nsNruO3nWUaaMw4Wn2KKM4o93qujbZlOZIU9X8KqaNQsCM72/T77g0NTXJ4/Gob9++Ptvj4uL03nvvqaqqSjU1NZoyZYp3X2xsrCZOnKjKyso2z9nY2CiXy+XzAoBAK91a2mHQIp2481K6tTRIPUJneCRA5DM9cElISNC4ceN0//3368svv5TH49Hzzz+vDz74QNXV1aqpqZEkJScn+xyXnJzs3Xeq5cuXKzEx0ftKT083u9sA0Mruw7tNbQdzeZo92rhno17c9qI27tkoT7OHRwJEgYDkuDz33HMyDEODBw9WbGysfvWrX2nOnDmy27+5LWez+RYOMgyj1bYWS5YsUX19vfe1f//+QHQbAHwMSxpmajuYp73k212Hd3XpeB4JYF0BCVyGDRumiooKHTlyRPv379ef/vQnHT9+XJmZmXI6nZLU6u5KbW1tq7swLWJjY+VwOHxeABBouWNyZbd1nAdht9mVOyY3SD2C1HHy7T0b71H/uP48EiCCBbRy7mmnnaaUlBTV1dXprbfe0syZM73BS3l5ubed2+1WRUWFxo8fH8juAEC3xPSOUf64/A7b5I/LJzE3iDzNHs1fN1+GWq8rMWT4BCw8EiAyBSRweeutt7Ru3TpVVVWpvLxc2dnZOvvss/Vv//ZvstlsysvL07Jly7RmzRpt375d8+bNU3x8vObMmROI7gBAjxVOLtSi8Yta3Xmx2+xaNH6RCicXhqhn0akrybeHjh3S0qylPBIgQgWkcm59fb2WLFmiAwcOKCkpSd/5znf04IMPqk+fPpKkgoICHTt2TLm5uaqrq9PYsWO1fv16JSQkBKI7AOCXwsmFeiD7ASrnhoGuJtUOTxquPfP3UDk3AvGsIgCAZWzcs1HZq7I7bbdh7oYOHweA0AjLOi4AAATKhCETlOZII/k2ihG4AAAsw97LruJpxZJIvo1WBC4AAEvJGZGjV659heTbKEWOCwDAkjzNHpJvLcaM7++ArCoCAPiK1C/ZUF6XvZedBNwoROACAAFWtrNM89fN96k/kuZIU/G0YktPa0TqdSG8keMCAAHUUXn62S/PVtnOshD1zD+Rel0IfwQuABAgnZWnl6S8dXnyNHuC3TW/ROp1wRoIXAAgQLpSnn6/a7827dsUxF75L1KvC9ZAjgsABEhXy9N3tV246M51RWpSMkKHwAUAAiQlIcXUduGiq/3ddXiXMoozSN6FqZgqAoAAidTy9F25rv5x/XXPxntI3oXpCFwAIEAitTx9V66rPSTvwl8ELgAQQJFanr6j61qatVSHjh1q91iSd+EPclwAIMByRuRo5tkze5ykGq4Jru1d18s7Xu7S8VZLSkZ4IHABgCDoaXn6cK9O29Z1RWpSMsIDU0UAEKasWp02UpOSER4IXAAgDFm5Om2kJiUjPBC4AEAYsnp12khNSkbokeMCAGEoEqru+puUDLSFwAUAwlC4JLi6m9wq3Vqq3Yd3a1jSMOWOyVVM75guH9/TpGSgPQQuABCGWhJcD7oOtpnnYpNNaY60gCa4FpQXqGhzkTzGN3k0C9cvVP64fBVOLgzY5wIdIccFAMJQqBNcC8oLtKJyhU/QIkkew6MVlStUUF4QkM8FOkPgAgBhKlQJru4mt4o2F3XYpmhzkdxN7oB8PtARpooAIIyFIsG1dGtpqzstp/IYHpVuLVXeJXkB6wfQFgIXALA4sx8JsPvwblPbAWYicAGAMNZZyf9APBJgWNIwU9sBZrIZhtE6XT3MuVwuJSYmqr6+Xg6HI9TdAYCAaCn5f+qqopbk3IXjF+qXlb9sd39P82DcTW7FL4vvcLrIbrPr6F1Hu7U0GjDj+5vkXAAIQ52V/DdkqGhzUUAeCRDTO0b54/I7bJM/Lp+gBSFB4AIAYaizkv+SOrwj4u8jAQonF2rR+EWy23xzZew2uxaNX0QdF4QMOS4AEIbMKuXvz3kKJxfqgewH/KqcC5iNwAUAwpBZpfz9PU9M7xiWPCOsMFUEAGGopeT/qVVzT2a32dvdb5NN6Y70gD4SAAgFAhcACEOdlfy3yeZNoA3FIwGAUCFwAYAw1VnJ/8LJhSF5JAAQStRxAYAw11llXLMr5wKBYsb3N8m5ACwjkr+gO7o2ey+7sjKy2j22s/1AJCFwAWAJgShtHy4i+doAs5HjAiDstZS+P7Ug20HXQc1+ebbKdpaFqGf+i+RrAwKBwAVAWOus9L3U89L2oRbJ1wYECoELgLDWWel7f0vbh1IkXxsQKOS4APARbgmwXS1Zb1aJ/GCK5GsDAsX0Oy5NTU362c9+pszMTMXFxelf/uVfdN9996m5udnbxjAMLV26VKmpqYqLi1NWVpZ27NhhdlcAdFPZzjJlFGcoe1W25pTNUfaqbGUUZ4Q0z6KrJevNKpEfTJF8bUCgmB64PPzww3riiSdUUlKinTt3qrCwUCtWrNBjjz3mbVNYWKiioiKVlJRoy5Ytcjqdmjx5shoaGszuDoAuCtck0c5K31u5tH0kXxsQKKYHLps3b9bMmTN15ZVXKiMjQ7Nnz9aUKVO0detWSSfutqxcuVJ33323cnJyNHLkSK1atUpHjx7VCy+8YHZ3AHRBOCeJdlb6XrJuaftIvjYgUEwPXC677DK98847+uyzzyRJf/nLX/Tee+/pX//1XyVJVVVVqqmp0ZQpU7zHxMbGauLEiaqsrGzznI2NjXK5XD4vAOYJ9yTRzkrfW7nWSSRfGxAIpifnLl68WPX19TrnnHNkt9vl8Xj04IMP6oYbbpAk1dTUSJKSk5N9jktOTtbevXvbPOfy5ct17733mt1VAP/HzCTRQCX35ozI0cyzZ4ZV4rBZIvnaALOZHrj87ne/0/PPP68XXnhB5557rj7++GPl5eUpNTVVc+fO9baz2XxvixqG0WpbiyVLlig/P9/73uVyKT093eyuA1HLrCTRQFeAjeTS9pF8bYCZTA9cFi1apJ/+9Ke6/vrrJUmjRo3S3r17tXz5cs2dO1dOp1PSiTsvKSnf/CNYW1vb6i5Mi9jYWMXGxprdVQD/pyVJ9KDrYJt5LjbZlOZI6zBJtCW599TjW5J7mfYAYAbTc1yOHj2qXr18T2u3273LoTMzM+V0OlVeXu7d73a7VVFRofHjx5vdHQBd4G+SaDgn9wKILKYHLldddZUefPBBvfHGG9qzZ4/WrFmjoqIiXXPNNZJOTBHl5eVp2bJlWrNmjbZv36558+YpPj5ec+bMMbs7ALrInyTRcE/uBRA5TJ8qeuyxx/Tzn/9cubm5qq2tVWpqqm699Vb94he/8LYpKCjQsWPHlJubq7q6Oo0dO1br169XQkKC2d0B0A09TRKlAiyAYLEZhtH63m6Yc7lcSkxMVH19vRwOR6i7A0S9jXs2KntVdqftNszdQAIqEMXM+P7mIYsA/EYFWADBQuACwG9UgAUQLAQuAExBBVgAwUCOCwBTBapyLgDrM+P72/RVRQCiGxVgAQQSU0UAAMAyCFwAAIBlELgAAADLIHABAACWQeACAAAsg8AFAABYBoELAACwDAIXAABgGQQuAADAMghcAACAZVDyH4gy0fwsoWi+diBSELgAUaRsZ5nmr5uvA64D3m1pjjQVTyuO+Kc3R/O1A5GEqSIgSpTtLNPsl2f7fHFL0kHXQc1+ebbKdpaFqGeBF83XDkQaAhcgCniaPZq/br4MGa32tWzLW5cnT7Mn2F0LuGi+diASEbgAUWDTvk2t7jaczJCh/a792rRvUxB7FRzRfO1AJCLHBbCg7iaZVjdUd+m8XW1nJdF87UAkInABLKYnSaYpCSldOndX21lJNF87EImYKgIspKdJphOGTFCaI0022drcb5NN6Y50TRgywfQ+h1o0XzsQiQhcAIvwJ8nU3suu4mnFktTqC7zl/cppKyOypkk0XzsQiQhcAIvwN8k0Z0SOXrn2FQ12DPbZnuZI0yvXvhLRtUyi+dqBSEOOC2ARZiSZ5ozI0cyzZ0Zl9dhovnYgkhC4ABZhVpKpvZddWRlZJvTIeqL52oFIwVQRYBEkmQIAgQtgGSSZAgCBC2ApJJkCiHY2wzBar60Mcy6XS4mJiaqvr5fD4Qh1d4Cg627lXAAIB2Z8f5OcC4ShzgITkkwBRCsCFyDM9KSkPwBEC3JcgDDS05L+ABAtCFyAMOFPSX8AiBYELkCY8LekPwBEA3JcENGstPrGjJL+XeFucqt0a6l2H96tYUnDlDsmVzG9Y/w6JwAEC4ELIpbVklzNKunfkYLyAhVtLpLH+Ga6aeH6hcofl6/CyYU9Pi8ABAtTRYhIVkxyDXRJ/4LyAq2oXOETtEiSx/BoReUKFZQX9Oi8ABBMBC6IOFZNcg1kSX93k1tFm4s6bFO0uUjuJne3zw0AwUTggohj5STXQJX0L91a2upOy6k8hkelW0t7dH4ACBZyXBDWepJcG6wk10DJGZGjmWfPNDWpePfh3aa1s1LCM4DIY3rgkpGRob1797banpubq1//+tcyDEP33nuvfvOb36iurk5jx47Vr3/9a5177rlmdwUW19Pk2mAkuQaa2SX9hyUNM6Wd1RKeAUQe06eKtmzZourqau+rvLxckvTd735XklRYWKiioiKVlJRoy5Ytcjqdmjx5shoaGszuCizMn+TaQCe5WlHumFz16uR/917qpdwxue3ut2LCM4DIY3rgMnDgQDmdTu/r9ddf17BhwzRx4kQZhqGVK1fq7rvvVk5OjkaOHKlVq1bp6NGjeuGFF8zuCizK3+TaQCa5WpW9l13xMfEdtomPiW93TKya8Awg8gQ0Odftduv555/XD3/4Q9lsNlVVVammpkZTpkzxtomNjdXEiRNVWVnZ7nkaGxvlcrl8XohcZiTXBirJ1ao27dukI+4jHbY54j7S7phaOeEZQGQJaHLu2rVr9dVXX2nevHmSpJqaGklScnKyT7vk5OQ282JaLF++XPfee2/A+onwYlZybSCSXK3K3zG1esIzgMgR0MDl6aef1vTp05Wamuqz3WbzvX1vGEarbSdbsmSJ8vPzve9dLpfS09PN7SzChpnJtWYnuVqVv2MaCQnPACJDwKaK9u7dq7fffls333yzd5vT6ZT0zZ2XFrW1ta3uwpwsNjZWDofD54XIRXKt+fwdU34mAMJFwAKXZ555RoMGDdKVV17p3ZaZmSmn0+ldaSSdyIOpqKjQ+PHjA9UVWAzJtebzd0z5mQAIFwEJXJqbm/XMM89o7ty56t37m9kom82mvLw8LVu2TGvWrNH27ds1b948xcfHa86cOYHoCiyK5Frz+Tum/EwAhAObYRit1zf6af369Zo6dao+/fRTnXXWWT77WgrQPfnkkz4F6EaOHNnl87tcLiUmJqq+vp5powhHlVbz+Tum/EwA9JQZ398BCVwCjcAF0Y7gAYAVmfH9zbOKAIuh7D6AaMbToQELoew+gGhH4AJYBGX3AYDABbAMyu4DADkuCDCSSM1D2X0AIHBBAJFEai7K7gMAU0UIEJJIzUfZfQAgcEEAkEQaGJTdBwACFwQASaSBQ9l9ANGOHBeYjiTSwMoZkaOZZ88k6RlAVCJwQae6uzIoUpJIw3lFlL2XXVkZWaHuBgAEHYELOtSTlUEtSaQHXQfbzHOxyaY0R1pYJ5GyIgoAwhM5LmhXT1cGWT2JlBVRABC+CFzQJn9XBlk1iZQVUQAQ3pgqQpu6szKovVwLKyaRmnHdAIDAIXBBm8xaGWS1JFJWRAFAeGOqCG2KlJVB3RWt1w0AVkHggjZFa3n5aL1uALAKAhe0yeorg3oqWq8bAKyCwAXtsurKIH9F63UDgBXYDMNove4zzLlcLiUmJqq+vl4OhyPU3Yl4/lSQDefqs52xct8BIByZ8f3NqiJ0qqcrg6xefdZqK6IAIBowVYSAoPosACAQCFxgOqrPAgAChcAFputO9VkAALqDwAWmo/osACBQCFxgOqrPAgAChcAFpqP6LAAgUAhcYDqqzwIAAoXABQFB9VkAQCBQORcBRfVZAEALM76/ueMCAAAsg5L/CBirl/wHAIQf7rggICj5DwAIBAIXmI6S/wCAQCFwgeko+Q8ACBRyXNApd5NbpVtLtfvwbg1LGqbcMbmK6R3TbntK/gMAAoXABR0qKC9Q0eYieYxvpnUWrl+o/HH5Kpxc2OYxlPwHAAQKU0VoV0F5gVZUrvAJWiTJY3i0onKFCsoL2jyOkv8AgEAhcEGb3E1uFW0u6rBN0eYiuZvcrbZT8h8AECgELmhT6dbSVndaTuUxPCrdWtrmPkr+AwACgRwXtGn34d1+t8sZkaOZZ8+k5D8AwDQELmjzeULDkoZ16dhhScM6fB6RvZddWRlZAew9ACCaBGSq6ODBg/re976n/v37Kz4+XhdccIE+/PBD737DMLR06VKlpqYqLi5OWVlZ2rFjRyC6gk6U7SxTRnGGsldla07ZHGWvylZGcYZSTk+R3dbxnRG7za6U01PaPJ7KuACAQDA9cKmrq9Oll16qPn366H/+53/0ySef6JFHHlG/fv28bQoLC1VUVKSSkhJt2bJFTqdTkydPVkNDg9ndQQc6Kst/w+9v0IyzZnR4/IyzZuiG399AWX8AQNDYDMNoXZfdDz/96U/1xz/+UZs2tV0V1TAMpaamKi8vT4sXL5YkNTY2Kjk5WQ8//LBuvfXWTj/DjMdiRztPs0cZxRntVri1yaY0R5quPfdarXx/pU+irt1mV94lefrdjt91enzV/CpyWgAAksz5/jb9jstrr72mMWPG6Lvf/a4GDRqk0aNH66mnnvLur6qqUk1NjaZMmeLdFhsbq4kTJ6qysrLNczY2Nsrlcvm84J+uluWfcdYMHb3rqB6d+qhuu/g2PTr1UR2966hmnDWDsv4AgKAzPTn3iy++0OOPP678/Hzddddd+tOf/qQ77rhDsbGx+sEPfqCamhpJUnJyss9xycnJ2rt3b5vnXL58ue69916zuxrVulOWP6Z3jPIuyevx8QAAmMX0Oy7Nzc268MILtWzZMo0ePVq33nqrbrnlFj3++OM+7Ww238JkhmG02tZiyZIlqq+v9772799vdrejjr9l+SnrDwAIBdMDl5SUFH3rW9/y2TZixAjt27dPkuR0OiXJe+elRW1tbau7MC1iY2PlcDh8XvCPv2X5KesPAAgF0wOXSy+9VJ9++qnPts8++0xDhw6VJGVmZsrpdKq8vNy73+12q6KiQuPHjze7O2iHv2X5KesPAAgF0wOXBQsW6P3339eyZcv0+eef64UXXtBvfvMb/eQnP5F0YoooLy9Py5Yt05o1a7R9+3bNmzdP8fHxmjNnjtndQQf8LctPWX8AQLCZvhxakl5//XUtWbJEu3btUmZmpvLz83XLLbd49xuGoXvvvVdPPvmk6urqNHbsWP3617/WyJEju3R+lkObq6PKt8E4HgAQHcz4/g5I4BJoBC4AAFhPWNZxAQAACBQCFwAAYBkELgAAwDIIXAAAgGUQuAAAAMsgcAEAAJZB4AIAACyDwAUAAFgGgQsAALAMAhcAAGAZBC4AAMAyCFwAAIBlELgAAADLIHABAACWQeACAAAsg8AFAABYBoELAACwDAIXAABgGQQuAADAMghcAACAZRC4AAAAyyBwAQAAlkHgAgAALIPABQAAWAaBCwAAsAwCFwAAYBkELgAAwDIIXAAAgGUQuAAAAMsgcAEAAJbRO9QdCCeeZo827duk6oZqpSSkaMKQCbL3soe6WwAA4P8QuPyfsp1lmr9uvg64Dni3pTnSVDytWDkjckLYMwAA0IKpIp0IWma/PNsnaJGkg66Dmv3ybJXtLAtRzwAAwMmiPnDxNHs0f918GTJa7WvZlrcuT55mT7C7BgAAThH1gcumfZta3Wk5mSFD+137tWnfpiD2CgAAtCXqA5fqhmpT2wEAgMCJ+sAlJSHF1HYAACBwoj5wmTBkgtIcabLJ1uZ+m2xKd6RrwpAJQe4ZAAA4VdQHLvZedhVPK5akVsFLy/uV01ZSzwUAgDAQ9YGLJOWMyNEr176iwY7BPtvTHGl65dpXqOMCAECYsBmG0XodcJhzuVxKTExUfX29HA6Haeelci4AAIFjxvc3lXNPYu9lV1ZGVqi7AQAA2mH6VNHSpUtls9l8Xk6n07vfMAwtXbpUqampiouLU1ZWlnbs2GF2NwAAQAQKSI7Lueeeq+rqau9r27Zt3n2FhYUqKipSSUmJtmzZIqfTqcmTJ6uhoSEQXQEAABEkIIFL79695XQ6va+BAwdKOnG3ZeXKlbr77ruVk5OjkSNHatWqVTp69KheeOGFQHQFAABEkIAELrt27VJqaqoyMzN1/fXX64svvpAkVVVVqaamRlOmTPG2jY2N1cSJE1VZWdnu+RobG+VyuXxeAAAg+pgeuIwdO1b/+Z//qbfeektPPfWUampqNH78eB06dEg1NTWSpOTkZJ9jkpOTvfvasnz5ciUmJnpf6enpZncbAABYgOmBy/Tp0/Wd73xHo0aN0qRJk/TGG29IklatWuVtY7P5FnozDKPVtpMtWbJE9fX13tf+/fvN7jYAALCAgBegO+200zRq1Cjt2rXLu7ro1LsrtbW1re7CnCw2NlYOh8PnBQAAok/AA5fGxkbt3LlTKSkpyszMlNPpVHl5uXe/2+1WRUWFxo8fH+iuAAAAizO9AN3ChQt11VVXaciQIaqtrdUDDzwgl8uluXPnymazKS8vT8uWLdPw4cM1fPhwLVu2TPHx8ZozZ47ZXQEAABHG9MDlwIEDuuGGG/SPf/xDAwcO1CWXXKL3339fQ4cOlSQVFBTo2LFjys3NVV1dncaOHav169crISGhy5/R8pQCVhcBAGAdLd/b/jxtyJLPKjpw4AAriwAAsKj9+/crLS2tR8daMnBpbm7Wl19+qYSEhA5XI/WEy+VSenq69u/fTxJwNzBu3ceY9Qzj1jOMW88wbt3X0ZgZhqGGhgalpqaqV6+epdla8iGLvXr16nGk1lWsXuoZxq37GLOeYdx6hnHrGcat+9obs8TERL/OG/BVRQAAAGYhcAEAAJZB4HKK2NhY3XPPPYqNjQ11VyyFces+xqxnGLeeYdx6hnHrvkCPmSWTcwEAQHTijgsAALAMAhcAAGAZBC4AAMAyCFwAAIBlREXg8u677+qqq65SamqqbDab1q5d227bW2+9VTabTStXrvTZ3tjYqNtvv10DBgzQaaedpquvvloHDhwIbMdDrLNxmzdvnmw2m8/rkksu8WnDuLX9+7Zz505dffXVSkxMVEJCgi655BLt27fPuz/axq2zMTv196zltWLFCm+baBszqfNxO3LkiG677TalpaUpLi5OI0aM0OOPP+7ThnFrPW5/+9vfNG/ePKWmpio+Pl7Tpk3Trl27fNpE27gtX75cF198sRISEjRo0CDNmjVLn376qU8bwzC0dOlSpaamKi4uTllZWdqxY4dPGzPGLSoCl6+//lrnn3++SkpKOmy3du1affDBB0pNTW21Ly8vT2vWrNFLL72k9957T0eOHNGMGTPk8XgC1e2Q68q4TZs2TdXV1d7Xm2++6bOfcWtt9+7duuyyy3TOOedo48aN+stf/qKf//zn6tu3r7dNtI1bZ2N28u9YdXW1fvvb38pms+k73/mOt020jZnU+bgtWLBA69at0/PPP6+dO3dqwYIFuv322/Xqq6962zBuvgzD0KxZs/TFF1/o1Vdf1UcffaShQ4dq0qRJ+vrrr73tom3cKioq9JOf/ETvv/++ysvL1dTUpClTpviMSWFhoYqKilRSUqItW7bI6XRq8uTJamho8LYxZdyMKCPJWLNmTavtBw4cMAYPHmxs377dGDp0qPHoo49693311VdGnz59jJdeesm77eDBg0avXr2MdevWBaHXodfWuM2dO9eYOXNmu8cwbm2P23XXXWd873vfa/eYaB+39v4fPdnMmTONK664wvs+2sfMMNoet3PPPde47777fLZdeOGFxs9+9jPDMBg3w2g9bp9++qkhydi+fbt3W1NTk5GUlGQ89dRThmEwboZhGLW1tYYko6KiwjAMw2hubjacTqfx0EMPedv885//NBITE40nnnjCMAzzxi0q7rh0prm5Wd///ve1aNEinXvuua32f/jhhzp+/LimTJni3ZaamqqRI0eqsrIymF0NOxs3btSgQYN01lln6ZZbblFtba13H+PWWnNzs9544w2dddZZmjp1qgYNGqSxY8f63Kpm3Dr2t7/9TW+88YZuuukm7zbGrG2XXXaZXnvtNR08eFCGYWjDhg367LPPNHXqVEmMW1saGxslyecOqN1uV0xMjN577z1JjJsk1dfXS5KSkpIkSVVVVaqpqfEZk9jYWE2cONE7JmaNG4GLpIcffli9e/fWHXfc0eb+mpoaxcTE6IwzzvDZnpycrJqammB0MSxNnz5dq1ev1h/+8Ac98sgj2rJli6644grv//iMW2u1tbU6cuSIHnroIU2bNk3r16/XNddco5ycHFVUVEhi3DqzatUqJSQkKCcnx7uNMWvbr371K33rW99SWlqaYmJiNG3aNJWWluqyyy6TxLi15ZxzztHQoUO1ZMkS1dXVye1266GHHlJNTY2qq6slMW6GYSg/P1+XXXaZRo4cKUne605OTvZpe/KYmDVulnw6tJk+/PBDFRcX689//rNsNlu3jjUMo9vHRJLrrrvO+98jR47UmDFjNHToUL3xxhs+XyqniuZxa25uliTNnDlTCxYskCRdcMEFqqys1BNPPKGJEye2e2w0j9vJfvvb3+rGG2/0+Yu4PdE+Zr/61a/0/vvv67XXXtPQoUP17rvvKjc3VykpKZo0aVK7x0XzuPXp00e///3vddNNNykpKUl2u12TJk3S9OnTOz02Wsbttttu01//+lfvHaiTnXr9XRmT7o5b1N9x2bRpk2prazVkyBD17t1bvXv31t69e3XnnXcqIyNDkuR0OuV2u1VXV+dzbG1tbavoMpqlpKRo6NCh3ux7xq21AQMGqHfv3vrWt77ls33EiBHeVUWMW/s2bdqkTz/9VDfffLPPdsastWPHjumuu+5SUVGRrrrqKp133nm67bbbdN111+mXv/ylJMatPRdddJE+/vhjffXVV6qurta6det06NAhZWZmSorucbv99tv12muvacOGDUpLS/NudzqdktTqzsnJY2LWuEV94PL9739ff/3rX/Xxxx97X6mpqVq0aJHeeustSSd+ifv06aPy8nLvcdXV1dq+fbvGjx8fqq6HnUOHDmn//v1KSUmRxLi1JSYmRhdffHGrZYSfffaZhg4dKolx68jTTz+tiy66SOeff77PdsastePHj+v48ePq1cv3n3m73e6988e4dSwxMVEDBw7Url27tHXrVs2cOVNSdI6bYRi67bbbVFZWpj/84Q/eIK5FZmamnE6nz5i43W5VVFR4x8S0cfMnq9gqGhoajI8++sj46KOPDElGUVGR8dFHHxl79+5ts/2pq4oMwzD+/d//3UhLSzPefvtt489//rNxxRVXGOeff77R1NQUhCsIjY7GraGhwbjzzjuNyspKo6qqytiwYYMxbtw4Y/DgwYbL5fKeg3Fr/ftWVlZm9OnTx/jNb35j7Nq1y3jssccMu91ubNq0yXuOaBu3rvw/Wl9fb8THxxuPP/54m+eItjEzjM7HbeLEica5555rbNiwwfjiiy+MZ555xujbt69RWlrqPQfj1nrcXn75ZWPDhg3G7t27jbVr1xpDhw41cnJyfM4RbeP24x//2EhMTDQ2btxoVFdXe19Hjx71tnnooYeMxMREo6yszNi2bZtxww03GCkpKaZ/J0RF4LJhwwZDUqvX3Llz22zfVuBy7Ngx47bbbjOSkpKMuLg4Y8aMGca+ffsC3/kQ6mjcjh49akyZMsUYOHCg0adPH2PIkCHG3LlzW40J49b279vTTz9tnHnmmUbfvn2N888/31i7dq3POaJt3LoyZk8++aQRFxdnfPXVV22eI9rGzDA6H7fq6mpj3rx5RmpqqtG3b1/j7LPPNh555BGjubnZew7GrfW4FRcXG2lpad5/2372s58ZjY2NPueItnFra7wkGc8884y3TXNzs3HPPfcYTqfTiI2NNS6//HJj27ZtPucxY9xs/9chAACAsBf1OS4AAMA6CFwAAIBlELgAAADLIHABAACWQeACAAAsg8AFAABYBoELAACwDAIXAABgGQQuAADAMghcAACAZRC4AAAAyyBwAQAAlvH/ATGxehdpEeibAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bolOver = bmi['Label'] == 'Overweight'\n", "scatter_data = bmi.loc[bolOver]\n", "\n", "plt.scatter(scatter_data['Height'], scatter_data['Weight'],\n", " color = 'green', label = 'Overweight')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "e4b587fb", "metadata": {}, "source": [ "#### 함수로 만들어서 그래프 그리기" ] }, { "cell_type": "code", "execution_count": 13, "id": "124e577a", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:48:43.809949Z", "start_time": "2023-01-26T01:48:43.798939Z" } }, "outputs": [], "source": [ "def myScatter(label, color):\n", " bol = bmi['Label'] == label\n", " scatter_data = bmi.loc[bol]\n", " plt.scatter(scatter_data['Height'], scatter_data['Weight'],\n", " color = color, label = label)" ] }, { "cell_type": "markdown", "id": "fbbf8454", "metadata": {}, "source": [ "#### 전체 그래프 그리기" ] }, { "cell_type": "code", "execution_count": 17, "id": "a03ef5b7", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T01:53:13.964242Z", "start_time": "2023-01-26T01:53:13.694375Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAAKTCAYAAADmN3BXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZ7UlEQVR4nOzde3wU5aE+8GeyZEOAbAgBIWETg1FiVBSVVrGNJBUl7VGxaRoVL3hr+ys9NgGFaltbrLYqFkwqpZ7TcwrWaxFXe3r0pN6CxqJWVKxK6iUNJoQgiDELGhLYnd8fw65s9j47t3fm+frJB3f2nd2Zd96Z3Xdn5nklWZZlEBEREREREZEmssxeACIiIiIiIiI7YUebiIiIiIiISEPsaBMRERERERFpiB1tIiIiIiIiIg2xo01ERERERESkIXa0iYiIiIiIiDTEjjYRERERERGRhkaZvQBqBINB7NixA3l5eZAkyezFISIiIiIiIpuTZRl79+5FcXExsrISn7MWsqO9Y8cOlJSUmL0YRERERERE5DA9PT3wer0JywjZ0c7LywOgrKDH4zF5aYiIiIiIiMju/H4/SkpKwv3RRITsaIcuF/d4POxoExERERERkWFSuX2ZYWhEREREREREGmJHm4iIiIiIiEhD7GgTERERERERaUjIe7SJiIiIiMg+gsEghoeHzV4MIrjd7qRDd6WCHW0iIiIiIjLN8PAwurq6EAwGzV4UImRlZWHatGlwu90ZvQ472kREREREZApZltHX1weXy4WSkhJNziQSqRUMBrFjxw709fWhtLQ0pXTxeNjRJiIiIiIiUxw8eBCff/45iouLMWbMGLMXhwiTJk3Cjh07cPDgQWRnZ6t+Hf5kREREREREpggEAgCQ8WW6RFoJtcVQ21SLHW0iIiIiIjJVJpfoEmlJq7bIjjYRERERERGRhtjRJiIiIiIioigbN26EJEn49NNPzV6UtFVXV6Opqcm092dHm4iIiIiIKA1XXHEFJEmK+qutrU35NczuCBrhnnvuQV5eHg4ePBietm/fPmRnZ6OqqiqibHt7OyRJwnvvvWf0YuqCqeNERERERCS0QCCA9vZ29PX1oaioCFVVVXC5XLq+Z21tLdauXRsxLScnR9P3kGUZgUAAo0aJ2W2rqanBvn37sHnzZpx++ukAlA71lClT8Oqrr+Lzzz8Pp81v3LgRxcXFmD59upmLrBme0SYiIiIiImH5fD6UlZWhpqYGCxYsQE1NDcrKyuDz+XR935ycHEyZMiXir6CgAIDSaXS73Whvbw+XX7lyJSZOnIi+vj5cccUVeP7559HS0hI+G75t27bwpdp//etfMWvWLOTk5KC9vR2yLGPFihU46qijkJubi5NOOgkbNmwIv/bh85188snIzc3F1772NezatQv/93//h8rKSng8Hlx88cX4/PPPw/Mle93DffbZZ/B4PFHP/+Uvf8HYsWOxd+/eqHkqKipQXFyMjRs3Rizr/PnzUV5ejk2bNkVMr6mpAQAMDw9j2bJlmDp1KsaOHYvTTjst4jX27NmDiy++GF6vF2PGjMGMGTPw0EMPJdxera2tyM/Pxx//+MeE5bTCjjYREREREQnJ5/Ohvr4e27dvj5je29uL+vp63Tvb8YQuC7/sssswMDCAN998Ez/5yU/w+9//HkVFRWhpacHs2bPxne98B319fejr60NJSUl4/mXLluG2225DR0cHTjzxRPz0pz/F2rVr8bvf/Q7vvPMOFi9ejEsvvRTPP/98xPsuX74cq1evxqZNm9DT04OGhgY0NzfjwQcfxBNPPIGnn34ad999d7h8qq8LAGPHjsVFF10UdRZ/7dq1qK+vR15eXty6aGtrCz9ua2tDdXU15syZE54+PDyMl156KdzRvvLKK/G3v/0NDz/8MP7xj3/g29/+Nmpra/H+++8DAPbv349TTz0V//u//4u3334b3/3ud3HZZZfhlVdeibkMDz/8MBoaGvDHP/4Rl19+edztpilZQAMDAzIAeWBgwOxFISIiIiIilQYHB+WtW7fKg4ODac978OBB2ev1ygBi/kmSJJeUlMgHDx7UfLkXLlwou1wueezYsRF/v/jFL8JlhoaG5JNPPlluaGiQjz/+ePmaa66JeI05c+bIjY2NEdPa2tpkAPLjjz8enrZv3z559OjR8qZNmyLKXn311fLFF18cMd8zzzwTfv62226TAcidnZ3had/73vfkefPmpf26/f39sizL8iuvvCK7XC65t7dXlmVZ3r17t5ydnS1v3Lgxbl3953/+pzx27Fj5wIEDst/vl0eNGiV/9NFH8sMPPyyfccYZsizL8vPPPx9e1g8++ECWJCn8HiFnnXWWfOONN8Z9n2984xvyddddF34cqt/f/va3cn5+vvzcc8/FnfdwidpkOv1QMS/2JyIiIiIiR2tvb486k304WZbR09OD9vZ2VFdXa/7+NTU1+N3vfhcxbcKECeH/d7vduP/++3HiiSfiyCOPRHNzc8qvPWvWrPD/b926Ffv378fZZ58dUWZ4eBgnn3xyxLQTTzwx/P+TJ0/GmDFjcNRRR0VM+/vf/57264Z8+ctfxvHHH48//vGPuOGGG3DfffehtLQUZ555Ztx1qampwWeffYZXX30V/f39mD59Oo444gjMmTMHl112GT777DNs3LgRpaWlOOqoo/DII49AluWoe7WHhoZQWFgIQLkn//bbb8ef/vQn9Pb2YmhoCENDQxg7dmzEPI8++ig++ugjvPjii/jyl78cdxn1wI42EREREREJp6+vT9Ny6Ro7diyOPvrohGVC9yB/8skn+OSTT6I6goleOyQYDAIAnnjiCUydOjWi3Mjwtezs7PD/S5IU8Tg0LfR66bzu4a655hqsXr0aN9xwA9auXYsrr7wSkiTFLX/00UfD6/Wira0N/f39mDNnDgBgypQpmDZtGv72t7+hra0NX/va18LL5XK58Nprr0UF2o0bNw6Acr/7XXfdhebmZsyYMQNjx45FU1MThoeHI8rPnDkTr7/+OtauXYsvfelLCZdTa+xoExERERGRcIqKijQtp7XOzk4sXrwYv//977F+/XpcfvnlePbZZ5GVpcRkud1uBAKBpK9z3HHHIScnB93d3eFOqhbUvu6ll16KZcuW4Te/+Q3eeecdLFy4MOk8NTU12LhxI/r7+7F06dLw9Dlz5uCvf/0rXn75ZVx55ZUAgJNPPhmBQAC7du2KGgIspL29HfPnz8ell14KQOmcv//++6isrIwoV15ejpUrV6K6uhoulwurV69OeT0zxY42EREREREJp6qqCl6vF729vZBlOep5SZLg9XrjdtYyNTQ0hJ07d0ZMGzVqFCZOnIhAIIDLLrsM55xzDq688kp8/etfx4wZM7By5cpwR7OsrAyvvPIKtm3bhnHjxkVcdn64vLw8XH/99Vi8eDGCwSC++tWvwu/3Y9OmTRg3blxKHV0tX7egoAB1dXVYunQpzjnnHHi93qTvVVNTgx/84Ac4cOBARKd+zpw5+P73v4/9+/eHg9CmT5+OSy65BJdffjlWrlyJk08+GR9//DGee+45zJgxA9/4xjdw9NFH49FHH8WmTZtQUFCAVatWYefOnVEd7dDrhQLYRo0aldYl/JlgR5vMEQgA7e1AXx9QVARUVQE6j3VIRDZi9DHEjGMWj5OkFtuOPlivluNyudDS0oL6+npIkhTR2Q5dItzc3KzbeNqtra1RZ8srKirwz3/+E7/85S+xbds2/OUvfwGgXCb9X//1X2hoaMDZZ5+NmTNn4vrrr8fChQtx3HHHYXBwEF1dXXHf65ZbbsERRxyB2267Df/6178wfvx4nHLKKfjxj3+c0Tqofd2rr74aDz74IK666qqU3qempgaDg4M49thjMXny5PD0OXPmYO/evSgvL49IXV+7di1uvfVWXHfddejt7UVhYSFmz56Nb3zjGwCAm266CV1dXZg3bx7GjBmD7373u7jgggswMDAQ8/0rKirw3HPPhc9sr1y5MqXlzkhK0WsWw9RxwT36qCx7vbIMfPHn9SrTiYiSMfoYYsYxi8dJUottRx+sV91kkjoe8uijj0alj5eUlMiPcvvo5v7775cLCwvloaEhsxdFc1qljqc9jvYLL7yA8847D8XFxZAkCY8//nhUmY6ODpx//vnIz89HXl4eTj/9dHR3d4efHxoawrXXXouJEydi7NixOP/88xMmBpKN+HxAfT0wcnv39irTTRrrkIgEYfQxxIxjFo+TpBbbjj5Yr5ZXV1eHbdu2oa2tDQ8++CDa2trQ1dWFuro6sxfNdj7//HO88847uO222/C9730Pbrfb7EWyrLQ72p999hlOOumkuDeSd3Z24qtf/SqOPfZYbNy4EW+++SZuuukmjB49OlymqakJjz32GB5++GG8+OKL2LdvH84999yUwgBIYIEA0Nio/A48UmhaU5NSjohoJKOPIWYcs3icJLXYdvTBehWGy+VCdXU1Lr744vDlwaS9FStWYObMmZg8eTJuvPFGsxfH0iRZjnXkSHFmScJjjz2GCy64IDztoosuQnZ2Nu67776Y8wwMDGDSpEm47777cOGFFwIAduzYgZKSEjz55JOYN29e1DyhcdFC/H4/SkpKMDAwAI/Ho3bxyWgbNwKHQg4SamsDdBjrkIgEZ/QxxIxjFo+TpBbbjj5Yr7rbv38/urq6MG3atIgTc0RmSdQm/X4/8vPzU+qHpn1GO5FgMIgnnngC06dPx7x583DEEUfgtNNOi7i8/LXXXsOBAwdwzjnnhKcVFxfjhBNOCI8zN9Jtt92G/Pz88N/hN8rTYQIB5QPhoYeUf63262qqYxjqNNYhEelE7bEn3fmMPoaYcczicZLUYtvRB+uVRCXLwN69wJ49yr/qz62SSpp2tHft2oV9+/bh9ttvR21tLZ566il885vfRF1dHZ5//nkAwM6dO+F2u1FQUBAx7+TJk6Pi8UNuvPFGDAwMhP96enq0XGx78PmAsjLlV9cFC5R/y8qsdd9QqmMYmjTWIRGpoPbYo2Y+o48hZhyzeJwktdh29MF6JRH19wNvvQW8+y7Q1aX8+9ZbynQyjOZntAFg/vz5WLx4MWbOnIkbbrgB5557Lu65556E88qyHI7hHyknJwcejyfijw4jSkhHVRXg9QJxtjMkCSgpUcoRkfWpPfaonc/oY4gZxyweJ0ktth19sF5JNP39QGcnMDwcOX14WJnOzrZhNO1oT5w4EaNGjcJxxx0XMb2ysjKcOj5lyhQMDw+jf8RG3rVrV8SYapQikUI6XC6gpUX5/5EfWKHHzc0ck5JIBGqPPZkcs4w+hphxzOJxktRi29EH65VEIstAsit/e3p4GblBNO1ou91ufOlLX8K7774bMf29997DkUceCQA49dRTkZ2djaeffjr8fF9fH95++22cccYZWi6OM7S3R58VOlxoh2tvN26ZEqmrAzZsAKZOjZzu9SrTOQwDkRjUHnsyPWYZfQwx45jF4ySpxbajD9YriWLfvugz2SMNDyvlSHej0p1h3759+OCDD8KPu7q6sGXLFkyYMAGlpaVYunQpLrzwQpx55pmoqalBa2sr/vKXv2Djxo0AgPz8fFx99dW47rrrUFhYiAkTJuD666/HjBkzMHfuXM1WzDFEDOmoqwPmz1e+SPf1Kfc1VVXx12AtBAKsVzKG2mOPFscso48hZhyz6uqAc88F1qxRLvUrLwcWLQI4Xiklk0l75WdIfPzuQiJI1slOtxxlJO2O9ubNm1Fz2DAHS5YsAQAsXLgQ69atwze/+U3cc889uO222/DDH/4QFRUVePTRR/HVr341PM9dd92FUaNGoaGhAYODgzjrrLOwbt06jnenhqghHS4Xh8HQms+nXJJ7+NlCr1e55I2/tpPW1B57tDpmGX0MMfr9Yu3PK1dyf6bUqGmv/AxJjt9dyGTV1dWYOXMmmpubYxdI9cdY/mhriIzG0TZLOuOX2V4goCT19vbGvt9CkpQPyq4u/upqZ6FwqZFtIHT/GC9tI62pPfbwmJUc92cyGtscmUjEcbTvueceLF26FP39/Rg1SjlvuW/fPhQUFOD0009H+2G3P7W3t+PMM8/Eu+++i+nTp2f0vkk72rKspIsnOmPtdgMzZsQP+CNrjqNNJmBIB4kUiEf2ofbYw2NWYtyfyWhsc2QTgQCwcSPw0EPKv3o22ZqaGuzbtw+bN28OT2tvb8eUKVPw6quv4vPPPw9P37hxI4qLizPuZKcklIKfSEkJO9kGYUfbDhjS4WyiBeKRfag99vCYFR/3ZzIa2xzZgM+nXCxVUwMsWKD8W1am3wi3FRUVKC4uDmdQAUqHev78+SgvL8emTZsiptfU1GB4eBjLli3D1KlTMXbsWJx22mkR8+/ZswcXX3wxvF4vxowZgxkzZuChhx5KuBytra3Iz8/HH//4xy8mFhQouR4jLw93u5XpBQWZrDqlIe17tMmiGNLhXCIG4pF9qD328JgVG/dnMhrbHAku3p0Pvb3KdL1+v62urkZbWxtuuOEGAEBbWxuWLVuGYDCItrY2zJ07F8PDw3jppZdw991348orr8S2bdvw8MMPo7i4GI899hhqa2vx1ltv4ZhjjsH+/ftx6qmn4kc/+hE8Hg+eeOIJXHbZZTjqqKNw2mmnRb3/ww8/jO9+97u47777MH/+/MgnCwqA8eO/SCF3u4Fx43gm22DsaNuJU0I6mIoaSdRAPCKnHLPSwf2ZjMY2lzp+/7CcZHc+SJJy58P8+dpvqurqaixevBgHDx7E4OAg3njjDZx55pkIBAL4zW9+AwB4+eWXMTg4iOrqanznO9/B9u3bUVxcDAC4/vrr0drairVr1+JXv/oVpk6diuuvvz78+tdeey1aW1vxyCOPRHW016xZgx//+Mf485//HBFSHUGSgLw8bVea0sKONomFqajRqqqUOkgWLlVVZfyykf1xn9QW92cyGttcaniss6R07nzQ+nfdmpoafPbZZ3j11VfR39+P6dOn44gjjsCcOXNw2WWX4bPPPsPGjRtRWlqK119/HbIsR92nPTQ0hMLCQgBAIBDA7bffjj/96U/o7e3F0NAQhoaGMHbs2Ih5Hn30UXz00Ud48cUX8eUvf1nblSJN8R5tEkfo2qCRR9TQtUF63YhjdQyXIrNwn9Qe92cyGttccjzWWZaZdz4cffTR8Hq9aGtrQ1tbG+bMmQMAmDJlCqZNm4a//e1vaGtrw9e+9jUEg0G4XC689tpr2LJlS/ivo6MDLYf2v5UrV+Kuu+7CsmXL8Nxzz2HLli2YN28ehkckiM+cOROTJk3C2rVrIeDgUY7CjjaJgamoiTFciozGfVI/3J/JaGxz8fFYZ2lm3/lQU1ODjRs3YuPGjag+7JT5nDlz8Ne//hUvv/wyampqcPLJJyMQCGDXrl04+uijI/6mTJkCQEktnz9/Pi699FKcdNJJOOqoo/D+++9HvWd5eTna2trw5z//Gddee60+K0aa4KXjJAYzrw0SBcOlyEjcJ/XF/ZmMxjYXG491lmb2nQ81NTX4wQ9+gAMHDoTPaANKR/v73/8+9u/fj5qaGpSUlOCSSy7B5ZdfjpUrV+Lkk0/Gxx9/jOeeew4zZszAN77xDRx99NF49NFHsWnTJhQUFGDVqlXYuXMnKisro953+vTpaGtrQ3V1NUaNGhV/XG0yFTvaJAamoqaG4VJkVFgP90n9mbE/M+xJeyLVaSZtTqT1TAePdfoLBID9+4H+fiUZO4107NCdD/X1yiyHd7aNuPOhpqYGg4ODOPbYYzF58uTw9Dlz5mDv3r0oLy9HyaFxrdeuXYtbb70V1113HXp7e1FYWIjZs2fjG9/4BgDgpptuQldXF+bNm4cxY8bgu9/9Li644AIMDAzEfO+Kigo899xzqK6uhsvlwsqVK/VZSQPIsozhfcMIDAfgcrvgHueGZIOEdHa0SQxmXxtEJAIjw3q4T9oPw56055Q6tfN68linL58PWLECWL78i8vv3W6gpCTl8Z5Ddz7EaoLNzfo2wbKyspj3SXu93qjp2dnZuPnmm3HzzTfHfK0JEybg8ccfT/h+h4+7DQCVlZX46KOP0lpmqxnsH4S/x4/A8Be3X7jcLnhKPMgtyDVxyTInyQLeRe/3+5Gfn4+BgQF4PB6zF4eMEAgAZWXJrw3q6rLHL+hE6Yo3kGjoF2Gt77PkPmkvRrcfJ3BKndp9PXms08+htrO/tBRd99yDaRMnYvThz5eXp9zZBux7UYWdDfYPor+zP+7zBeUFpnS29+/fj66uLkybNg2jR0e0yrT6oQxDIzEwFZUoPjPCerhP2gfDnrTnlDp1wnryWKePRG0npKcn8fMjhO58uPhi5V9uEmuTZRn+Hn/CMv4ev9DJ6uxokziYikoUWzphPVriPmkPZrUfO3NKnTplPXms016ytgMAw8PAvn3GLA8ZLnRPdiKB4QCG9w0nLGNlvEebxGJGKiqvRSKr0yqsR01bFy2pmPtzNC3aD+s1kpn7pJGcFBQm2rHO6lJtE8PidrIosWSd7HTLWRE72iQeI5N47RzwQvahRVhPJm1dlLR77s+xZdp+WK/RzN4njeK0oDBRjnUiSLVNuN36LgeZxuVO7UeqVMtZES8dJ4onFPAy8tKm3l5lus9nznIRjRQaSDTeUBiSpCS4xhtI1Alt3QnrqFYm7Yf1GptT9slM15OcK1nbAZRO9rhxxi0TGco9zp20Ex0a6ktU7GgTxeKEgBeyj0zCepzQ1p2wjplQ235Yr/E5ZZ9kUBiplajthJSUpDyeNolHkiR4ShKndntKPEKPp82ONlEsTgl4IftQG9bjhLbuhHXMlJr2w3pNzCn7JIPCSK1Q25k8OXK625320F4kptyCXBSUF0Sd2Xa5XaYN7aUl3qNNFIuoAS+ZBOdYPXTHaYwKJjOzrRvV5kTdn42WbvthvSZn1j5p9PE8k6AwfvY4W10dMG8e8N57wJQpyqXi48bxTLaJZFkOJ4KHLt3W86xybkEuRo8fbeh7GoUdbaJYRAx4ySQ4R4TQHScxMpjMrLZuZJsTcX82Szrth/WaGqP3SbOO52qCwvjZQ4DSdkaPVs5gjx5t9tLY2saNG1FTU4P+/n6MHz8+6vnB/kH4e/wRSd8utwueEo+uZ5clSUJOXo5ur28WXjpOFItoAS+ZBOeIErrjFEZvj6oqoLAwcZnCQm3buhnrKNL+LArWqz6cEk4n0rISxXDFFVdAkiTcfvvtEdMff/xxIc/GDvYPor+zP2o4rcBwAP2d/RjsHzRpycTFjjZRLCIFvGQSnCNS6I4TOGF7mLGOIu3PImG96sMJ4XQiLSsJIxAMYOO2jXjorYewcdtGBIL6t5/Ro0fjjjvuQH9/v2avOWzC2OGyLMPf409Yxt/jhxxrn6W42NEmikeUgJdMgnNEC92xOzO2R3s7sGdP4jJ79mj3nma1OVH2Z9GwXvVh93A6kZaVhODr8KGspQw199ZggW8Bau6tQVlLGXwd+l4ZMXfuXEyZMgW33XZb3DKPPvoojj/+eOTk5KCsrAwrV66MeL6srAy33norrrjiCuTn5+M73/kO1q1bh/Hjx+N///d/UVFRgTFjxqC+vh6fffYZ7r33XpSVlaGgoADXXnstAof9IHX//fdj1qxZyMvLw5QpU7BgwQLs2rUr6XqE7o9OJDAcwPA+438EEBnv0SZKJJOAl0ykEw6TSXAOw4xSY1TInBnbw+j3NLPNmRXYZPewJ7OOk3Zn53A6s5dV7T5p931ZUL4OH+rX10NG5NnWXn8v6tfXY0PDBtRV6vOjn8vlwq9+9SssWLAAP/zhD+H1eiOef+2119DQ0IDly5fjwgsvxKZNm7Bo0SIUFhbiiiuuCJe78847cdNNN+GnP/0pAODFF1/E559/jt/85jd4+KGHsHfXLtRdcgnqzj8f4ydOxJNPPol//etf+Na3voWvfvWruPDCCwEoZ8NvueUWVFRUYNeuXVi8eDGuuOIKPPnkkwnXI1knO91ypGBHmygZNQEvmUg3HCaT4ByGGSVnZMicGdvD6Pc0u80ZHdjklLAno4+TTmHXcDozl1XtPumUfVkwgWAAja2NUZ1sAJAhQ4KEptYmzK+YD1eWPj+KfPOb38TMmTPx85//HP/93/8d8dyqVatw1lln4aabbgIATJ8+HVu3bsWdd94Z0dH+2te+huuvvz78+MUXX8SBAwfwu9tvR/moUcDEiaivrsZ9Tz6Jj9raMK6oCMcddxxqamrQ1tYW7mhfddVV4dc46qij8Jvf/AZf/vKXsW/fPowbNy7uOowcXivTcqTgpeNEVqImHCaT4ByGGSVmdMicGdvD6PcUrc0xaJBEIdK+Zdayqt0nuS9bVnt3O7b749+GIENGj78H7d363oZwxx134N5778XWrVsjpnd0dOArX/lKxLSvfOUreP/99yMu+Z41a1bUa44ZMwblwSBw6J7tyRMmoKyoCONGjQI6O4H+fkyePDni0vA33ngD8+fPx5FHHom8vDxUH/qhrru7O+Hyu8e5k3aiQ8NuUerY0SayCrXhMJkEEjHMKD4zQubM2B5Gv6dIbY5BgyQSkfYtM5ZV7T7JfdnS+vamdntBquXUOvPMMzFv3jz8+Mc/jpguy3JUAnmsQLGxY8diRCFkj2j/kiQhe9RhFyP39ECSJASDQQDAZ599hnPOOQfjxo3D/fffj1dffRWPPfYYgOQBa5IkwVPiSVjGU+IRMk3dTOxoE1lFJuEwmQQSMcwoNrNC5szYHka/pyhtjkGDJBpR9i3A+GVVu09yX7a0orzUbi9ItVwmbrvtNvzlL3/Bpk2bwtOOO+44vPjiixHlNm3ahOnTp8OV6IekoaHYP+4cbngYOHAg/PCf//wnPv74Y9x+++2oqqrCsccem1IQWkhuQS4Kyguizmy73C4UlBfoOo62XfEebT0xNIPSkWk4TCaBRAwzimZmyJwZ28Po9xShzTFoMHX8vLMOs0L/jF7WdKndJ522LwumqrQKXo8Xvf7emPdpS5Dg9XhRVar/LRMnnngiLrnkEtx9993haddddx2+9KUv4ZZbbsGFF16Il156CatXr8aaNWsSv9jBg6m96aGz2QBQWloKt9uNu+++G//v//0/vP3227jlllvSWofcglyMHj86nEIeulycZ7LVYUdbLwzNoHRpEQ6TSSARw4wimR0yZ8b2MPo9rd7mzG4DouDnnfUYHfqXCaOOA2r3SSftywJyZbnQUtuC+vX1kCBFdLYlKJ3D5tpm3YLQRrrllluwfv368ONTTjkF69evx89+9jPccsstKCoqwi9+8YuIILSYRqXYRcv64uLkSZMmYd26dfjxj3+M3/zmNzjllFPw61//Gueff35a6yBJEnLyctKah2KTZAFHHvf7/cjPz8fAwAA8nsT3E5giFJoxsmpDvwZZ7fItsoZAACgrU8JVYu2WkqR86enq4pkiI2SyPbgt7YFtIDl+3tmDE7aj2n0yEAAmTwb27In/2oWFwEcfib0vm2j//v3o6urCtGnTMHr0aFWv4evwobG1MSIYrcRTgubaZt2G9tKVLANvvRUOQovJ7QZmzIgfKkiqJWqT6fRDeY+21hiaQWqJFGTjBAyZI7aBxPh5Zw9O2Y5O2CcdrK6yDtsat6FtYRserHsQbQvb0NXYJWYnG/gieT+RkhJ2si2OHW2tMTSDMiFSkI0TMGSO2Abi4+edPThpO6rZJ9vbE5/NBpTn7VA/gnNluVBdVo2LZ1yM6rJqwy4X101BAVBerpy5PpzbrUwvKDBnuShlvEdbawzNoEyJEBLlJAyZo0zbwLnnAmvWKOOelpcDixZFf3ESET/v7EHU7ag2uC3d/VnU+iF9yDKwb59ySbfbDYwbp+9Z5YICYPx4Y9+TNMOOttYYmkFasHpIlNMwZI7UbsdYAVMrV9ojKIyfd/Yg4nbMNLgtnf1ZxPohffT3K1d3HH7ftNutXMKt59llSQLy8vR7fdINLx3XWlWVcrCP90tT6J6LKv2HGSAiIhOFAqZGXpbb26tM9/nMWS6t8PPOHkTbjkbvV6LVD+mjv1+5KmlkONnwsDK9v9+c5SJLY0dbawzbICIiJwRM8fPOHkTajmbsVyLVD+kjlFOQSE9P7HZJjsaOth7sHoBDRESJOSVgip939iDKdjRrvxKlfkgfofujExkeVsoRHYb3aOuFIUhERM7lpAAlft7ZgwjBfVrtV2qC1NjOnStZJzvdcuQY7GjriSFIRETO5LQAJX7eiU+E4D4t9qtMgtTYzp0p1R+brPSjFFkCLx0nIiLSGgOUSCSiBPdlul+Jsp5kLePGJe9Eh4bdEtzy5csxc+bMtOaprq5GU1OTLssjOna0iYiItMYAJRKFSMF9mexXIq0nWUvoB5w4enbuxNUrVqB46lS43W4ceeSRaGxsxJ49ewxcSG1cf/31ePbZZzV/XUmS8Pjjj2v+ulbHjjYREZEeGKBEIhAtuE/tfiXaelL6ZBn41A/s2qP8q2UKeEGBklsw4sz2v3btwqyrrsJ7H36Ihx56CB988AHuuecePPvss5g9ezY++eQT7ZZhhAMHDmj+muPGjUNhYaHmr+tU7GiTIhAANm4EHnpI+Ze/6FKq2HYSY/04W10dsG0b0NYGPPig8m9XFzvZZB1aBowZdayrq1MC2+66C/j3f1f+/eCDxPuVkwIKnWh3P/DyP4A33wM6upR/X/6HMl0rBQXAjBlARQUwbRpQUYEf3H033Dk5eOqppzBnzhyUlpbi61//Op555hn09vbiJz/5CW688UacfvrpUS934okn4uc//3n48dq1a1FZWYnRo0fj2GOPxZo1a8LPbdu2DZIkYf369aiursbo0aNx//33Y9KkSXj00UfD5WbOnIkjjjgi/Pill15CdnY29h1KRB8YGMB3v/tdHHHEEfB4PPja176GN998M1w+dOn40N4hfL7nc3zW/xmuvfZajB8/HoWFhfjRj36EhQsX4oILLohYl2AwiGXLlmHChAmYMmUKli9fHn6urKwMAPDNb34TkiSFHzsBO9qk3JNUVgbU1AALFij/lpXxXiVKjm0nMdYPAV8EKF18sfIvLxcnK9EqYMzIY53Pp5xdXLwYWL1a+be8PPH7OS2g0El29wNbO4HhEWd4hw8o07XsbEsSkJcHFBbikwMH8Ne//hWLFi1Cbm5uRLEpU6bgkksuwZ/+9CcsWLAAr7zyCjo7O8PPv/POO3jrrbdwySWXAAB+//vf4yc/+Ql++ctfoqOjA7/61a9w00034d5774143R/96Ef44Q9/iI6ODsybNw9nnnkmNm7cCADo7+/H1q1bceDAAWzduhUAsHHjRpx66qkYN24cZFnGv/3bv2Hnzp148skn8dprr+GUU07BWWedFT7zfmDwAA7uP4g97+7Bp12f4hc/+QUeuO8B3HP3Pfjb3/4Gv98f8xLwe++9F2PHjsUrr7yCFStW4Be/+AWefvppAMCrr74KQPkhoa+vL/zYCdjRdjoGg5BabDuJsX6ISASiBYypfT8GFNqTLAMfdCcu09mt7WXkh7z//vuQZRmVlZUxn6+srER/fz8mT56ME088EQ8++GD4uQceeABf+tKXMH36dADALbfcgpUrV6Kurg7Tpk1DXV0dFi9ejP/4j/+IeM2mpqZwmeLiYlRXV4c72i+88AJOOukkfO1rXwtP27hxI6oPJeW3tbXhrbfewiOPPIJZs2bhmGOOwa9//WuMHz8eGzZswGD/IPb374cc/KKu1v5pLf594b/jzMozceTkI7F69WqMHz8+al1DZ+ePOeYYXH755Zg1a1b4Xu9JkyYBAMaPH48pU6aEHzsBO9pOxmAQUottJzHWDxGJQqSAsUzejwGF9jSwN/pM9khDB5RyBpMPtUlJknDJJZfggQceCE9/6KGHwmezd+/ejZ6eHlx99dUYN25c+O/WW2+NOAsOALNmzYp4XF1djXfeeQcff/wxnn/+eVRXV6O6uhrPP/88Dh48iE2bNmHOnDkAgNdeew379u1DYWFhxPt0dXXhgw8+gL/HH/Ha/n1+7P5kN2YeP1N53ONHVlYWTj311Kh1PfHEEyMeFxUVYdeuXSprzj7Y0XYyBoOQWmw7ibF+iEgkogSMZfp+DCi0n2Sd7HTLpeHoo4+GJEnhy7RH+uc//4mCggJMnDgRCxYswHvvvYfXX38dmzZtQk9PDy666CIAyv3NgHL5+JYtW8J/b7/9Nl5++eWI1xw7dmzE4xNOOAGFhYV4/vnnwx3tOXPm4Pnnn8err76KwcFBfPWrXw2/T1FRUcR7bNmyBe+++y4aFzUiMBz7BzHp0A9RgeEAhvcNh39AOFx2dnbUPKH1crJRZi8AmYjBIKQW205irB/SQiCgdBj6+pT7RquqeLaN9FNXB8yfn16bM/pYp8X7qVlPEwUDQXS3d2Nv317kFeWhtKoUWS6eJwtzZycvk065NBQWFuLss8/GmjVrsHjx4oj7tHfu3IkHHngAl19+OSRJgtfrxZlnnokHHngAg4ODmDt3LiZPngwAmDx5MqZOnYp//etf4bPcqZIkCWeeeSb+/Oc/4+2330ZVVRXy8vJw4MAB3HPPPTjllFOQl5cHADjllFOwc+dOjBo1KiqQ7PM9n+PTjz+NmOYZ58GkCZPwxjtv4LSTTwMADA8O44033kh7rO3s7GwEHHgVHzvaTsZgEFKLbScx1g9lyudTLpE9/Oyd16tc+sqzbqSXUHBfqow+1mn1fumup0k6fB1obWyFf/sXl/R6vB7UttSisi72fcGOk5+ndKITnbHOyVbK6WD16tU444wzMG/ePNx6662YNm0a3nnnHSxduhRTp07FL3/5y3DZSy65BMuXL8fw8DDuuuuuiNdZvnw5fvjDH8Lj8eDrX/86hoaGsHnzZvT392PJkiUJl6G6uhqLFy/GySefDI/HAwDhTv3h886dOxezZ8/GBRdcgDvuuAMVFRXYsWMHnnzySXzj7G+gbGxZ1GtfeeGVWL1uNaaVTEP5keV46D8fQn9/f/gsd6rKysrw7LPP4itf+QpycnJQUFCQ1vyi4k9iTsZgEFKLbScx1g9lgkF6JAqjj3UOOrZ2+Dqwvn59RCcbAPy9fqyvX48OX4dJS2YxkgQcXZq4THlp/DaToWOOOQabN29GeXk5LrzwQpSXl+O73/0uampq8NJLL2HChAnhst/+9rexZ88efP7551HDY11zzTX4r//6L6xbtw4zZszAnDlzsG7dOkybNi3pMtTU1CAQCIRDzwBgzpw5CAQC4fuzAeXs95NPPokzzzwTV111FaZPn46LLroI27Ztg3eaFy539FUdP7j8B7hg3gVo/Hkj5l89H54CD+bNm4fRo0enVU8rV67E008/jZKSEpx88slpzSsySY51ob3F+f1+5OfnY2BgIPzLDakU+kIHRIaLhA5IvGeJ4mHbSYz1Q2oEAsqwSPHuQ5UkpaPR1WXZS13JYYw+1jng2BoMBNFS1hLVyQ6TlDPbjV2NtriMfP/+/ejq6sK0adPS7sCF7e5X0scPP7Odk610sic54+xppgb7B9HfGX8otILyAuTk56CyshINDQ245ZZbDFw6YyVqk+n0Q8XfOykzDAYhtdh2EmP9kBoM0iPRGH2sc8Cxtbu9O34nGwBkJQG6uz3JsFZOMqkAOP1E4KTpQOU05d/TTmQnOw25BbkoKC+IOLO9vW87HvrLQ/hY/hgfbP8A3//+99HV1YUFCxaYuKTi4D3aJFwwCAOCLES0tmM01g+lS9QgveFhYM0aoLMTKC8HFi0C3G6zl4qMYvSxLtP3U/s9wqDvH3v7UhuKKtVyjiFJwHj7XekqyzKG9w0jMByAy+2Ce5w77XukU5VbkIvR40eH3+/zsZ/Dd7sPv2j+BWRZxgknnIBnnnkm7tjhFIkdbVIIEgzCgCALEqXtmIX1Q+kQMUhv2TJg1arIsYuvvx5YsgRYscK85SJjGX2sU/t+ar9HGPj9I68oteCuVMuRuAb7B+Hv8UcMveVyu+Ap8SC3IDfBnOpJkoScvBwAwNGFR+Nvf/ubLu/jBLx0nMTBgCAisjvRwp6WLQPuvDOykw0oj++8U3meyCrUfo8w+PtHaVUpPF4PEO+kpQR4SjworUoSAkZCC90zPXJ868BwAP2d/RjsHzRpyShV7GiTGAIB5ZfkWNl9oWlNTdFf9oiIROJyKWfIgOjOduhxc7M1bj8YHlbOZCeyapVSjshsar9HmPD9I8uVhdqWWuXByM72oce1zbW2CEKj2GRZhr8nwX36UO7TFzDT2lG4h5IYGBBERE4hStjTmjXJOxeBgFKOyGxqv0eY9P2jsq4SDRsa4Jkaec+xx+tBw4YGjqNtc6F7pBMJDAcwvI8/ZFoZ79EmMYgaEEREpIYIQXqdndqWI9KT2u8RJn7/qKyrRMX8CnS3d2Nv317kFeWhtKqUZ7IdIFknO91yZA52tPXEFFbtiBgQJBqLp7ASOY7Vg/TKy7UtR6Qntd8jTP7+kQUZZdgGoA9AEYASXd5HSLIM7NunfN92u4Fx4+LnWwjm8CG2tChH5pBkAS/uT2egcNPESmF1uZjCqlYgAJSVKcEjsZqsJCmXVXZ1sZOnhgAprERkMcPDwJgxiS8fd7mAzz/nj8xkPrXfI8z8/uGQz9j9+/ejq6sL06ZNw+jRo1Obqb9fuWT/8AwIt1sJiywQf+xsWZax661dCc9Yu9wuHDHjCN2G+nKyRG0ynX4orz3RA1NYtSdSQJBoBElhJSKLcbuVH48TWbKEnWyyBrXfI8z6/sHP2Pj6+5WrRUcGLQ4PK9P7+81ZrgTKysrQ3NyccnlJkuApSdyJ85R4wp3sdevWYfz48RksIemBHW2tMYVVP6IEBIlEoBRWIrKgFSuApUtjd06WLuUVXGQtar9HGP39g5+x8YXC5xLp6Ylddzrp6enB1VdfjeLiYrjdbhx55JFobGzEnj17Mnrd3IJcFJQXRF0e7nK7UFBeEDGO9oUXXoj33nsv/Hj58uWYOXNmRu9PmeM92lpLJ4W1qcmQRbIVEQKCRJJOmurh94qqnY+I7GfFCuDWW5lJQmJQ+z3CyO8f/IyNL3RPdgzBgIzuLZ9g78f7kbd9FErnHat7cNy//vUvzJ49G9OnT8dDDz2EadOm4Z133sHSpUvxf//3f3j55ZcxYcIE1a+fW5CL0eNHh1PIXW4X3OPcUZeL5+bmIjc3N86rkFnY0daa01JYzQjCsnpAkEjMTGFliFpiZtQPt4k9mLEd3W7+eEziUPs9wqjvHxxpJb44neyO5/rQunIr/Lv2H5qyBR6vB7UttboOhfaDH/wAbrcbTz31VLijW1paipNPPhnl5eX4yU9+gt/97ncAgL1792LBggX4n//5H3g8Htx444249tprw681MDCApUuX4vHHH8f+/fsxa9Ys3HXXXTjppJOQk5eDN998E01NTdi8eTMkScIxxxyD//iP/8CsWbOwbt06NDU14dNPP8W6detw8803A0C4Q7527Vq88MIL2LVrF/73f/83/J4HDx6E1+vFr371K1x11VUZ14csy0l/FHASXjquNSelsPp8SkBITQ2wYIHyb1mZs+8bEo1ZKaxsO4mZUT/cJvbA7UgkPo60El+MK2U6nuvD+h+9flgnW+Hv9WN9/Xp0+Dp0WZRPPvkEf/3rX7Fo0aKos8lTpkzBJZdcgj/96U8I5U7feeedOPHEE/H666/jxhtvxOLFi/H0008DUDqo//Zv/4adO3fiySefxGuvvYZTTjkFZ511Fj755BMAwCWXXAKv14tXX30Vr732Gm644QZkZ2dHLdeFF16I6667Dscffzz6+vrQ19eHCy+8ENdccw1aW1vRd9gPNE8++ST27duHhoaGjOtjsH8Qu97ahT3v7sGnXZ9iz7t7sOutXRjsH8z4tUXFjrbWFi1KfubA5VLKiYwhHfZQVaXcYxbv10ZJUhI8q6q0mQ9g20nGjPrhNrEHbkcie8jkM9buxo2L6GwHAzJaV26NXfbQbdqtTa0IBoKaL8r7778PWZZRWRn7jHllZSX6+/uxe/duAMBXvvIV3HDDDZg+fTquvfZa1NfX46677gIAtLW14a233sIjjzyCWbNm4ZhjjsGvf/1rjB8/Hhs2bAAAdHd3Y+7cuTj22GNxzDHH4Nvf/jZOOumkqPfNzc3FuHHjMGrUKEyZMgVTpkxBbm4uzjjjDFRUVOC+++4Ll127di2+/e1vY9y4cRnVxWD/IPo7+6NS0gPDAfR39ju2s82OttackMLKkA77MDqFlW0nMTPqh9vEHrgdieyDI63EF/qR4ZDuLZ9EncmOIAP+Hj+627sNWLgRb33o2Bu6dHr27NkRz8+ePRsdHcrZ9tdeew379u1DYWEhxo0bF/7r6upC56HbTZcsWYJrrrkGc+fOxe233x6eno5rrrkGa9euBQDs2rULTzzxRMaXjMuyDH+PP2EZf48fAo4onTF2tPVg9xTWdEI6yPqMTGFl20nMjPrhNrEHbkcie+FIK/EVFCi3YLrd2Ptxgk72Yfb27dV8MY4++mhIkoStW2OfUf/nP/+JgoICTJw4Me5rhDrhwWAQRUVF2LJlS8Tfu+++i6VLlwJQksTfeecd/Nu//Ruee+45HHfccXjsscfSWubLL78c//rXv/DSSy/h/vvvR1lZGaoyvDIidE92IoHhAIb3OW/EJYah6cXOKawM6dCf0WFGRqWwatV27BraZca+xf05NVZvc9yORPbDkVbiKygAxo9H3vZRALYkLZ5XlKf5IhQWFuLss8/GmjVrsHjx4oj7tHfu3IkHHngAl19+ebgz/fLLL0fM//LLL+PYY48FAJxyyinYuXMnRo0ahbKysrjvOX36dEyfPh2LFy/GxRdfjLVr1+Kb3/xmVDm3241AjCuYCgsLccEFF2Dt2rV46aWXcOWVV6pZ9QjJOtnplrMTdrT1ZNcUVoZ06MvnUy4BPfzslNerXEam5y/YRqSwatF2zKofI5ixb3F/Tk6ENsftSGRPHGklPklC6bxj4fF64O/1h+/JjiwDeLwelFaV6rIIq1evxhlnnIF58+bh1ltvjRjea+rUqfjlL38ZLvu3v/0NK1aswAUXXICnn34ajzzyCJ544gkAwNy5czF79mxccMEFuOOOO1BRUYEdO3bgySefxAUXXIDjjz8eS5cuRX19PaZNm4bt27fj1Vdfxbe+9a2Yy1VWVoauri5s2bIFXq8XeXl5yMnJAaBcPn7uueciEAhg4cKFGdfByHG+My1nJ7x0nNLHkA792D3MKNO2w/rRft/i/pyYKG2O25GIHCjLlYXallrlwcjD36HHtc21uo2nfcwxx2Dz5s0oLy/HhRdeiPLycnz3u99FTU0NXnrppYgxtK+77jq89tprOPnkk3HLLbdg5cqVmDdvnrKokoQnn3wSZ555Jq666ipMnz4dF110EbZt24bJkyfD5XJhz549uPzyyzF9+nQ0NDTg61//engYr5G+9a1voba2FjU1NZg0aRIeeuih8HNz585FUVER5s2bh+Li4ozrwD3OnbQTHRrqy2kkWcA70/1+P/Lz8zEwMACPx2P24jhT6MsnEBm+E/qS5/T7h9QIBJRheOLdZylJyhfpri6xLxtT23ZYP8q/euxb3J9jE63NcTsSkYD279+Prq4uTJs2DaNHj1b1Gh2+DrQ2tsK//YtQLk+JB7XN+o6jLaLPP/8cxcXF+MMf/oA6jT4TQqnj8RSUFyC3IDfu81aTqE2m0w/lGW1ShyEd2nNKmJHatsP60W/f4v4cm2htjtuRiByqsq4SjdsasbBtIeoerMPCtoVo7GpkJ/swwWAQO3bswE033YT8/Hycf/75mr12bkEuCsoLos5su9wu4TrZWuI92npSG55j9dCdEIZ0aMtJYUZq2g7rx5qBeKJJ5/hqdptT81nglO1IJMp3pUw5ZT01kOXKQll1mdmLYVnd3d2YNm0avF4v1q1bh1GjtO0G5hbkYvT40eEU8tDl4lK8W5ocgB1tvagNzxEhdOdwDOnQjtPCjNJtO6wfe76nkdI9vprZ5jL5LLD7diQS7buSWk5ZTzJEWVmZ7mNZS5KEnLwcXd9DJLxHWw+h++RGVm2y++TUzkf2ELoftLc3ug0A1rsf1GisH8qEmuOrWW2OnwVE8Tll/3DKekKbe7SJtMR7tK0qEFB+fYz1pSw0ralJKafFfGQfLpfyKzUQnRwcetzc7NxOJOuH1FJ7fDWjzfGzgCg+p+wfTllPIptjR1trasNzRAvdIX0wzCgx1g+pkcnx1eg2x88Covicsn84ZT2JbI73aGtNbXiO2aE7RjMj3EOUQBGGGSXG+iHA2FAzI9uc0z4LSB+ifN6lyyn7h1PWk8jm2NHWmtrwHCcFPZkR7iFaoAjDjBJj/TibGaFmRrU5J30WkD5E+7xLh1P2D6esJ5HNMQxNa2rDc5wS9GRGuIeDAkWIbE+kUDM1RFpWsh67f945Zf9wynoewjA0shqGoVmV2vAcJwQ9mRHuwUARIvsQKdRMLZGWlazFCZ93Ttk/nLKe5AiSJOHxxx/X7fWXL1+OmTNn6vb6mWBHWw9qw3PsHvRkRrgHA0WI7EOkULNMiLSsZB1O+bxzyv7hlPUU2BVXXAFJkqL+amtrU36N6upqNDU16beQOnrnnXfQ0NCASZMmIScnB8cccwxuuukmfP7554Yux/XXX49nn302/PiKK67ABRdcYOgyxMN7tPWiNjzHzkFPZoR7aPGedg2VGckp60niEinULFOZLCvDJvVh9XUUNUBLTb2KtC9nwoT1DAaC6G7vxt6+vcgrykNpVSmyXIKclzNhH62trcXatWsjpuXk5Gj6HrIsIxAIYNQo63TbXn75ZcydOxdz587FE088gcmTJ+Pvf/87rrvuOjz33HNoa2uD2+02ZFnGjRuHcePGGfJeaZMFNDAwIAOQBwYGzF4USkdbmywrv6kn/mtrs857PvqoLHu9kWW9XmW6nThlPUlsZhxDRGPGvuyE44cI6yji/iFCvTrI1ke3yqu8q+TlWB7+W+VdJW99dKuu7zs4OChv3bpVHhwcVP8iJrSlhQsXyvPnz4/7fFtbm5ydnS2/8MIL4Wm//vWv5cLCQnnHjh3ywoULZQARf11dXXJbW5sMQG5tbZVPPfVUOTs7W37uuefkYDAo33HHHfK0adPk0aNHyyeeeKL8yCOPRLxfaL6ZM2fKo0ePlmtqauSPPvpIfvLJJ+Vjjz1WzsvLky+66CL5s88+C8+X7HVHCgaD8nHHHSfPmjVLDgQCEc9t2bJFliRJvv3228PTAMhr1qyRa2tr5dGjR8tlZWXy+vXrI+bbvn273NDQII8fP16eMGGCfP7558tdXV0R6/alL31JHjNmjJyfny+fccYZ8rZt22RZluWf//zn8kknnRT+/5F12tbWJtfU1Mg/+MEPIt7z448/lt1ut/zss89GrWOiNplOP5QdbTLOwYOyXFiY+AtAYaFSTsv39HplWZJiv58kyXJJSez3fPTR2PNJkvJnly8CTllPEl8m+7MTmLEvO+H4Ico6irZ/iFKvDrH10a3ycml5RCd7OZYr06Tluna2M+5om9SWknW0ZVmWly5dKh955JHyp59+Km/ZskXOycmRfT6fLMuy/Omnn8qzZ8+Wv/Od78h9fX1yX1+ffPDgwXCH+cQTT5Sfeuop+YMPPpA//vhj+cc//rF87LHHyq2trXJnZ6e8du1aOScnR964caMsy190tE8//XT5xRdflF9//XX56KOPlufMmSOfc8458uuvvy6/8MILcmFhYURHONnrjvT666/LAOQHH3ww5vNnn312uOMry0pHu7CwUP79738vv/vuu/JPf/pT2eVyyVu3Km3qs88+k4855hj5qquukv/xj3/IW7dulRcsWCBXVFTIQ0ND8oEDB+T8/Hz5+uuvlz/44AN569at8rp16+QPP/xQluXIjvbevXvlhoYGuba2NlynQ0ND8gMPPCAXFBTI+/fvDy9XS0uLXFZWJgeDwah1YEebHW3xmNHRluUvDsAjD8KJDsChLyzxltNqX1jUcsp6kn2o2Z+dwIx92QnHD9HWUZT9Q7R6tbnAwUDUmeyRne1VJavkwMFA8hdTIaOOtoltaeHChbLL5ZLHjh0b8feLX/wiXGZoaEg++eST5YaGBvn444+Xr7nmmojXmDNnjtzY2BgxLdRhfvzxx8PT9u3bJ48ePVretGlTRNmrr75avvjiiyPme+aZZ8LP33bbbTIAubOzMzzte9/7njxv3ryUX3ekhx9+WAYgv/HGGzGf/+EPfyjn5uaGHwOQ/9//+38RZU477TT5+9//vizLsvzf//3fckVFRUSHd2hoSM7NzZX/+te/ynv27JEBxO34H97RluXYP4Ds379fnjBhgvynP/0pPG3mzJny8uXLY76mVh1tQW66IFtobwf27ElcZs8e7YNa1ASKOCVUxinrSfbBgKDYGDapD9HWUZT9Q7R6tbnu9m74t/vjF5ABf48f3e3dxi1UqkxuSzU1NdiyZUvE3w9+8IPw8263G/fffz8effRRDA4Oorm5OeXXnjVrVvj/t27div379+Pss88O35M8btw4/PGPf0RnZ2fEfCeeeGL4/ydPnowxY8bgqKOOipi2a9eutF83VbIsQxqRlj979uyoxx0dHQCA1157DR988AHy8vLC7z9hwgTs378fnZ2dmDBhAq644grMmzcP5513HlpaWtCXZtZETk4OLr30UvzhD38AAGzZsgVvvvkmrrjiClXrmCrr3FVP9mdmUEu6gSKihsqkyynrKSKrBy+ZyYwgJKsHjIkaNml1Iq5jXR1w7rnAmjVAZydQXg4sWgQYFEyUEhHrNROZHD/UzpvGfHv79qa0KKmWM5TKtiTLMob3DSMwHIDL7YJ7nDuqc5iKsWPH4uijj05YZtOmTQCATz75BJ988gnGjh2b8muHBINBAMATTzyBqSN+SBsZvpadnR3+f0mSIh6HpoVeL53XDZk+fToApZMea1itf/7znzjmmGPirtfhyxFahlNPPRUPPPBAVJlJkyYBANauXYsf/vCHaG1txZ/+9Cf89Kc/xdNPP43TTz896fuEXHPNNZg5cya2b9+OP/zhDzjrrLNw5JFHpjy/Gmmf0X7hhRdw3nnnobi4OOm4aN/73vcgSVLUrzdDQ0O49tprMXHiRIwdOxbnn38+tif6NYrsoahI23LpcrmA6mrg4ouVfxN9UJm9rEZxynqKxucDysqAmhpgwQLl37IyZTop0tmfM2XG9kj3Pc3Yl51w/BBxHX0+pXO9eDGwerXyb3m5tY4fItarWpkcP9TOm+Z8eUV5Ka1KquUMpaItDfYPYtdbu7Dn3T34tOtT7Hl3D3a9tQuD/YOaL15nZycWL16M3//+9zj99NNx+eWXhzu3gHLGO5DC2PbHHXcccnJy0N3djaOPPjrir6SkRPXyqXndmTNn4thjj8Vdd90VsS4A8Oabb+KZZ57BxRdfHDH95Zdfjnp87LHHAgBOOeUUvP/++zjiiCOiliE/Pz88z8knn4wbb7wRmzZtwgknnIAHH3ww5vLFq9MZM2Zg1qxZ+P3vf48HH3wQV111VfIKylDaHe3PPvsMJ510ElavXp2w3OOPP45XXnkFxcXFUc81NTXhsccew8MPP4wXX3wR+/btw7nnnptSQyOBVVUpl6/F+8VQkoCSEqWc2URa1kw4ZT1F4vMB9fXRl8L19irTrfRl2QnM2B5q3tOMfdkJxw/R1lGU44do9apWJttD7bwq5iutKoXH6wHindCVAE+JB6VVpfGX1yxptqXB/kH0d/YjMBzZ5wgMB9Df2Z92Z3toaAg7d+6M+Pv444+V1wwEcNlll+Gcc87BlVdeibVr1+Ltt9/GypUrw/OXlZXhlVdewbZt2/Dxxx9HdVxD8vLycP3112Px4sW499570dnZiTfeeAO//e1vce+996a1zJm+riRJ+K//+i9s3boV3/rWt/D3v/8d3d3deOSRR3Deeedh9uzZUWODP/LII/jDH/6A9957Dz//+c/x97//Hf/+7/8OALjkkkswceJEzJ8/H+3t7ejq6sLzzz+PxsZGbN++HV1dXbjxxhvx0ksv4cMPP8RTTz2F9957D5WVlTGXr6ysDP/4xz/w7rvv4uOPP8aBAwfCz11zzTW4/fbbEQgE8M1vflN1vaUs6V3cCQCQH3vssajp27dvl6dOnSq//fbb8pFHHinfdddd4ec+/fRTOTs7W3744YfD03p7e+WsrCy5tbU1pfdlGJrARAlqkWWxljUTTllPETAgyFpECxgzY192wvFDlHUU7fghSr2qlcn2UDtvBu8ZTh0fmTwuUup4krYUDAblnW/ulHtf7Y37t/PNnTFTqGOJNTwXALmiokKWZVm++eab5aKiIvnjjz8Oz/P444/Lbrc7HCT27rvvyqeffrqcm5srA5HDe/X390e8XzAYlFtaWuSKigo5OztbnjRpkjxv3jz5+eefl2VZjjnf2rVr5fz8/IjXGRkelux14/nHP/4hf+tb35ILCwvl7Oxsuby8XP7pT38aMXSYLCv9xd/+9rfy2WefLefk5MhHHnmk/NBDD0WU6evrky+//HJ54sSJck5OjnzUUUfJ3/nOd+SBgQF5586d8gUXXCAXFRXJbrdbPvLII+Wf/exn4aHFRq7Prl275LPPPlseN26cDCjDe4Xs3btXHjNmjLxo0aKE62aJ1PFYHe1AICDX1NTIzc3NsizLUR3tZ599VgYgf/LJJxHznXjiifLPfvazmO+zf/9+eWBgIPzX09PDjrbIYo11WFJizQ9VkZY1E05ZT6sTcRxcOzNje2T6nmbsy044foiwjiIeP0SoV7Uy2R5q582wDcQcR7tE4HG0R7Sl/f79CTvZob/9/v0J3ohE1t3dLWdlZcmvvfZawnJadbQ1D0O74447MGrUKPzwhz+M+fzOnTvhdrtRUFAQMX3y5MnYuXNnzHluu+023HzzzVovKpnFjCAjtURa1kw4ZT2tTouAIIaoaUfEgDEz9uVM3tOMkCg1RDhGihgwVleH4LnnYdeaRzHc+SHc5UfiiEXfQpY7O/m8VpfJ9lA7b4ZtoLKuEhXzK9Dd3o29fXuRV5SH0qpSZLkEGKQohX105OXi8aRajsRx4MAB9PX14YYbbsDpp5+OU045xZD31bSj/dprr6GlpQWvv/562sl9shwdBR9y4403YsmSJeHHfr8/oxv/yQJCQUYiEGlZM+GU9bSyTAOCfD6gsTHy3jyvF2hpsc6wPiIRNWDMjH1ZzXtm0l7NaOtWP0YKGDDW4etAa2PrYUNLvQvPytWobalFZV3s+y+Fkcn2UDuvBm0gy5WFsuqy1F7HapLsoy53aj+MpVqOxPG3v/0NNTU1mD59OjZs2GDY+2r6E1V7ezt27dqF0tJSjBo1CqNGjcKHH36I6667DmVlZQCAKVOmYHh4GP39/RHz7tq1C5MnT475ujk5OfB4PBF/RES2k0lAkCghSCIxK2CssDBxmcJChkSxrUcTLGCsw9eB9fXro8Zv9vf6sb5+PTp8HSYtmUYy2ZfVbkvB2oDR3OPcyBqVuOuTNSoL7nEWGgqPNFFdXQ1ZlvHuu+9ixowZhr2vph3tyy67DP/4xz8iBm0vLi7G0qVL8de//hUAcOqppyI7OxtPP/10eL6+vj68/fbbOOOMM7RcHCIisbhcyhk5IPqLUuhxc3P05aqBgHJ2T5ajXzM0ralJKUepU7s9KLFM2ivbenwCtddgIIjWxlYlOmqkQ9Nam1oRDMROYLY9tdtSoDZA5ARpd7T37dsX7kQDQFdXF7Zs2YLu7m4UFhbihBNOiPjLzs7GlClTUFFRAQDIz8/H1Vdfjeuuuw7PPvss3njjDVx66aWYMWMG5s6dq+nKEREJp64O2LABmDo1crrXq0yPdVlse3v02b3DyTLQ06OUo/So2R6ZaG8H9uxJXGbPHrG3ZSbtlW09MaPbq0rd7d1RZ7IjyIC/x4/u9m7jFkprme7LarelIG0gFjnWD2gaGt43jODBxD/eBA8GMbxvWNflIOvTqi2mfY/25s2bUVNTE34cund64cKFWLduXUqvcdddd2HUqFFoaGjA4OAgzjrrLKxbtw4u/sJGqWDYE9ldusFLIoYgicTIICwnbEszQqIOZ/fPkLo64NxzgTVrgM5OoLwcWLQIcFvncti9fXs1LZc2I9qAFm1V7bFHsJC50Pf/4eFh5Obm6vY+DEOjVA0PKz+2ZNo3TbujHbrGPVXbtm2LmjZ69GjcfffduPvuu9N9e3I6hj2RU6QTvCRgCJJwjArCcsK2NCMkKsQJnyGx1nHlSkutY15Rnqbl0mJUG9BqX1Zx7BEtZG7UqFEYM2YMdu/ejezsbGRl6ZNyfvDQf6mU279/vy7LQNYXDAaxe/dujBkzBqNGZZYbLsl6X6ehA7/fj/z8fAwMDDAYzUlCATgjm2zoviOLXxJFpJtAACgrU8KgYh3SJUn5ItnVZa8zd3bkhG2ZyTpmMq8TPkMEWcdgIIiWshb4e/2x79OWAI/Xg8auRm2HljKyfkzal0Mhc1H1emgVGzY0WLKzPTw8jK6uLgSD+t2XL8sy9vbuTXjvf5YrC3lT89IePYnsJSsrC9OmTYM7xpVA6fRD2dEmMYQ+sOLdm2eHL59EmQh9gQQiv9RZ7As2pcAJ2zKTdVQzrxM+QwRbx3CHEIjsFOrVITSjfgzel8M/YMS7/12vHzA0EgwGw5fs6qXzqU78X+P/KQ9itLuvt3wd5eeU67oMZH1utzvulRXsaJP9bNwIHJYNEFdbm7XHOSXSU6xLIktKlJRZ0TtmTuOEbZnJOqY7rxM+QwRcx+hLnAFPiQe1zTpc4mxW/Ri4L2/buA331tybtNzCtoXijpWtAUPbHdlOOv3QzC48J2uxc8CLEwKCSH923kcAY0O7tGD37ZEJ0balGpmsIwMDowm4jpV1laiYX4Hu9m7s7duLvKI8lFaV6nO21az6yXBfDgaCKdeP6SFzgjC03ZGjsaNtF3YPeHFCQBDpy+77SIhRoV2Zcsr2yIQo2zITmawjAwMjCbqOWa4sY86umlk/Ktt5zDOvXk/cUDNTQ+YEY1i7I0fjpeN2IEj4SUacEBBE+nHCPiISbg8ymhM+Q5ywjpkQrH7UhJqZFjJH5CDp9EO5l4kuEFDOCsX60AhNa2pSyonM5VLOdAFffBkPCT1ubrbEhyNZjFP2EVFwe5AZnPAZ4oR1zIRA9RMMBNHa2Bq7s3xoWmtTa1R6dpYrC7UttcqDkaHZhx7XNteyk01kEO5pomtvj5+gCShfXHt6lHKiq6tTznRNnRo53evlGTCKz0n7iAi4PcgsTvgMccI6ZkKQ+ulu746fHA4AMuDv8aO7vTvqqcq6SjRsaIBnauSZNo/XY9mhvYjsivdoW1E6AUEChp9kxAkBQaQtp+0jVsftoT+GzMXnhM8QJ6xjJgSon0xDzSrrKnHMucdg85rN+KTzE0won4BZi2ZhlJtf+82STqidyJyynqniHmc16QYECRp+khEnBASRdpy4j1gZt4e+GDKXnBM+Q5ywjpmweP1kGmoWK0TtpZUvxQ1RI32lG2onKqesZzoYhmYlagKCBAv3IDIc9xFr4fbQD0PmiGwhk1AzNSFqpB+nbA+nrCfAMDQxqQ0IEijcg8gU3EeshdtDHwyZI7INtaFmakPUSB9O2R5OWU812NG2ikwCggQJ9yAyDfcRa+H20B5D5ohsRU2oWSYhaqQ9p2wPp6ynGrxH2yoyDQgSINyDyFTcR6yF20NbDJkjsp3KukpUzK9IOVwq0xA10pZTtodT1lMNdrStggFBRPqzeACO4zhle6hNAU9nPn6G6I9p7mSCLFcWyqrLUiqbaYiaWeyaVC3q9kiXU9ZTDXa0raKqSrlsMllAUFVV7PmZNEtEZD1qj83pzpfpZwglxs9YEkBpVSk8Xk/SELXSqlLDly0eOydVi7g91HDKeqoh/s9FdpFJQFAoaXbk/Xm9vcp0n0/zxSUioiTUHpvVzMeQOf3wM5YEoTZEzSyhpOqR9/f6e/1YX78eHb4Ok5ZMG6JtD7Wcsp5qcHgvq4n1q3lJifIFKdav5qGhcuKF4HCoHCIi46k9Nmd6TE/3M4QS42csCSjmWeISD2qbrXOWODyEWbwQrQRDmIlGhO2hBaesZzr9UHa0rSid+8A2bgRqapK/ZlubM+6FJCKyArXHZi2O6byXWDv8jCVBWf2+520bt+HemnuTllvYtjDle9StzOrbQytOWM90+qG8R9uK0gkIYtIsEWmFHTTtqD02a3FMd0rInBH4GUuCSidEzQxOS6q2+vbQilPWM1XsaIuOSbNEpAWGPWlL7bGZx3Rr4fYg0gWTqskJ7HUu34lCSbMjw29CJEm5P49Js0QUD8OetKf22MxjurVwexDpIpRUHRWeFSIp9/c6Mama7IMdbdExaZaIMhEIKGeyY8V1hKY1NSnlKHVqj808plsLtweRLphUTU7A1msHdXXAhg3A1KmR071eZTov+ySieNrb4ycqA0pnu6dHKUfpUXts5jHdWrg9iHRRWVeJhg0N8EyNDJTyeD1o2NBgq6RqciamjtsJg4zIDGx3YnvoIWDBguTlHnwQuPhi/ZfHqjJp52rn5b5lLdweRLpwQlI12QdTx52KSbNkNAZoiY9hT8ll2s7VHpt5TLcWbg8iXTCpmuyKPxcRkToM0LIHhj0lxnZOREREKrCjTUTpY4CWfTDsKT62cyIiIlKJHW0iSh8DtOyFYU+xsZ0TERGRSrxHm4gU6QT99PWl9pqJyjFYyFrq6oD587lNDqdFOyci22BoV2KsH6JI7GgTUfphT5kGaDFEzZoY9hSJQXFEdEiHrwOtja3wb/eHp3m8HtS21HIYKrB+iGLh8F5EThcKexp5KAjdnxvr0uFAACgrUwKhYh1CJEnpOHd1RZ8RVfN+RGbIpJ0TkW10+Dqwvn49MPIwcOhjy+ljPrN+yEnS6Yfyeg4iJ1Mb9qQ2QIvhUiQSBsUROV4wEERrY2t0JxIIT2ttakUwEDR0uayC9UMUHzvaRE6WSdiTmgAthkuRaBgUR+Ro3e3dEZdDR5EBf48f3e3dxi2UhbB+iOLjPdp2wnApSlemYU/pBmgxXEp/Ih0HRFlWBsUlZ8a2FKX9kOWkE9q1t29vSq+Zajm7Yf1YF8PpzMeOtl0wXIrU0CLsKZ0ALYZL6Uuk44BIywowKC4RM7alaO2HLCPd0K68oryUXjfVcnbD+rEmhtNZA8PQ7IDhUqSW0WFPDJfSj0jHAZGWlRIzY1uy/ZBKakK7goEgWspa4O/1x74PWVI6MI1djY48W8j6sR6G0+mLYWhOwnApyoTRYU8Ml9KHSMcBkZaVEjNjW7L9kEpqQ7uyXFmobalVHoz42Ao9rm2udWwnkvVjLQynsxa2etExXIoyZXTYE8OltCfScUCkZaXEzNiWbD+kUiahXZV1lWjY0ADP1MizVx6vh2cHwfqxEobTWQvv0RadqOFSDLGxFqPDnhgupS2zjwPp7M9mLytpx4xtyfajLxt/Nmca2lVZV4mK+RXChEsZHYQlWv2oZfWAMYbTWQs72qITMVyKITbWZHTYE8OltGPmcSDd/VnEYxbFZsa2ZPvRj80/m7UI7cpyZaGsukyjJdKPWUFYotSPWiIEjDGczloYhiY60cKlGGJDpD2zjgNq9mfRjlkUnxnbku1HHw74bHZKaBeDsPQhSr06pZ2biWFoTiJSuBRDbIj0YcZxQO3+LNIxixIzY1uy/WjPIZ/NTgjtYhCWPkSqVye0c5Gwlu1AlHAphtgQ6cfo40Am+7MoxyxKzoxtyfajLQd9Nts9tItBWPoQrV7t3s5Fwnu09WRkqIgI4VIMsSHSl5HHgUz3ZxGOWZQaM7Yl2492HPbZbOfQLgZh6UPEerVzOxcJO9p6MSNUxOrhUgyxIdKfUccBLfZnqx+zKHVmbEu2H2048LPZrqFdDMLSh6j1atd2LhL+rKGHUKjIyEuxenuV6T6fOctltqoq5ceGkffVhUgSUFKilCMia+P+TGQP3Jdto7SqFB6vJ/re3BAJ8JR4UFpVauhyiY71Smqxo601h4SKqMIQGyL74P5MZA/cl22DQVj6YL2SWmwRWnNQqIgqDLEhsg/uz0T2wH3ZNhiEpQ/WK6nBcbS19tBDwIIFycs9+CBw8cX6L49VGRkUR0T64v5MZA/cly0nGAiqCrQyej6nYP1QOv1QhqFpzYGhIqowxIbIPrg/E9kD92VL6fB1oLWxNWJoKY/Xg9qW2qRnUNUEYWXyfk7BgDFKB3+C0RpDRYiIiIgoAx2+DqyvXx81frO/14/19evR4esQ+v2InIAdba0xVISIiIiIVAoGgmhtbAVi3dx5aFprUyuCgaCQ70fkFOxo64GhIkRERESkQnd7d9SZ5Qgy4O/xo7u9W8j3I3IK3qOtl7o6YP58hooQOR3DhYjIaCqPOwx6soa9fXs1LWe19yNyCna09cRQESJn8/mAxsbIIf+8XuX2El7ZQkR6UHncYRCWdeQV5WlazmrvR+QU/JmSiEgPPh9QXx/5ZRcAenuV6T6fOctFRPal8rjDICxrKa0qRW5hbsIyuYW5KK0q1ez9PF4PECfHFxLgKfFo9n5ETsGONhGR1gIB5YySHCNZJjStqUkpR0SkBZXHHQZhUZYrC7UttcqDkZ3tQ49rm2t5GwFRmrjHEBFprb09+ozS4WQZ6OlRyhERaUHlcYdBWNbT3d6NwT2DCcsM7hnUdJtU1lWiYUMDPFM9EdM9Xg8aNjTw9gEiFXiPthUxPEkfrFcyqg309WlbjqIZvT/z+EFWp/K4I2oQlp2D28zaJpV1laiYX2HbehWVndu63bGjbTUMT9IH65WMbANFRdqWo0hG7888fpAIVB53RAzCsntwm5nbJMuVhbLqMs1fl9Sxe1u3O0mWY93MY21+vx/5+fkYGBiAx+NJPoMoQiEmIzeJdOgGGY7BrQ7rlYxuA4EAUFamBBDFOsRKktJR6+riWdF0Gb0tefwgUag87gQDQbSUtcDf6499n7akfLFv7Gq0xFm0UHBb1LIe2iXtcJmzaNuE9OGEti6idPqh3DutguFJ+mC9khltwOVSznYCX3TIQkKPm5vZyU6X0duSxw8SicrjjkhBWE4JbhNpm5A+nNLW7Y57qFUwPEkfrFcyqw3U1SlnO6dOjZzu9fIsqFpGb0seP0g0Ko87ogRhOSm4TZRtQvpwUlu3M96jbRUMT9IH65XMbAN1dcD8+QzR0orR25LHDxKRyuOOCEFYoga3qSXCNjkcQ7u0Y2Zb53bUDjvaVsHwJH2wXsnsNuByAdXV+ry20xi9Lc1uO0RqqTzuWD0IS8TgtkxZfZuEMLRLW2a1dW5HbfHnCauoqlIu7Rp5X1WIJAElJUo5Sh3rldgG7MPobcm2Q2QppVWl8Hg90fcth0iAp8SD0qpSQ5fL6UKhXSMvdfb3+rG+fj06fB0mLZm4zGjr3I7aY0fbKhiepA/WK7EN2IfR25Jth8hSGBJmPQzt0ofRbZ3bUR88ElkJw5P0wXoltgH7MHpbsu0QWQpDwqyFoV36MbKtczvqg+NoW1EgwPAkPbBeiW3APozelmw7RJbCwCZreOuht+Bb4Etaru7BOsy4eIYBS2Q/RrR1bsfUpdMPZRiaFTE8SR+sVxKpDajt2DmlQ2j0thSp7RA5gCghYXbnxIA6oxnR1rkd9cGf/oiIrMbnA8rKgJoaYMEC5d+yMmW6HvMRERGpEA7tSoABddbHoEF9sKNNRGQlPh9QXw9s3x45vbdXmR6v06x2PiIiIpWyXFk44eITEpY54aITeFm/xTFoUB+sLSIiqwgEgMZGIFZ0RmhaU5NSTov5iIiIMhAMBPH2Q28nLPP2w28zrVoADBrUHu/RJiKyivb26DPSh5NloKdHKXf4/cJq5yMiIspA0rRqfJFWzXvqra+yrhIV8ysYNKgRdrRJPE4JeyLn6etTV07tfGbjvpwY64cMxiRvSrcN7O3bm9LrplqOzMegQe2wo01i8fmUS2QPP3vn9QItLRzPlsRXVKSunNr5zMR9OTHWDxmsw9eB1sbWiLOTHq8HtS21vGTUIdS0AaZVE8XHcbRJHKGwp5FNVjqU0rBhA7+AktgCASUlvLc39v3WkqR0trq6Is9sqp3PLNyXE2P9kME6fB1YX78eGHn4ONTkeH+m/altA8FAEC1lLfD3+qPnPTS/x+tBY1cjr44gW0inH8oWT2Jg2BM5gculnLEEvuhUhYQeNzdHd5bVzmcG7suJsX7IYMFAEK2NrbE7SYemtTa1MszKxjJpA0yrJoqPrZ7EkE7YE5HI6uqUM5ZTp0ZO93oTn8lUO5/RuC8nxvohgyUNs5K/CLMie8q0DTCtmig23qNNYhA17IlIjbo6YP789IOw1M5nJO7LibF+bMfqAWMMs7KndNqdFm2AadXWY/VjjxOwo01iEDHsiSgTLpe6objUzmcU7suJsX5sRYSAMYZZ2U+67U6rNsC0ausQ4djjBPxZg8RQVaVcAjvy/tMQSQJKSpRyRGRd3JcTY/3YRihcauQluf5eP9bXr0eHr8OkJYtUWlUKj9cTfX9tiAR4SjworSo1dLlIHTXtrrSqFLmFuQlfN7cwl21AEKIce5yAHW0Sg0hhT0QUH/flxFg/tiBSwBjDrOxDpHZH+mAbsBYeNUkcooQ9EVFi3JcTY/0IT7SAMYZZ2YPadtfd3o3BPYMJX3twz6Bl2ivFJ9qxx+54jzaJRYSwJ6cJBLg9KH3clxPLpH64T5pOxIAxhlklZ/VwKbXtTsT2SrFxW1oLO9okHquHPTmJz6eM+Xv4cERer3LpK8+6UTLclxNTUz/cJy1B1IAxhlnFJ0K4lNp2J2p7pWjcltZinZ/hiEgsPh9QXx895m9vrzLd5zNnuYicivukZTBcyl5ECZdS2+4YiGcf3JbWwo42EaUvEFDOmskx0jZC05qalHJEpD/uk0S6cEK4FAPx7IPb0lpYy0SUvvb26LNmh5NloKdHKUdE+uM+aSkMl7IPkcKlMml3DMSzD25L6+A92kSUvr4+bctRNAZaUTrM3icd0F7TCcJiIJF9iLQtM11WBuLZB7elNaRd2y+88ALOO+88FBcXQ5IkPP744+HnDhw4gB/96EeYMWMGxo4di+LiYlx++eXYsWNHxGsMDQ3h2muvxcSJEzF27Ficf/752J7ol3gispaiIm3LUSSfDygrA2pqgAULlH/LyniPLcVn5j7pgPba4etAS1kL7q25F74FPtxbcy9aylri3pvLQCL7EGlbarGsoUC8GRfPQFl1GTtmAuO2NF/aNf7ZZ5/hpJNOwurVq6Oe+/zzz/H666/jpptuwuuvvw6fz4f33nsP559/fkS5pqYmPPbYY3j44Yfx4osvYt++fTj33HMR4L1jRGKoqlKSjKU4aRuSBJSUKOUoPQy0IjXM2icd0F7VBGExkMg+RNqWIi0rkRNIshwrOSXFmSUJjz32GC644IK4ZV599VV8+ctfxocffojS0lIMDAxg0qRJuO+++3DhhRcCAHbs2IGSkhI8+eSTmDdvXtL39fv9yM/Px8DAADweT9LyRKSD0BdsIDKAKfRFf8MGDieUrkBAORMY7wofSVI6U11dtrsslzRg9D7pgPYaDATRUtYS/x5dSbnvsbGrMepsUaiDDiAySOvQ5uC9kuIQaVuKtKxEIkqnH6r7NQQDAwOQJAnjx48HALz22ms4cOAAzjnnnHCZ4uJinHDCCdi0aVPM1xgaGoLf74/4IyKT1dUpX9ynTo2c7vWyk60WA60oE0bvkw5or5kEYTGQyD5E2pYiLSuR3ekahrZ//37ccMMNWLBgQbjHv3PnTrjdbhQUFESUnTx5Mnbu3BnzdW677TbcfPPNei4qkbWIEixUVwfMny/GsorA7EArEp+R+6QD2ivDpSgkk22ZTpCe2ctKZHR7tTPdOtoHDhzARRddhGAwiDVr1iQtL8sypDj3lt14441YsmRJ+LHf70dJSYlmy0pkKT6fMh7u4WeKvF6gpcWaZ4ldLqC62uylsAeGzJEWjNonHdBetQyXIvGp2ZYdvg60NrZGXBnh8XpQ21Kr69lltjtSw6z2ale6/Dxx4MABNDQ0oKurC08//XTE9etTpkzB8PAw+vv7I+bZtWsXJk+eHPP1cnJy4PF4Iv6IbMkBwUKUAEPmSCQOaK8Ml6JMqAnSIzIL26v2NO9ohzrZ77//Pp555hkUFhZGPH/qqaciOzsbTz/9dHhaX18f3n77bZxxxhlaLw6ROAIB5Ux2rHzC0LSmJqUc2ZPLpVy5AER3XkKPm5t5aT5ZgwPaa5YrC7UttcqDkZ3tQ49rm2t5WSVFCQaCaG1sjQwkCzk0rbWpFcFA0NDlIoqF7VUfaX8y7Nu3D1u2bMGWLVsAAF1dXdiyZQu6u7tx8OBB1NfXY/PmzXjggQcQCASwc+dO7Ny5E8PDwwCA/Px8XH311bjuuuvw7LPP4o033sCll16KGTNmYO7cuZquHJFQHBAsRClgyByJxAHtleFSpEYmQXpERmN71Ufa92hv3rwZNTU14cehe6cXLlyI5cuX43/+538AADNnzoyYr62tDdWH7hm76667MGrUKDQ0NGBwcBBnnXUW1q1bB5fAv3oLT5TwLTtzQLAQpciskDkeB0iNujoEzz0Pu9Y8iuHOD+EuPxJHLPoWstzZZi+ZZhguRenKNEgvxAnBVE5YR6vTqr1SpLQ72tXV1Ug09HYqw3KPHj0ad999N+6+++503570IFr4ll05IFiI0mB0yByPA6RSdHjOu/CsXG278ByGS1E6tAjSc0IwlRPWUQRatFeKxp+LnI7hW9bhgGAhsigeB0glhucQxZZpkJ4T9i0nrKMoGPyoD3a0nYzhW9bigGAhsiAeB0glhucQxZdJkJ4T9i0nrKNIGPyoD9aWkzF8y3ocECxEFsPjAKnE8ByixNQG6Tlh33LCOoqGwY/aS/sebbIRM8O3GLoUn1lBWORMDOEjlRieo7/hwWE8s/QZ7Hl/DwqPKcTcO+fCnetOOh/DpaxDTZCeE/YtJ6yjiBj8qC12tJ3MrPAthi4lZ3QQFjkXQ/hIJYbn6OvhCx7Gu39+N/z4X0/9C6/+9lVUzK/ARY9fFHc+hktZT7pBek7Yt5ywjqJi8KN2+POEk5kRvsXQJSJrYQgfqcTwHP2M7GQf7t0/v4uHL3g45nMMl7IHJ+xbTlhHIna0nczo8C2GLhFZD0P4SCWG5+hjeHA4bic75N0/v4vhweGIaQyXsg8n7FtOWEcitl6nMzJ8i6FLRNbEED5SieE52ntm6TOqyjFcyl6csG85YR3J2XiPNhkXvsXQJSLrYggfqZRJeA5Du6LteX+PqnIMl7IfJwRTOWEdzcLjq/nY0SaFEeFbDF0isjaG8JFKasJzGNoVW+ExhfjXU/9KqdzhGC5lT04IpnLCOhqNx1dr4M8aZByGLhERERjalcjcO+eqKsdwKSICeHy1Ena0yTgMXSIicjyGdiXmznWjYn5FwjIV8yuixtNmuBQR8fhqLTzakrEYukRE5GgM7UruoscvitvZTjSONsOliJyNx1dr4T3aZDyGLlGmAgG2Hz2wXq1FloGBvcDwAcCdDeTnxb/1RiNGhOcwtCs1Fz1+EYYHh/HM0mew5/09KDymEHPvnBt1JnskhktRJhigpQ+j6pXHV2thR5vMwdAlUsvnU8ZjP3yoOK9XuS2BV0Sox3q1lt39wAfdSic7xJ0NHF0KTCrQ5S2NCs9haFfq3LlufGP1N9Kej+FSpAYDtPRhZL3y+Got/ImKiMTh8wH19dHjsff2KtN9PnOWS3SsV2vZ3Q9s7YzsZAPK462dyvMaMzI8h6FdRNbDAC19GF2vPL5aCzvaRCSGQEA54yrHSPgITWtqUspR6liv1iLLypnsRDq7Y28vlYwOz2FoF5G1MEBLH2bUK4+v1sJaJiIxtLdHn3E9nCwDPT1KOUod69VaQvdkJzJ0QCmnETPCcxjaRWQdDNDSh1n1yuOrdfAebSI7ySTMyupBWH192pYjBevVWpJ1stMtlwKzwnMY2mU9DMJyJgZo6cPMes3o+GpCEKddsaNNZBeZhFmJEIRVVKRtOVKwXq3Fna1tuRSYGZ7D0C7rYBCWczFASx9m16uq46sJQZx2xp8piewgkzArUYKwqqqUzn+8X1UlCSgpUcpR6liv1pKfl7wTnXPoDINGGJ5DDMJyttKqUuQW5iYsk1uYy2NAmoQ7tpoQxGl37GgTiS6TMCuRgrBcLuUMOxDdKQw9bm621uXuImC9WoskKWcOEikv1fQyPobnOBuDsIj0IdSx1YQgTiewwJYlooxkEmYlWhBWXR2wYQMwdWrkdK9XmW6Vy9xFw3q1lkkFwHHl0We2c7KV6TpcvsfwHOdiEBZ1t3djcM9gwjKDewbZBlQQ5thqQhCnE/AebSLRZRJmJWIQVl0dMH++tYPbRMR6tZZJBcDE8YYG0jCczJkYhEVsA/oS4thqQhCnE7CjTSS6TMKsRA3CcrmA6mqzl8J+WK/WIknAeE/ychpiOJnzmB3YROZjG9Cf5Y+tJgRxOoGFfkohIlUyCbNiEBYRkaMJF9hEmmMbIDOCOJ2AHW0i0WUSZsUgLCIiRxMqsIl0wTZAZgRxOgH3GCI7yCTMikFYRESOJkxgE+mGbYDMCOK0O0mWxctp9/v9yM/Px8DAADweY+9fI7K0QEB9mFUm8xIRkfCCgaC1A5tId2wDBFk2NIhTNOn0Q9nRJiJzsGNPRERERAJJpx/K1HEiMp7PBzQ2Ro7h7fUq94vzUnUiIiIiEhyvBSEiY/l8QH19ZCcbAHp7lek+nznLRURERESkEXa0icg4gYByJjvWHSuhaU1NSjkiIiIiIkGxo01Exmlvjz6TfThZBnp6lHJERERERILiPdpEZJy+Pm3KMUiNyBYySThmOrI9HBw+iM1rNuOTzk8woXwCZi2ahVFufj0lm2GStyPxSEZExikqyrwcg9SIbKHD14HWxlb4t/vD0zxeD2pbapOO2ZvJvGQdTy97Gi+tegly4IvbiZ66/inMXjIbZ68428QlI9LQ7n7gg26lkx3izgaOLuXY1DbH4b2IyDiBADB5MrBnT/wyhYXARx/FPkMdClIbedgK/Sq8YQM720QC6PB1YH39emDkN5BDu3LDhoa4HeZM5iXreHrZ09h056a4z5+x9Ax2tkl8u/uBrZ3xnz+unJ1twaTTD+U1VkQkBgapEdlCMBBEa2NrdEcZCE9rbWpFMBDUdF6yjoPDB/HSqpcSlnlp1Us4OHzQoCUi0oEsK2eyE+nsjv29hmyBHW0iMk57e+Kz2YDyfKwwNAapEdlCd3t3xCXfUWTA3+NHd3v0F9RM5iXr2Lxmc8Tl4rHIARmb12w2aImIdBC6JzuRoQNKObIl3qNN4mEQlrgyCUPTKkhNjeFhYM0aoLMTKC8HFi0C3G7t38dpHLIvGx3aZfWQsL19qX2pjFUuk3kpOaPaziedn2hazuqsvk+STpJ1stMtR8JhR5vEwiAssWUShqZFkJoay5YBq1ZFXpJ+/fXAkiXAihXavpeTOGRfNjq0S4SQsLyiPNXlMpmXEjOy7Uwon6BpOSsTYZ8knbiztS1HwuHPaSSOUBDWyMuHe3uV6T6fOctFqauqUjpT8Ya0kCSgpEQpp+W8ai1bBtx5Z/R934GAMn3ZMu3ey0kcsi+HQrtGXurs7/Vjff16dPg6hH4/tUqrSuHxesLhZVEkwFPiQWlVqabzUnxGt51Zi2ZBciUe2khySZi1aJam72s0UfZJ0kl+XvJOdM6hob7IltjRJjEwCMseXC7ljCUQ3WEOPW5ujn35cCbzqjE8rJzJTmTVKqUcpc4h+7LRoV0ihYRlubJQ21KrPBjZ1zr0uLa5NualtZnMS7GZ0XZGuUdh9pLZCcvMXjJb6PG0RdonSSeSpAzhlUh5KcfTtjF+EpEYGIRlH3V1yjBcU6dGTvd6kw/Plcm86VqzJnlnLxBQylHqHLIvGx3aJVpIWGVdJRo2NMAzNXJoFI/Xk3R4rkzmpWhmtZ2zV5yNM5aeEXVmW3JJthjaS7R9knQyqUAZwmvkme2cbA7t5QDi/lRIzmJmEBZpr64OmD9fXRBWJvOmozPBuJdqyqVLbVCY1QPGHLIvGx3aJWJIWGVdJY459xhsXrMZn3R+ggnlEzBr0ayUzmJW1lWiYn6FEAFTVg/CMrPtnL3ibNTcWqOqDVidiPsk6WRSATBx/Bcp5O5Dl4vb8Uy2LDtjPVMk/pGMnMGsICzSj8sFVFcbP2+qysu1LZcOtUFhIgSMOWRfNjq0S8SQsFghUS+tfCnlkKgsVxbKqst0XMLMiRCEZXbbGeUehdObTtfltc1kdr2SxUgSMN6TvJzIdvcr44YfnqLuzlYun3fomXvr/KRKlIgZQVjkbIsWJT8T7HIp5bSkNihMlIAxh+zLRod2iRYS5oSQKFHWUbS2IwrWKznK7n5ga2f0UGXDB5Tpu/vNWS6TsaNNYjA6CIvI7VaG8EpkyRJtx9NWGxQmUsCYQ/Zlo0O7RAoJc0JIlEjrKFLbEQnrlRxDlpUz2Yl0dsf+jmJz3LtJHEYGYREByjjZS5dGd/pcLmW61uNoqw0KEy1gzCH7stGhXaKEhDkhJEq0dRSl7YiG9UqOELonO5GhA0o5h+E92pQZowObjArC0orVg6kouRUrgFtvVdLFOzuVe7IXLdL2THaI2qAwEQPGRNuXVTI6tEuEkDAnhESJuI4itJ3DWT1kLkS0enUMo0O77BwSlqyTnW45G2FHm9QzK7DJiCAsLYgQTEWpcbuVS6/1pjYoTNSAMVH25QwZHdpl9ZAwJ4REibqOVm87ISKEzB1OlHp1DKNDu+weEjZy6LJMy9kIf04jdewe2JQpp6wnaUttUJhDAsbIHkqrSpFbmJuwTG5hrtAhUQzC0o8oIXNkUUaHdjkhJCw/L3knOufQWXyHYUeb0ueEwKZMOGU9SXtqg8IcEjBGJAoGYelDpJA5siCjQ7ucEhImScrZ+UTKS+1zqXwaeISn9DklsEktp6wn6UNtUJhDAsZIfN3t3RjcM5iwzOCeQcsEhanFICztiRYyRxZjdGiXk0LCJhUAx5VHn9nOyVam2+ESeRV4jzalT9TAJqOCycxeT6Mx8E17aoPCHBIwZgZRgpdEYHZQmJHb0qwgLLu2V7PbDgnO6NAup4WETSoAJo63b+ibCuxoU/pEDGwyMphM1GAqNRj4ph+1QWEOCRgzkmjBS1ZnZlCYGdvS6CAsO7dXUUPmyCKMDu1yYkiYJAHjPcnLOYT4P2+S8UQLbDI6mMwpwVQMfCMHYPCS9swKCnPCtrT7OjJkjjJidGgXQ8Icjx1tSp9IgU1mBJM5IZiKgW/kAAxe0ocZQWFO2JZOWEeGzFFGjA7tYkiY4/FIROqIEthkVjCZ3YOpGPhGDsDgJf0YHRTmhG3phHUEGDJHGTI6tIshYY7Ge7RJPRECm8wMJrNzMJWogW8MbqM0MHhJX0YGhTlhW4q6jmqC2xgyRxkxOrRrUgFQmA/s2AUMDgG5OUDxEUAW247dsaNNmbF6YJPZwWR2DaYyu17VYHAbpYnBS/ozKijMCdtSxHXMJLiNIXOUESNDu3b3K+NpH54u3vORclk5z2jbGn9KIXtzSjCZ0USrVwa3kQoMXrIPJ2xL0dZRpOA2kZaVLGZ3P7C1M3oIr+EDyvTd/eYsFxmCHW2yNycEk5lBpHplcBupxOAl+3DCthRpHUUKbhNpWcliZFk5k51IZ3fs7ydkC+YfbYn0ZvdgMrOIUq8MbqMMMHjJPpywLUVZR5GC20RaVrKY0D3giQwdUMqRLfEebXIGOweTmSmTejUqmEzU4DbShUjBS05gdLiUE7alCOtoenCbLKcchGX6sjpBGttDKMk62emWI+Gwo03OYddgMrOpqVcjg8lEDG4jXYgUvOQEZoVLOWFbWn0dTQ1uixVM5c6OG0wlYsicUNLcHkIZOaRXpuVIONb5eZOInMHoYDLRgttIFwwzshZuD2crrSpFbmFuwjK5hbnaB7epCKYSLWROKHYPCsvPS96Jzjl0Bp9siR1tIjKOGcFkIgW3kS4YZmQt3B5kCpXBVCKFzAnFCUFhkqScmU+kvNQel8lTTDwqEJFxzAomEyW4jXTBMCNr4fag7vZuDO4ZTFhmcM+gtm0gg2AqUULmhOKUoLBJBcBx5dFntnOylemiXx5PCfEebRKPUSFalJp0toeZwWSiBeINDwNr1gCdnUB5ObBoEeB2m71UQmKYkbVwe5AWbSDtIL0Mg6lECJkzXTqhZk4KCptUAEwcrz7wLRgEduwCBoeA3Byg+Aggi+1OBOxok1iMDNGi5NLdHmYHk4kSiLdsGbBqVeQl9NdfDyxZAqxYYd5yCYphRtbC7UGZtgFVQXoaBFNZPWTOVOmGmjktKEySgPGe5OVG6uwBtn80Ytp2wDsZKC/RZtlIN/w5hMRhdIgWJaZmezCYLLlly4A774y+Tz0QUKYvW2bOcgnMtOAlionhUpRJG1AdpMdgKv2oCTXj9kguVic7ZPtHyvNkaexokxjMCNGi+NRuDwaTJTY8rJzJTmTVKqUckaAYLkVq20BGQXoMptKH2lAzbo/EgsH4neyQ7R8p5ciy+ClGYjArRItiy2R7MJgsvjVrkv9YFAgo5ShlpgQvUUIMlyI1bSDjID0GU2kvk1Azbo/4duzSthyZgvdokxjMDNFyCiNDzUQLJjMqgK+zU9tyaUo7XEgQTgvfEmU7MlzKeoxuO+m2AU325UyDqShSpqFm3B6xDQ5pW45MwY42icHsEC27MyPUTJRgMiMD+MrLtS2XBlXhQoJwUviWaNuR4VLWYVbbSacNaLYvqw2momhahJpxe0TLzdG2HJmCPxuTGBiipR+GmsVndADfokXJz5S7XEo5DakOFxKEU8K37L4dST+itB2n7MtCYaiZPoqP0LYcmYIdbRIDQ7T0wVCz+MwI4HO7lSG8ElmyRNPxtDMKFxKEE8K3nLAdSR8itR0n7MvCYaiZPrKylCG8EvFO5njaFsetQ+JgiJb2GGoWn1kBfCtWAEuXRv9I4XIp0zUeRzvjcCFB2D18yynbkbQnWtux+74sJIaa6aO8JH5nm+NoC4H3aJNYRAvRsjqnhZqlw8wAvhUrgFtvVdLFOzuVe7IXLdL0THaIk4LC7By+5aTtSNoSse3YeV8WFkPN9FFeAkybqqSLDw4p92QXH8Ez2YJgR5vEI0qIlgicFGqWLrMD+Nxu5dJ0nTkpKAywb/iWVttRlMRy0o6oxwCh9mVZNr4DasZ7MtRMH1lZgHeK2UtBKrCjTeRkoVCz3t7Y9yJLkvK86KFmajikbkLhQv5ef+x7NCXlkkyGC1mbFttRtMRy0gaPATrb3Q980B05vJU7W7mvWa9Lqs14TyKKwp+piZzMCaFmajmkbhguZA+ZbkdRUqdJezwG6Gh3P7C1M3oM6eEDyvTd/fZ4TyKKiUdNIqeze6hZJhxSNwwXsge121Gk1GnSB48BOpBl5axyIp3dsa+YEuk9iSguSZbF29v8fj/y8/MxMDAAj4f3ghBpIhCwZ6iZFhxSN7w/1x7S3Y7bNm7DvTX3Jn3dhW0LxbknllThMUBDn/qBN99LXu6k6drd12zGexI5TDr9UN6jTeJxSKfHcHYNNdOCQ+pGqHAhiivd7Shi6rRTGN3x5TFAQyMv3c60nFXfU1TBIJO8SXfsaJNYfD6gsTFyfGOvV7mX1iaX8RIRGUnU1Gm7Yzid4EaOKZ1pOau+p4g6e4DtH42Ytp1jU5Pm+NMNicPnA+rrIzvZgJIKXV+vPE9ERGkJpU5HBWGFSICnhKnTRmI4nQ3k5yXv0OYcGnZL5PcUTaxOdsj2j5TniTTCjjaJIRBQzmTHihQITWtqUsoREVHKmDptLQynswlJUobTSqS8VNuxrc14T5EEg/E72SHbP1LKEWmAn5okhvb26DPZh5NloKdHKUdERGlh6rR1dLd3R53JjiAD/h4/utuTpEuT+SYVAMeVR59lzslWpusxprUZ7ymKHbu0LUeUBO/RJjH09WlbzigMbouPdUNkKZV1laiYX8HUaZMxnM5mJhUAhfnGBm9NKgAmjgcG9irBZ+5Dl4unciZbltXNJ4LBIW3LESWR9l7+wgsv4LzzzkNxcTEkScLjjz8e8bwsy1i+fDmKi4uRm5uL6upqvPPOOxFlhoaGcO2112LixIkYO3Yszj//fGxPdLaSqKhI23JG8PmAsjKgpgZYsED5t6yM95IDrBsiiwqlTs+4eAbKqsvYyTYBw+lsZnc/8MpbStjWjt3Kv6+8pUzXkyQpQ3gdUaj8m0pneXc/8PI/lCHCOrqUf1/+h/7LapTcHG3LESWR9ifoZ599hpNOOgmrV6+O+fyKFSuwatUqrF69Gq+++iqmTJmCs88+G3v3fvHLa1NTEx577DE8/PDDePHFF7Fv3z6ce+65CPD+WoqnqkpJF4/3QSFJQEmJUs4KGNwWH+uGiCguhtPZyO5+YGtn9HBawweU6VbqwIq0rGoVH6FtOaIkJFmOlS6V4syShMceewwXXHABAOVsdnFxMZqamvCjH/0IgHL2evLkybjjjjvwve99DwMDA5g0aRLuu+8+XHjhhQCAHTt2oKSkBE8++STmzZuX9H3TGSicbCTUQQMiQ9FCne8NG6wxxFcgoJydjXeVhiQpPxp0dTnvUmnWDRFRUqHUcQCRoWiHPu5437wAZFk5G5xozOqcbOC0E82/NFukZc1UotRxgEN8UVLp9EM1vSasq6sLO3fuxDnnnBOelpOTgzlz5mDTpk0AgNdeew0HDhyIKFNcXIwTTjghXGakoaEh+P3+iD9yoLo6pTM9dWrkdK/XOp1sgMFtibBuiIiSYjidDYTuc05k6IBSzmwiLWumykuUznQs7GSTxjQNQ9u5cycAYPLkyAY8efJkfPjhh+EybrcbBQUFUWVC849022234eabb9ZyUclsaoOw6uqA+fOtHaIlanCbEVg3REQpYTid4JJ1XNMtpyeRllUL5SXAtKnGBtRRQoFgAO3d7ejb24eivCJUlVbBlWWh7/Yq6ZI6Lo24rESW5ahpIyUqc+ONN2LJkiXhx36/HyUl/MVJWD6fMib24Wc2vV6gpSW1s9IuF1BdrdviZUzE4DajsG6IiFIWCqcjAY0cXivTcnoSaVm1kpUFeKeYvRQEwNfhQ2NrI7b7v+gXeD1etNS2oK7SIlerqqTpTzdTpigNduSZ6V27doXPck+ZMgXDw8Po7++PW2aknJwceDyeiD8SlBOCsEQLbjMS64aIiJwgPy95xzTn0PBZZsvPS342NyvLGstKtuLr8KF+fX1EJxsAev29qF9fD1+H2P0CTTva06ZNw5QpU/D000+Hpw0PD+P555/HGWecAQA49dRTkZ2dHVGmr68Pb7/9drgM2VQgoJzJjpW/F5rW1KSUE5nLpZydB6I7lKHHzc3WutzdKKwbIiJyAkkCjk6SDF9eao1wMVkGgsHEZYLB2N/fiFQKBANobG2EjOh2FZrW1NqEQFDcfkHaHe19+/Zhy5Yt2LJlCwAlAG3Lli3o7u6GJEloamrCr371Kzz22GN4++23ccUVV2DMmDFYsGABACA/Px9XX301rrvuOjz77LN44403cOmll2LGjBmYO3eupitHFuOkICxRgtvMwLohIiInmFQAHFcefWY7J1uZPqkg9nxG27FL23JEKWjvbo86k304GTJ6/D1o7xa3X5D2PdqbN29GTU1N+HHo3umFCxdi3bp1WLZsGQYHB7Fo0SL09/fjtNNOw1NPPYW8vC8uN7nrrrswatQoNDQ0YHBwEGeddRbWrVsHF89i2ZvTgrBECG47nNqAOjVEqxsigQQDQQZokf3J8hdp2e5Dl2Bb4ezwSJMKgInjrb2sg0PaliNtidLW09S3N7Xv+6mWs6KMxtE2C8fRFtTGjcBhP9LE1dZm7bAzO8o0oI6ILKHD14HWxlb4t38xDKbH60FtSy2HhCL72N0PfNAdmYLtzlYu1bbKWWKRbN8JdCa44jCk3MsAMaPZuK1v3LYRNfcm7xe0LWxDdVm1/guUItPG0SZKiEFY1uSEgDoiB+jwdWB9/fqITjYA+Hv9WF+/Hh2+DpOWjEhDu/uBrZ3RQ00NH1Cm7+6PPR/FV3yEtuVIGzZv61WlVfB6vJAQu18gQUKJpwRVpeL2C9jRJuMwCMt6nBJQR2RzwUAQrY2tiJEpE57W2tSKYCBJ4BGRlcmycnYvkc5uhnalKysL8MYe+SfMO5njTBvJAW3dleVCS63SLxjZ2Q49bq5tFno8be4xZCwGYVmLkwLqiGysu7076kx2BBnw9/jR3Z7kixuRlYXuU01k6IBSjtJTXhK/s+2drDxPxnFIW6+rrMOGhg2Y6onsF3g9Xmxo2CD8ONpph6ERZYxBWMkZFUzmtIA60gXDt8y3ty+1L1upliOypGQdj3TLUaTyEmDaVCVdfHAIyM1RLhfnmWzjOait11XWYX7FfLR3t6Nvbx+K8opQVVol9JnsEHa0yRwuFwPP4jEymKyoSNty5DgM37KGvKK85IXSKEdkSSOHycq0HEXLymLgmRU4rK27slyWCjzTCn+iIrISo4PJGFBHGWD4lnWUVpUitzA3YZncwlyUVpUatEREOsjPS96xyDk0/BGRyNjWbYEdbSKrMCOYjAF1pBLDt4jIcJKkDGuUSHmpLcYYJodjW7cFdrSJrMKsYDIG1JEKDN+ylu72bgzuGUxYZnDPILcHiW9SAXBcefTZvpxsZbrgYwsThbGtC4/3aBNZhZnBZGYE1BkV+GYyuwaFMXzLWkTdHmbsHyLtkyItq6EmFQATx3+RzOw+dAltqmf3ZFn9vKLgOtpDpm2dTMWONpFVmB1MZmRAnZGBbyayc1AYw7esRcTtYcb+IdI+KdKymkKSgPGe9Ofb3a+MT3x4WrM7W7lM1y5nCLmO5i2XHtS2dTIdfxYlsgqnBJMZHfhmErsHhZVWlcLj9QDxflSXAE+Jh+FbBhFte5ixf4i0T4q0rELZ3Q9s7YweEmn4gDJ9d785y6UlrqM91pFsgR1tIqtwQjCZGYFvJnBCUFiWKwu1LbXKg5Gdu0OPa5treZmrQUTaHmbsHyLtkyItq1BkWTkDmkhnd+zPJ1FwHRWiryPZhvmfuET0BbsHk5kV+GYwpwSFVdZVomFDAzxTIy9p83g9aNjQwMtbDSbK9jBj/xBpnxRpWYUSusc1kaEDSjlRcR0Voq8j2Qbv0Saymro64NxzgTVrgM5OoLwcWLQIcLvNXrLMmRn4ZiBRg6nUqKyrRMX8CmECm+weLpXp9jCifszYP0TaJ0VaVqEk65ylW86KRF3HdELNRF1HciR2tImsJlZQ2MqV9ggKMzvwzSAiBlNlIsuVhbLqMrMXIymnhEup3R5G1Y8Z+4dI+6RIyyqUkUMkZVrOikRcx3RDzURcR3Is+/yMT2QHdg8Kc0jgW2lVKXILcxOWyS3MtUwwlRMwXCoxI+vHjOA2kfZJ0YLthJGfl7zzlXPobKqoRFtHNaFmoq0jORo72kRW4YSgMCcEvpHlMFwqMaPrR6TgNjOwfnQiScpZ0kTKS8Uen1ikdVQbaibSOpLj8ShNZBUOCQqzfeAblDCjwT2DCcsM7hlkmJFBGC6VmBn1Y3Rwm2j7pCjBdsKZVAAcVx59RjQnW5luh/GXRVnHTELNRFlHcjzeo21FgYDSmerrU+5VrariGT4tWL1eHRIUBkDpTM+fb+3tkQGGGVkLt0diZtWPkUF6IrYB0YIGVUsnCEsLkwqAieONfU8z1rEwH9ixCxgcAnJzgOIjgCwLtZ1MQ83M2I5EaWJH22piBWF5vfYIwjKTCPXqkKCwMJcLqK42eyl0wTAja+H2SMzM+jEqSE/UNiBK0KBq6QZhaUWSgPGe5OW0YMY6xnrPno/0r9d0aBFqZuR2JFLBQj9tke2DsMwiSr06JCjMCRhmZC3cHok5oX6csI7CUROEJRoz1lGUemWoGTkAO9pW4YQgLDOIVK8MCrMNhhlZC7dHYk6oHyeso1DUBmGJxIx1FKleGWpGDsBPFKtwShCW0USrVwcEhTkFw4yshdsjMSfUjxPWURiZBGGJwox1FK1eGWpGNsd7tK3CSUFYRhKxXm0eFOYkjgkzEgS3R2JOqB8nrGNGjArtyjQISwRmrKOI9cpQM7IxdrStwmlBWEYRtV5tHBTmNLYPMxIMt0diTqgfJ6yjKkaGdmkRhGV1ZqyjqPXKUDOyKf6EaxUMwtIH65WIiCgxowO0nBCEZcY6OqFeiQTCjrZVMAhLH6xXIiKi+MwI0HJCEJYZ6+iEeiUSCDvaVsIgLH2wXomIiGIzK0DLCUFYZqyjE+qVSBCSLFsh4z89fr8f+fn5GBgYgMdjw3s6AgEGYelheBhYswbo7ATKy4FFiwC32+ylcqxgIMhAIiKH43HAAnbtATq6kpernAYcUaj9+xsVwGYmM9YxGAR27AIGh4DcHKD4CCCL+xZZUyAYQHt3O/r29qEorwhVpVVwZVmz75NOP5RhaFbEICzt+XzKeNqHD/W1cqVyWTnPaBuuw9eB1sZW+Lf7w9M8Xg9qW2o5xA6RQ/A4YBFmB2g5IQjL6HWMFWzX85E+wXZEGfJ1+NDY2ojt/i++o3s9XrTUtqCuUuzv6Pxpi+zP5wPq66PH0+7tVab7fOYsl0N1+Dqwvn59xJdrAPD3+rG+fj06fB0mLRkRGYXHAQthgJa9GB1sR5QBX4cP9evrIzrZANDr70X9+nr4OsT+js6ONtlbIKCcyY51h0RoWlOTUo50FwwE0drYCsS6YeXQtNamVgQDQUOXi4iMw+OAxTBAyz7MCLYjUikQDKCxtRFyjA+D0LSm1iYEguJ+R2dHm+ytvT36TPbhZBno6VHKke6627ujzmBFkAF/jx/d7Um+KBCRsHgcsCAGaNmDWcF2RCq0d7dHnck+nAwZPf4etHeL+x2d92iTvfX1aVuOMrK3L7UP91TLEZF4eBywqEkFwMTx9g8ms7Nknex0yxHpqG9vat+9Uy1nRexo2wnTyqMVFWlbjjKSV5TaPX6pliMi8fA4YGFOCCazM7OD7YjSUJSX2nfvVMtZES8dtwufDygrA2pqgAULlH/Lyhj0VVWljJcd7xd5SQJKSpRypLvSqlJ4vB4g3gkSCfCUeFBaleR+QSISFo8DRDphsB0JpKq0Cl6PF1KcDwMJEko8JagqFfc7OjvadsBU7fhcLmUILyC6sx163NzMM/8GyXJlobalVnkw8rh66HFtcy3H0SWyMR4HiHTCYDsSiCvLhZZa5Tv6yM526HFzbbNlx9NOBT/FRMdU7eTq6oANG4CpUyOne73KdI6jbajKuko0bGiAZ2rk5YkerwcNGxo4fi6RA/A4QKQTBtuRQOoq67ChYQOmeiK/o3s9Xmxo2CD8ONqSLIuX8e/3+5Gfn4+BgQF4PA6/l2jjRuUy8WTa2oDqar2Xxtp4D7ulBANBdLd3Y2/fXuQV5aG0qpRnsIgchscBIp3IMoPtSBiBYADt3e3o29uHorwiVJVWWfZMdjr9UIahiY6p2qlzufhjQwJGf+HNcmWhrLpMt9cnEh07oToJBoEdu4DBISA3Byg+AshivZLNqA22c0gHXaSOnRO4slyoLqs2ezE0x4626JiqTRro8HWgtbE1Ymxbj9eD2pZaXsJJZAIn7JOmrGNnD7D9oxHTtgPeyUB5iT7vSSSK3f3AB92Rw3+5s5X7vm10ybmvw4fG1saIMZy9Hi9aaluEv1SZrIWXjosuEFDSxXt7Y9+nLUnKvchdXbxMmmLq8HVgff16YGTzOfQDNu+XJDKWE/ZJU9YxVif7cOxsk5Pt7ge2dsZ/3ib3d/s6fKhfXw95xMEnFL5lh/uCSV/p9EN5rZTomKpNGQgGgmhtbI3+sguEp7U2tSIYCBq6XERO5YR90pR1DAYTd7IB5fmguPVKpJosK2eyE+nsjn1CRyCBYACNrY1RnWwA4WlNrU0IBB0cIEyaYkfbDpiqTSp1t3dHXLYZRQb8PX50tyf5ACYiTThhnzRlHXfs0rYckZ2E7slOZOiAUk5g7d3tEZeLjyRDRo+/B+3d7QYuFdkZ79G2i7o6YP58pmpTWvb2pfahmWo5q2O4VGKsH/M5YZ80ZR0Hh7QtR2R16YSaJetkp1vOovr2phYMnGo5omTY0bYTpmpTmvKK8jQtZ2VOCJfKBOvHGpywT5qyjrk52pYjsrJ0Q81GjrkdT6rlLKooL7Vg4FTLESXDUxVEDlZaVQqP1xMOIIoiAZ4SD0qrSg1dLq2FgpdGXq7q7/Vjff16dPg6TFoya2D9WIcT9klT1rH4CG3LEVlVKNRs5Nnn4QPK9N390fPk5yXvROccOisusKrSKng93nDw2UgSJJR4SlBVWmXwkpFdsaNN5GBZrizUttQqD0Z+7hx6XNtcK/Tlw04Il8oE68danLBPmrKOWVlKqngi3skcT5vEpjbUTJKUs92JlJcKP562K8uFllolQHhkZzv0uLm2meNpk2b4iULkcJV1lWjY0ADP1MghCjxejy2GEXJCuFQmWD/WY/d9EjBpHctL4ne2ObQX2UEmoWaTCpQhvEae2c7Jts3QXgBQV1mHDQ0bMNUTGSDs9Xg5tBdpjvdokyIQUBekpnY+spTKukpUzK+wZRCWE8KlMsH6saZM9slAMID27nb07e1DUV4RqkqrLHmGxpTjTnkJMG2qki4+OKTck118BM9kkz1kGmo2qQCYOD71EDVB1VXWYX7FfCGOk2YQ5TNEBOxoE+DzAY2NwPbDhjzwepXxuRMNDaZ2PrKkLFcWyqrLzF4MzTkhXCoTrB/rUrNP+jp8aGxtjBjCxuvxoqW2xZJnakw57mRlAd4pxr4nkRG0CDWTJGC8J/7zNuHKcqG6rNrsxbAc0T5DrI4/4TqdzwfU10d2lgGgt1eZ7vNpOx+RwZwQLpUJ1o99+Dp8qF9fHzVObK+/F/Xr6+Hr4HGZyNYcEmpG+uBniPbY0XayQEA5Iz0yFAP4YlpTk1JOi/mITOCEcKlMsH7sIRAMoLG1EXKMVLvQtKbWJgSCPC4T2ZZDQs1Ie/wM0Qe/OTlZe3v0GenDyTLQ06OU02I+IpM4IVwqE6wf8bV3t0edhTicDBk9/h60d/O4TGRrDgk1I23xM0QfvEfbyfr61JVTOx+lLBgI2jKYzEx2DnzTAuvHetI5DvTtTe14m2o50pAs2z5cSjh23yYmhZoxREtc/AzRBzvaTlZUpK6c2vkoJR2+DrQ2tkYMueTxelDbUsszixmya+CbVlg/1pHucaAoL7XjbarlSCO7+5VxjQ9PeXZnK5f38syiOZyyTQwONWOIltj4GaIPSZZj3WhrbX6/H/n5+RgYGIDHY/9kRN0EAkBZmRJgFqsZSJKSIt7VFTlkl9r5KKkOXwfW169H1C0yh36E5mW8RPan5jgQCAZQ1lKGXn9vzHvsJEjwerzoauziGSaj7O4HtnbGf56X8RqP20QXoRCtkcce6dBBi+NTWx8/Q1KXTj+U1wQ6mculDMUFRF9OFHrc3BzdWVY7HyUUDATR2tga/eUaCE9rbWpFMBA0dLmIyDhqjwOuLBdaapXjsjQi1S70uLm22fFfkAwjy8pZ00Q6u2P/WE364DbRBUO07IGfIfpgR9vp6uqADRuAqVMjp3u9yvR442GrnY/i6m7vjrhMNIoM+Hv86G5P8kWBiISVyXGgrrIOGxo2YKon8rjs9Xh5RslooXtjExk6oJQjY3Cb6IIhWvbBzxDt8R5tKwoElMTuvj7lPueqqtTODg8PA2vWAJ2dQHk5sGgR4HYnn6+uDpg/P/33VDsfxbS3L7UP91TLEZF4Mj0O1FXWYX7FfAYSmS1Zhy7dcpQ5LbaJ3UPUVGCIlr3wM0Rb7Ghbjc+njFF9+PBZXq9yqXais8TLlgGrVkWOXX399cCSJcCKFcnf1+UCqqvTX16181GUvKI8TcsRkXi0OA64slyoLqvWaIlIlZFDK2VajjKX6TZxSohamhiiZT/8DNEOLx23Ep8PqK+PHqO6t1eZ7vPFnm/ZMuDOOyM72YDy+M47lefJ8kqrSuHxeoB4P45LgKfEg9KqUkOXi4iMw+OATeTnJe/Y5Rw6I0rGyGSbhELURp7tHj6gTN/dr91yCqaqtApejzfqvt4QCRJKPCWoKq0yeMmIzMeOtlUEAsqZ7FghHKFpTU3RnenhYeVMdiKrVinlyNKyXFmobalVHoz8vDr0uLa5luMaE9kYjwM2IUnKmc5Eyksdf9mxodRuE4aoJcQQLaL4+EltFe3t0WeyDyfLQE+PUu5wa9ZEd75HCgSUcmR5lXWVaNjQAM/UyOECPF4Ph/YicggeB2xiUoEyXNTIs6g52RxGyixqtglD1JJiiBZRbLxH2yr6UgyJGFmuM8F4kGrKCSAYCKK7vRt7+/YirygPpVWltjq7U1lXiYr5FbZeRyInOTh8EJvXbMYnnZ9gQvkEzFo0C6PciT9+eRywiUkFwMTxxgdoMbQrvnS3CYPtUsIQLaJo7GhbRVGKIREjy5WXpzZfquUsrsPXgdbG1ojhbzxeD2pbam11lifLlYWy6jKzF4OIMvT0sqfx0qqXIAe+uKz0qeufwuwls3H2irMTzsvjgE1IEjDek7ycVhjalVw624TBdiljiBZRJEmWxbupxO/3Iz8/HwMDA/B4DPzw0lMgAEyeDOzZE79MYSHw0UeRw2cNDwNjxiS+fNzlAj7/PLWhviysw9eB9fXrgZEt9tCP0Lykkois5OllT2PTnZviPn/G0jOSdraJ0hIK7YqHl6ynT5aBl/+R+Ix1TjZw2om8aoDIAdLph/IaNNG53coQXoksWSJ8JzsYCKK1sTW6kw2Ep7U2tSIYCBq6XEREsRwcPoiXVr2UsMxLq17CweGDBi0R2R5Du/TBYDsiUokdbatob098NhtQnh8ZhgYo42QvXRp5phtQHi9dmto42hbX3d4dcbl4FBnw9/jR3Z7kSwYRkQE2r9kccbl4LHJAxuY1mw1aIrI9hnbph8F2RKQC79G2CrVhaCErVgC33qqki3d2KvdkL1ok/JnskL19qX0xSFROpBA1kZaViKJ90vmJpuWIknJaaFcwCOzYBQwOAbk5QPERQJaOn5NmBdsRkbDY0bYKtWFoh3O7lbG2bSivKC+jciKFqIm0rEQU24TyCZqWI0rKSaFdnT3A9o9GTNsOeCcD5SX6va/RwXZEJDSeIrOKqirA643/y6gkASUlSjkHKq0qhcfrCQefRZEAT4kHpVXR91GFQtRGXnru7/Vjff16dPg6dFhidURaViKKb9aiWZBcic90SS4JsxbNMmiJyPby85J3onMOnYUVWaxOdsj2j5TniYgsgB1tq3C5gJYW5f9HdrZDj5ubo+/DdogsVxZqW2qVByO/ux56XNtcG3V5tUghaiItKxElNso9CrOXzE5YZvaS2UnH0yZKmRNCu4LB+J3skO0fKeWIiEzGjraV1NUBGzYAU6dGTvd6lel1deYsl0VU1lWiYUMDPFMjL9vyeD1xh/YSKURNpGUlouTOXnE2zlh6RtSZbcklcWgv0ofdQ7t27NK2HBGRjvhTutXU1QHz5yvp4n19yj3ZVVWOPZM9UmVdJSrmV6QcFKZFiJpRRFpWsi4G6SVmdP2cveJs1Nxag81rNuOTzk8woXwCZi2axTPZAgoEA2jvbkff3j4U5RWhqrQKriwLfjZPKgAK89UFhcmytcO+Boe0LZcmYdqAYFivZFf8pLcilwuorjZ7KSwry5WFsuqylMpmGqJmJJGWlayJQXqJmVU/o9yjcHrT6bq9PunP1+FDY2sjtvu3h6d5PV601LagrtJiV5vt7lfG0z48XbznI+Wy8kRntGPN585OPp+RcnO0LZcGodqAQFivZGc8zUG2lkmImtFEWlayHgbpJcb6IbV8HT7Ur6+P6AgAQK+/F/Xr6+Hr8Jm0ZDHs7ge2dkYP4TV8QJm+u1/b+YxWfIS25VIkVBsQCOuV7I4dbbI1tSFqZhBpWclaGKSXGOuH1AoEA2hsbYQco/GEpjW1NiEQDBi9aNFkWTkjnUhnt1JOi/nMkJWlDOGViHeypuNpC9UGBMJ6JSfgN3ayPTUhamYRaVnJOhiklxjrh9Rq726POtt2OBkyevw9aO9uN3Cp4gjdW53I0AGlnBbzmaW8JH5nW4dxtIVqAwJhvZIT8B5tcoR0Q9TMlMmyMgjLmZwYpJdOW3di/TiBEQFKfXv7NC2nq2Sd5Xjl1M5npvISYNpUdYFvaRKqDQiE9UpOwI42OUY6IWpmU7OsDMJyLqcF6aXb1p1WP05gVIBSUV6RpuV0NXJIr1TLqZ3PbFlZgHeK7m8jVBsQCOuVnICnuohsgEFPzuakID01bd1J9eMERgYoVZVWwevxQorTeCRIKPGUoKq0SrP3VC0/L3lnOOfQkF1azOcQQrUBgbBeyQnY0SYSHIOeyClBemrbulPqxwmMDlByZbnQUtsCAFEdgtDj5tpma4z5K0nKUFyJlJdGj4utdj6HEKoNCIT1Sk7AbxVEgmPQEwHOCNLLpK07oX6cwIwApbrKOmxo2ICpnqkR070eLzY0bLDWWL+TCoDjyqPPUOdkK9PjjYetdj6HEKoNCIT1SnbHe7SJBCdq0BOD27QnUuifGpm2dbvXjyZk+YsUavehy4UtdCbTrACluso6zK+Yr3v4WhQ122NSATBxvHHzOUQmbcCI4D6tGL2spu1bAhGp/VAkdrSJBCdi0BOD2/QjUuhfurRo63aun4zt7lfGUz48XdqdrVxWbJEzmmYGKLmyXKguq9b8dePKZHtIEjDek7iMlvM5hJo2YFRwnxbMWlbD9y2BiNR+KBp/xicSnGhBTwxuI7VEa+tC2d0PbO2MPfTT1k7leQtwTICSINuDEjMyuC9TIi2rU3CbiI8dbSLBiRT0xOA2yoRIbV0osqycOU2ks1spZzJHBCgJtD0oPqOD+zIh0rI6BbeJPfDbCJENiBL0xOA2ypQobV0ooXtyExk6oJSzANsHKAm2PSg2M4L71BJpWZ2C28QeeI82kU2IEPQkanAbWYsIbV0oyTp16ZYzgK0DlATcHhTNrOA+NURaVqfgNrEHdrStaHgYWLMG6OwEysuBRYsAt9vspYqJydHWYvWgJxGD28zCfSsx1W3d4qnaphg5pFOm5Qxi2wAlQbeHWnZNVDYzuA9Ir15FWlanMHubkDY072gfPHgQy5cvxwMPPICdO3eiqKgIV1xxBX76058iK0v5kijLMm6++Wb853/+J/r7+3Haaafht7/9LY4//nitF0c8y5YBq1YBgcPuubj+emDJEmDFCvOWKwYmR1O6QmFW/l5/7Pu0JaUNOT3MivuWTgRI1TZFfp5SD4nOkOYc+lGC9Oeg7WHnROVQcF+vvzfmfbYSJHg9Xl2C+9Kt19CyJrpUWa+QQTu3gUyY2X5IO5qfHrnjjjtwzz33YPXq1ejo6MCKFStw55134u677w6XWbFiBVatWoXVq1fj1VdfxZQpU3D22Wdj716HXy66bBlw552RnWxAeXznncrzFsHkaFKDYVbJcd/SCVOc45Mk5ceGRMpLeebfKA7ZHnZPVDYruE9NvbqyXLj4hIsTvu5FJ1xkiWV1CkcEPzqAJMvaxlaee+65mDx5Mv77v/87PO1b3/oWxowZg/vuuw+yLKO4uBhNTU340Y9+BAAYGhrC5MmTcccdd+B73/te0vfw+/3Iz8/HwMAAPB6bjPc4PAyMGRPdyT6cywV8/rnpl5EHA0G0lLXED7U6dFaysavR0R0mii/mGdsSD2qbnX3GlvuWTmQZePkfyc8Qnnai8J2XjMQ645+TrXTqnHzG3yw23h6BYABlLWVxz6CGztZ1NXYJ35GIdca2xFOC5tpmzc/Yqq3XZPOFllnL7eGkNpAJI9sPpSadfqjml45/9atfxT333IP33nsP06dPx5tvvokXX3wRzc3NAICuri7s3LkT55xzTnienJwczJkzB5s2bYrZ0R4aGsLQ0FD4sd+fILVYVGvWJO5kA8rza9YATU2GLFI86SRHW/l+YTIPw6xi476lk3RSnMfb5MdbNSYVABPH8x52q7Dx9kgnUVn0+/CNDO5TW6/J5gOg+fZwUhvIhK2DHx1A8472j370IwwMDODYY4+Fy+VCIBDAL3/5S1x8sXJJys6dOwEAkydPjphv8uTJ+PDDD2O+5m233Yabb75Z60XVXyAAtLcDfX1AURFQVaWclY6lszO110y1nI60SI5m0BNZPbjNDExl14nZKc4iBbBJkrN/bLAaldvD6uFSZicqG10/RgX3qa1XM7aHFu9p9XauFdsGPzqA5h3tP/3pT7j//vvx4IMP4vjjj8eWLVvQ1NSE4uJiLFy4MFxOGvElQ5blqGkhN954I5YsWRJ+7Pf7UVJSovWia8vnAxobge2H/Vrn9QItLUBdjEs9ystTe91Uy+ko0+RoBj0RxcZUdp2YmeLMADYymAjhUmYmKotQP2qprVcztkem72nn7Uj2ofkpxKVLl+KGG27ARRddhBkzZuCyyy7D4sWLcdtttwEApkyZAuCLM9shu3btijrLHZKTkwOPxxPxZ2k+H1BfH9nJBoDeXmW6L0a4w6JF8c92h7hcSjmThZKjo8KsQiTlfttYydEMeiKKL5N9ixIIpTgnokeKMwPYyGCihEuFEpVHhjyFSJB0SbkWpX7UUluvZmyPTN7T7tuR7EPzjvbnn38eHsYrxOVyIRgMAgCmTZuGKVOm4Omnnw4/Pzw8jOeffx5nnHGG1otjvEBAOZMdK2MuNK2pKfp+bLdbGcIrkSVLTA9CA9QnRwcDQbQ2tsYe1unQtNamVgQDQU2Xl0gUTGXXiRkpzrKsnMlOpLM79mcFkQqBYACNrY0xhwIKTWtqbUIgmCQPxgBmJCqLVD9qqa1XM7aH2vd0wnYk+9D829p5552HX/7yl3jiiSewbds2PPbYY1i1ahW++c1vAlAuGW9qasKvfvUrPPbYY3j77bdxxRVXYMyYMViwYIHWi2O89vboM9mHk2Wgp0cpN9KKFcDSpdFntl0uZbqFxtGurKtEw4YGeKZGXl3g8XrQsKEh5iXg6QQ9ETmVmn2LUjCpADiuPPrMdk62Ml3ry7jTCWAj0kA64VJWUFdZhw0NGzDVMzViutfjxYaGDZpf/ita/ailtl6N3h5q39Mp25HsQfN7tO+++27cdNNNWLRoEXbt2oXi4mJ873vfw89+9rNwmWXLlmFwcBCLFi1Cf38/TjvtNDz11FPIy7PBfYd9KQZFxCu3YgVw661Kunhnp3JP9qJFljiTPVK6ydEMerInp4SRGImp7DoxMsXZ7AA2chyzA8bUqKusw7nHnIs1m9eg85NOlE8ox6JZi+Aepf13HhHrRy21SdVmJFyn+55O2o4kPs072nl5eWhubg4P5xWLJElYvnw5li9frvXbm68oxaCIROXcbtOH8EpVOsnRDHqyH4aR6Iep7DoxKlXbzAA2ciQzA8bUivUZsvKllbp8hohYP5lQm1RtRsJ1Ou/ptO1IYuPpEa1VVSnp4vHOkEgSUFKilHOY0qpS5BbmJiyTW5jLoCdBMIyEKAGzAtjIscwKGFPL6M8Q0eqHYuN2JJGwo601l0sZwguI7myHHjc3J08YJ7IwhpEQJWFGABs5mhmBVmqZ8RkiUv1QfNyOJBJ2tPVQVwds2ABMjQx3gNerTI81jrYDdLd3Y3DPYMIyg3sGGYYmAIaREKXA6AA2cjwzAq3UMOszRJT6ocS4HUkUmt+jTYfU1QHz5yvp4n19yj3ZVVWOPpPNMDT7ODxkRApKOPLDIzFu3zjsG7cPHx75IeQsOaockSMZGcBGlmR0YKQZgVbpMjPQSoT6oeS4HUkE7GjryeUCqqvNXgrLYBiafYRCRiq3VqK2tRb5/vzwcwOeAbTWtqLjuA6GkRABxgWwkeWYFRhpRqBVOswOtLJ6/VBquB3J6njpOBmmtKoUHq8HcfIrAAnwlHgYhiaAqtIqfHXbV9GwvgEe/4jxnv0eNKxvwFe3fZVhJETkWAyMjI+BVkTkBOxok2GyXFmobalVHoz8bD30uLa5lmMFC0CSJXz9/76u/H+cMJKvt34dkszLY4nIeRgYmRgDrYjICdijIUNV1lWiYUMDPFNHnAX1etCwoQGVdZUmLRmlo7u9Gwc+OpDwbMSBnQcYbEdEjsTAyOQYaEVEdsd7tHUUDATR3d6NvX17kVeUh9KqUp6thdLZrphfwboRGIPtiIjiMzPsSyRmBVqpDagzej4iEhs72jrp8HWgtbEV/u3+8DSP14PallqetYVyGXlZdZnZi0EqMdiOiCg+s8O+RGJ0oJXagDqj5yMi8fEUog46fB1YX78+opMNAP5eP9bXr0eHr8OkJSPSBoPtiIjiY9iXNakNqDN6PiKyB3a0NRYMBNHa2IoY+Sfhaa1NrQgGgoYuF5GWGGxHRBQfw76sR21AndHzEZF98Fuwxrrbu6POZEeQAX+PnyFRJDwG2xERxcewL2tRG1Bn9HxEZB+8R1tjDIkiJ2GwHZlGloGBvcDwAcCdDeTnARKHkxOOzbejWWFfZrB64JfagDqj5yMi+2BHW2MMiSKnYbAdGW53P/BBt9I5C3FnA0eXApMKzFsuSo9DtqPRYV9mECHwS21AndHzEZF98LSTxhgSRUSko939wNbOyM4ZoDze2qk8T9bH7WgbogR+qQ2oM3o+IrIPdrQ1xpAoIiKdyLJyBjSRzm6lHFkXt6NtiBT4pTagzuj5iMg+2NvTAUOiiIh0ELqXN5GhA0o5si5uR9sQLfBLbUCd0fMRkT3wHm2dMCSKMhEMBNl2dKC2Xrk9kjAq0CpZ5yzdcmQObkfbEDHwS21AndHzEZH42NHWEUOiSI0OXwdaG1sjhonzeD2obanl1RAZUFuv3B5JGBlo5c7WthyZg9vRNkQN/FIbUGf0fEQkNp6SIbKQDl8H1tevjxqL3d/rx/r69ejwdZi0ZGJTW6/cHkkYHWiVn5e885Vz6Iw6WRe3o20w8IuIKD52tIksIhgIorWxFTEyZcLTWptaEQwEDV0u0amtV26PJMwItJIk5Ux5IuWlthqH2Za4HW2DgV9ERPGxo01kEd3t3VFnTiPIgL/Hj+72JJ0biqC2Xrk9kjAr0GpSAXBcefQZ0ZxsZbqNxl+2NW5H22DgFxFRbLxHm8gi9val1iFJtRwp1NYrt0cSZgZaTSoAJo43JoCN9MPtaBt1lXU495hzsWbzGnR+0onyCeVYNGsR3KPcur1nIBhgwBgRWRo72kQWkVeU2v2IqZYjhdp65fZIwuxAK0kCxnuSlyNr43a0BV+HD42tjRFDfa18aSVaalt0OaMd6/28Hq9u70dEpAYvHSeyiNKqUni8HsTJlAEkwFPiQWlVknsbKYLaeuX2SIKBVkQEpdNbv74+ajztXn8v6tfXw9fhE/r9iIjUYkebyCKyXFmobalVHozs3B16XNtcy/Gb06S2Xrk9kmCgFZHjBYIBNLY2Qo6RGhma1tTahEAwIOT7ERFlwqHfEImsqbKuEg0bGuCZGnkppcfrQcOGBo7brJLaeuX2SIKBVkSO1t7dHnVm+XAyZPT4e9De3S7k+xERZYL3aBNZTGVdJSrmV6C7vRt7+/YirygPpVWlzj1zqpH/3979x8ZR3/kff603tknu6zUEArGzdoxcmoZypdfCFSgupscPV2pruvWF79H2QOIQkgtd42JLcD2Vq1BKncNnV8j0emorTncUpb7lx4mrj0iFdBFwBe44SvEXWjetHdchEQ3Z0HBxMjvfPybrZL0/vN6d3fn1fEiR2PFnPLMzHy9++zOf16fc6xqo+2Gaqw+mItAKCKyFwwu2tnPb8YAgImjQPhTagAvVhevU0d3h9Gn4TrnXNRD348BBa13sU1PCG+qtx8NXGpkm0AoIpJamFlvbue14QNAQNGgvHw7JAABW5cBB6fWZ3KW4Fo9Z2w8cdOa8ALhaV3uXopGoQgVSI0MKqS3Spq72Lk8eDwgSggbtR6ENAEFmmtZIdjEzs1Y7ADhFuC6s8Z5xScopfjOvx3rGbHvstNbHA4KCoMHqoNAGgCDLzK0u5ugxqx0ALBPbGtPktkltimzK2h6NRDW5bdL2x01rfTwgCAgarA7maPtI2kgHI7AJKCe0C/mtVGSvtl2tpNPS7/ZL7x2V1jZKrWdLdXzeAU6IbY2pd0tvzQKUan08wO8IGqwOCm2fmE5Mayo+pdTe1NK2SDSinvEeliCCv1QS2oVcy5fmqrRdLczMSXvfWrZtrxQ9R+psc+acgIAL14XV3dHt2+MBfkbQYHXw538fmE5Ma2ffzqwiW5JS8ynt7Nup6cS0Q2cG2IzQLvs1N61cRDeeeGrADfIV2Rl737K+DgAASkbQYHVQaHtc2khrKj6lPNkFS9umBqaUNtI1PS/AdoR2VUcoZD0NUExnuzsezU+nCxfZGXvfstoBAICSEDRYHRTaHjebnM0Zyc5iSqm5lGaTKxQogNsR2lU9G86Qzu/MHdlurLe2u+WR/N/tt7cdAACQRNBgNTBH2+MOL5RWVJTazguCEPrmqfdYq2Ayr4Z2ecWGM6SzTnd3yNx7R+1ttxoE8AFFGWmjpuFktT6e13B9UA6CBu1Foe1xTS2lzZsstZ3bBSH0zVPvsZbBZF4M7fKaUEg6PeL0WRS2ttHedqUigA8oKjGdUHwqnrU8UDQS1XjPeFVGwWp9PK/h+qASBA3ax6VDZChVe1e7ItGICmQXSCEp0hZRe9cKczA9IAihb556j7UOJvNaaBfs13q2ve1KQQAfUFRiOqG+nX05a/DOp+bVt7NPiemEp4/nNVwfwD0otD2uLlynnvEe68XyYvvE656xHvc+dlyiIIS+eeo9OhFM5qXQLlRHKLTyWtl1dfb1AQL4gKKMtKH4VFxmnv9xZbYNTA3ISBuePJ7XcH0Ad/F29QVJ0tbYVm2b3KbIpuxHPiPRiLZNbnPf48ZlCELom6feo1PBZF4J7UJ1HDq8cqJ4Om1fvyOADygqOZvMGTk9lSlTc6k5JWeTnjye13B9AHdhjrZPbI1t1ZbeLd4J0FqlIIS+eeo9OhlM5oXQLlRHrfsdAXxAUQuHF2xt57bjeQ3XB3AXCm14QhBC3zz1Hp0OJnN7aBeqo9b9zul+DrhcS1OLre3cdjyv4fr4k2FIyaS0sCC1tEhdXVK4hBDwcveDfSi0fcJTSdVlyIS+peZT+ecwh6z36+XQN0+9x0wwWbGRPILJYLda9zv6OVBUV3uXopGo5lPzeecFhxRSNBJVV3uXJ4/nNVwf/0kkpHhc2nvKjIBoVBofl2JFAuTL3Q/28sdzxQHnqaTqMgUh9M1T75FgMjih1v2Ofg4UFa4La7xnXJJVxJ0q83qsZ8y2NXhrfTyv4fr4SyIh9fVlF8uSND9vbU8UCJAvdz/YzwW/saMSnkqqrlAQQt889R4JJoMTat3v6OdAUbGtMU1um9SmyKas7dFIVJPbJm1ft7nWx/Maro8/GIY1Ip1vUYvMtoEBq50d+6E6QqbpvXVJUqmUmpubdejQIUUiwZ6n+ZtnfqOHrnxoxXY3Pn2jOro7qn9CNZA20r4Nfcvw1Hs0TYLJUHu17nf0c6AoI20oOZvUwuEFtTS1qKu9q6ojp7U+ntdwfbztmWekK69cud3TT0vd3ZXvh9Ktpg5ljrbHeSqp2iZ14Trf/NGgEE+9R4LJ4EQRWma/K/uXT/o5UFS4Lqzujm7fHs8p5X5mBeH6+PmPCQslBsMvb1fufqgOCm2P81RSNQD/OXBQ+tVsdmBYQ701t9llj1UnphOKT8Wz1pmNRqIa7xnncUoArsNnVmF+vzYtJQbDL29X7n6oDh4d97i0kdZ4x/iKSdXxPXH3PnoMwJsOHJRenyn8dRfNYU5MJ9S3sy8niTcTEMTcRQBuwmdWYUG4NoYhdXRYAWb5KrVQyEoR37Mne8mucvdD6VZTh1J5eZynkqoB+IdpWiPZxczM5v8/fY0ZaUPxqXje5W4y2wamBmSkSYcB4Dw+swoLyrUJh62luKTcmViZ12NjucVyufuhOqi+fMBTSdUA/CEzJ7uYo8esdg5LziazHi9czpSpudSckrPJGp4VAOTHZ1ZhQbo2sZg0OSltyg6QVzRqbS+0Hna5+8F+zNH2ia2xrdrSu8U7SdUOKDfJmwRwII+ViuzVtquihcOlpb6U2g728XOYkRdxP9yBz6zCgnZtYjGpt1dKJq0As5YWqatr5RHpcveDvSi0fcRTSdU1Np2Y1lR8Sqm9qaVtkWhEPeM9RUf8y93PER4KpYIPLF9XutJ2VdTSVFrqS6ntYA+/hxl5DffDPfjMKiyI1yYcLm8prnL3g31cOiwH2Gc6Ma2dfTuzimVJSs2ntLNvp6YT07bu54hMKNXy0cPFY9b2AwedOS/4V3PTykV044mnKhzW1d6laCS6FJSzXEghtUXa1NXeVeMzC65MmNHyR0DnU/Pq29mnxHTCoTMLJu6Hu/CZVRjXBl5CoQ1fSxtpTcWn8ieyn9g2NTCltJG2ZT9HeCiUCj4SCllPSxTT2e6KqQvhurDGe6x0mOW/nGVej/WM8YhsjQQlzMgruB/uw2dWYVwbeAmFNnxtNjmbMyKdxZRScynNJrML1XL3c4SHQqngMxvOsJbwWj6y3VjvqqW9JCm2NabJbZPaFMlOh4lGor5YCsZLghRm5AXcD3fiM6swrg28gjnaqIjbg8IOL5RWXC5vV+5+OWoRTuahUCrPImSusA1nSGed7onrE9saU++WXsKeHBa0MCO34364F59ZhXFt4AUU2iibF4LCmlpKmx+6vF25+2WpVTiZh0KpPImQuZWFQtLpkZXbuUC4Lqzujm6nTyPQghhm5GbcD3fjM6swrg3czj1Dj/AUrwSFtXe1KxKNqEBmhhSSIm0RtXe127LfklqGk3kolMpzCJkDbEeYkbtwPwCgOii0sWpeCgqrC9epZ7zHerH8d4gTr3vGenIedy93P0m1DyfzUCiVpxAyB1QFYUbuwv0AgOqg0MaqeSooTNLW2FZtm9ymyKbsR1sj0Yi2TW4r+Jh7ufs5Ek7moVAqzyBkDqgawozchfsBAPZjjjZWzbagsBraGtuqLb1bVh3cVtZ+ToWTeSiUyhMImQOqyqkwIyNt+D5AqZz3SLgUJMkwpGRSWliQWlqkri4pTBdY4sT14Z54F4U2Vs2WoDAH1IXr1NHdUf39nAwn81AolesRMgdUXa3DjBLTCcWn4lnLWUUjUY33jPtm1LaS90i4VLAlElI8Lu09ZbW3aFQaH5di/vjxqIgT14d74m08Oo5VqzgozO8IJ/MH7iPgK4nphPp29uWsGT2fmlffzj4lphMOnZl9gvAeUR2JhNTXl13QSdL8vLU9EfCu48T14Z54H4U2Vq2ioLAgIJzMH7iPgG8YaUPxqbjMPCmemW0DUwMy0katT802QXiPqA7DsEZN82V7ZrYNDFjtgsiJ68M98YeAVkKoVNlBYUFBOJk/cB8BX0jOJnNGeU9lytRcak7J2WQNz8peQXiPqI5kMnfU9FSmKc3NWe2CyInrwz3xB+Zoo2zlBowFhhPhZKZJGJrdCJlbURDCpSrB9XHewuEFW9u5URDeI6pjocQuUWo7v3Hi+nBP/IFCGxUpN2AsMGoZTnbgoLXu86kp2A311uPPjLxWhpC5goIQLlUJro87tDS12NrOjYLwHlEdLSV2iVLb+Y0T14d74g8h08z39L+7pVIpNTc369ChQ4pE+OUX0IGD0uszhb/OY86ogkzw0vI5oaETYQ1BX3+X6+MeRtpQx3iH5lPzeecwhxRSNBLVnvgezz5tEIT3iOowDKmjwwrZylcVhEJW0vWePcFcVsqJ68M9ca/V1KE84wt4nWlaI9nFzMzm/6QGykTwUnFcH3cJ14U13jMu6eQfOjIyr8d6xjxdgAbhPaI6wmFruSgpd1ZU5vXYWHALOieuD/fEHyi0Aa/LzB0u5ugxqx1gE4KXiuP6uE9sa0yT2ya1KbIpa3s0EvXN0wVBeI+ojlhMmpyUNmV3HUWj1vagr9nsxPXhnngfc7QBr1upyF5tO6AEdgQv+TkkjGAqd4ptjal3S69v+50UjPeI6ojFpN5eK8l6YcGa/9vVxahphhPXh3vibRTagNctX3qq0nZACSoNXvJ7SBjBVO4Vrguru6Pb6dOoqiC8R1RHOCx1dzt9Fu7lxPXhnngXj44DXtfctHIR3XhiSSrAJl3tXYpGojlzQTNCCqkt0qau9q6cr2VCwpY/Wj2fmlffzj4lphNVOedaquT6AAAA76PQBrwuFLKW8Cqms511n2GrcoOXghISRjAVAADBRqEN+MGGM6wlvJaPbDfWs7QXqqac4KUghYQRTAUAQHAxRxvwiw1nSGc2S7/bL713VFrbKLWeLdXx9zRUz2qDl5wOCat1ABvBVMX5ORAPcJJh+D9Aa3FRmpiQZmakzk6pv19qaHD6rICTKLQBvzhw0FpP+9R08bm3rMfKGdFGFa0meMnJkDCnAtgIpsrP74F4gFMSCSkel/ae8vBQNGqty+yXJaGGh6XRUesPChl33ikNDkojI86dF3AqhroAPzhwUHp9JncJr8Vj1vYDB505L2AZp0LCghDA5iXcD6A6Egmpry+7yJak+Xlre8IHP1rDw9KOHdlFtmS93rHD+jrgBiHTNHMTaVwulUqpublZhw4dUiQScfp0AGeZpvTCq8XXyW6slz72IQLR4AqZIktSVihapvi2e/6ykTbUMd5RcG54SCFFI1Htie/hseUa4H4A1WEYUkdHbpGdEQpZI9t79nj3MfLFRWndutwi+1ThsHTkCI+RozpWU4cyog143aHDxYtsSTp6zGoHuECtQ8KCFMDmBdwPoDqSycJFtmT9XX5uzmrnVRMTxYtsyfr6xERtzgcohjnaQDWl09UPJ1upyF5tO6AGahkSZkcAG6Fd9nE6EM9LFo8vauKlCc38fkad6zvVf1G/GtYwTIf8Fkr8kSm1nRvNzNjbbrWcCJkLQrCdX1FoA9UyMyftfWvZtr1S9Byps82+4yxf0qvSdkCN1CokrNIANkK77OVkIJ6XDO8a1ujzozLMk8N3dz51pwYvHdTI1aQ9IVdLiT8ypbZzo85Oe9uthhMhc0EItvMz5mgD1ZCvyD6VncU2c7SBojJzgudT81lzwjOKzQnOzCdfvl+15pMHQSX3IyiGdw1rx3M7Cn596LIhim3kyMzRnp+3fjVYjjna5cuEzC2/rplfqyYn7S98nTgmVsYcbcBJ6XTxIluyvp5O23O8UMhawquYznaKbARWuC6s8Z5xScpJO8+8HusZyynqjLSh+FQ8bzGY2TYwNSAjvcKEQWQp934ExeLxRY0+P1q0zejzo1o8vlijM4JXhMPWSKeU+7/8zOuxMe8W2ZJVPA8OFm8zOGhvkW0Y1qhyvj9eZLYNDKw8d9ztx4T9KLQBu/1uv73tSrHhDOn8ztzHwxvrre2so42AKyeAjdCu6ql1IJ6XTLw0kfW4eD6GaWjiJdKekCsWs0Y6N2X/aCka9c8I6MiINDSU+weDcNjabvc62k6EzAUh2C4ImKMNrMQ0TyZ7N9RLzU3FR4ffO1ra9y3WbrXHlKxi+qzTV78fVkQQlj+sNoCN0K7qqmUgnpfM/L60FKdS29UKn5OF1TrMKhaTenv9HaA1MiLde6+VLj4zY83J7u+vzpJeToTMBSHYLggotIFiDhyUfjWbPf+5od56VLvQKPHaxtK+d6F25RwzIxSSTie3wE4EYfnLagLYCO2qvloF4nlJ5/rSUpxKbVcLfE4W5lSYVTgsdXdX7/u7QUOD9fh0tTkRMheEYLsgqMqj4/Pz8/riF7+oM888U+vWrdOHP/xhvfzyy0tfN01T99xzj1pbW7V27Vp1d3frF7/4RTVOBSjfgYPS6zO5IWOLx6ztBw7m36/17NK+f7525R4TVZEJwlr++PB8al59O/uUmE44dGaoha72LkUj0Zx5xBkhhdQWaVNXe1eNzwx+1n9Rv8Kh4kOP4VBY/Rf11+iMiuNzsrBMmNXyR4Dn563tieBeGk/p6rL+OFLoAcFQSGprs9p5+Ziwn+2F9sGDB/Xxj39c9fX1+vGPf6zXX39d999/v04//fSlNiMjIxodHdUDDzygF198URs3btTVV1+tw4cP2306QHlM0xpVLmZmNn9KRV2dlSpeTPSc3PW0KzkmbEcQFgjtghMa1jRo8NLiaU+Dlw66Yj1tPicLI8zKP5wImQtCsF0Q2F5of+tb31JbW5t+8IMf6E//9E/V0dGhP/uzP1PniQXtTNPU2NiY/vqv/1qxWEwXXHCBHnroIR05ckQPP/xw3u959OhRpVKprH9AVWXmORdz9JjVLp/OtsLFdqGlvSo9JmxFEBYkQrvgjJGrRzR02VDOyHY4FHbV0l58ThZGmJW/OBEyF4RgO7+zfY72E088oWuvvVZ//ud/rt27d2vTpk3q7+/XLbfcIknas2eP9u3bp2uuuWZpn8bGRl1xxRV67rnndOutt+Z8z29+85v627/9W7tPFShspYK3lHadbdK5m6x08feOWnOyW8/OHcm285iwDUFY7lbL4CWnQrsIlwq2katHdO+V92ripQnN/H5Gnes71X9RvytGsjP4nCyMMCv/cSJkLgjBdn5me6H961//Wg8++KAGBwd1991362c/+5m+8pWvqLGxUX/5l3+pffv2SZLOOSd7tO+cc87Rb3/727zf86677tLgKYvmpVIptbXlGREE7LJ8maxy29XVSdGNtT0mbEEQlns5EbxU69AuwqUgWY+RD1wy4PRpFMTnZGGEWfmTEyFzQQi28yvbHx1Pp9P6yEc+ou3bt+tP/uRPdOutt+qWW27Rgw8+mNUutGzCgWmaOdsyGhsbFYlEsv4BVdXctHJB23hi+SwvHxMFEYTlTkEIXgrCe4Q/dLV36cz6qGQWSGwyQzqzPpifk4RZAbC90G5padH555+ftW3r1q2anbVCnjZutEb3MiPbGfv3788Z5QYcEwpZy2kV09lu7xrVThwTBRGE5T5BCF4KwnuEj5hh6ccnEpuWF9uZ1z8es9oFDGFWAGwvtD/+8Y/rjTfeyNr25ptvavPmzZKkc889Vxs3btSuXbuWvr64uKjdu3frsssus/t0gPJtOEM6vzN3lLmx3tq+0prWXjkmCiIIy12CELwUhPcI/0gmpbefjUk7J6XUssSmVFTaOam3n40FNvCLMCsg2Gyfo33HHXfosssu0/bt27Vt2zb97Gc/03e/+11997vflWQ9Mj4wMKDt27frvPPO03nnnaft27dr3bp1uuGGG+w+HaAyG86Qzjr9ZCJ4w4lHt6s5quzEMVGQU0FYyBWE4KUgvEf4x1KQ13RM+n+90uak9H8WpHdbpN92LY1kBznwizArILhsL7QvvvhiPfroo7rrrrv0jW98Q+eee67Gxsb0hS98YanN8PCw3nvvPfX39+vgwYP62Mc+pqeeekpNTcw9hQuFQtLpNc4FcOKYKKjWQVhes3h8sSbJyF4NXlpNerhX3yOCKSvIywxLv+leuV0AEWYFBFPINM3ciWAul0ql1NzcrEOHDhGMBgAOGt41rNHnR2WYJ+cMh0NhDV46aPtav0baUMd4h+ZT83nnMIcUUjQS1Z74Htc8cbDa9HAvvkcEl2FIHR3F14tua5P27GEEF4A/rKYOtX2ONgAgGIZ3DWvHczuyimxJMkxDO57boeFdw7Yez2sBdeWkh3vtPSLYwmHpL/6ieJv/+38psgEEE4U2AGDVFo8vavT50aJtRp8f1eLxRVuP65WAukrSw73yHgHDkH74w+JtHnnEagcAQWP7HG0AgP9NvDSRM5K9nGEamnhpQgOXDNh6bC8E1K0mPTzf/H8vvEcgmSz+2Lgkzc1Z7ZijDCBoKLQBeM5qwqVQHTO/n6m4nWEYSiaTWlhYUEtLi7q6uhQu8RnTcgPqatV37EgPJ4QPbldqmrhfUscNw//p4UF4j0CtUGgD8JTVhkuhOjrXd1bULpFIKB6Pa+8pw2HRaFTj4+OKVWlx2Vr2HdLDEQSlpon7IXU8kZDi8ewR/GhUGh/3z3rYQXiPQC2ROg7AMzLhUsvnvWZCopi/WjuLxxe1bvu6oo+Ph0NhHbn7SM5SX4lEQn19fVr+v5/QibXiJycnbS+2a913SA9HEGRSx+fnpXy/TYZCVqHm9dTxRELq68t9jyc+sjQ56f1CNAjvEbADqeMAfKeScCnYr2FNgwYvHSzaZvDSwZwi2zAMxePxnCJb0tK2gYEBGTamJznRd0gPRxCEw9Zop3SyIMvIvB4b83aRbRjWKG++PyRktg0MeDvwLQjvEXAChTYAT1hNuBRqY+TqEQ1dNqRwKPu36HAorKHLhvKuo51MJrMeF1/ONE3Nzc0pmbTvPjrVd0gPRxDEYtZo56bsbq5o1B+joCsFvpnmycA3rwrCewScwBxtAJ5gR7hUuRaPL2ripQnN/H5Gnes71X9Rf85IbVCNXD2ie6+8t+Trs1BiKlKp7Ur6Xg72HdLD4SWLi9LEhDQzI3V2Sv39UkMJH3WxmNTb688QrSAEvgXhPQJOoNAG4AlOhUsN7xrW6POjWXOR73zqTg1eOph3xDaIGtY0lLyEV0uJqUiltivpezkcTEZ6OLxgeFgaHc1+PPjOO6XBQWmkhI+6cNifS3gFIfAtCO8RcAKPjgPwhK72LkUj0Zz5rhkhhdQWaVNXe5dtxxzeNawdz+3ICfwyTEM7ntuh4V3Dth0rKLq6uhSNRpeCz5YLhUJqa2tTV5d999GJvgN4yfCwtGNH7hxcw7C2Dwf4o66ry3oMvsBHlkIhqa3NaudVQXiPgBMotAF4Qq3DpRaPL2r0+dGibUafH9Xi8UVbjhcU4XBY4yfSk5YX25nXY2NjJa+nXdIxCSYDClpctEayixkdtdoFURAC34LwHgEnUGgD8IxahktNvDRRdOkqyRrZnnhpwrZjBkUsFtPk5KQ2LUtPikajVVnaSyKYDChkYmLlNGnDsNoFld8D36RgvEeg1pijDfiIkTZ8H7pUq3Cpmd/P2NoO2WKxmHp7e5VMJrWwsKCWlhZ1dXXZOpKdc0yCyYAcMyV+hJXazq/8HPiWEYT3CNQShTbgE4nphOJT8axljKKRqMZ7xn03WleLcKnO9Z22tkOucDis7hqnJxFMBmTrLPEjrNR2fubXwLdTBeE9ArUSMs18y9O7WyqVUnNzsw4dOqRIJOL06QCOS0wn1LezT6ayf5wz8095NHb1Fo8vat32dUUfHw+Hwjpy9xGW+gLgWYuL0rp1xR8fD4elI0dKW+oLAPxsNXUoc7QBjzPShuJT8ZwiW9LStoGpARnpFSbhIUvDmgYNXjpYtM3gpYMU2QA8raHBWsKrmMFBimwAWC0KbcDjkrPJrMfFlzNlai41p+RssoZn5Q8jV49o6LIhhUPZE9TCobCGLhtiHW0AvjAyIg0N5c7FDYet7aWsow0AyMYcbWAFbg8YWzi8YGu7WnH7dc0YuXpE9155ryZemtDM72fUub5T/Rf1M5IN1/LKz5ZTDKO2YU+1Pl65Rkake++10sVnZqw52f39jGQHjWEYNQ2prIQT5+ql6wPnUWgDRXghYKylqcXWdrXghet6qoY1DRq4ZMDp0wBW5LWfrVpLJKR4XNp7ykNA0ai1hnA1li+q9fEq1dAgDQw4fRZwSiKRUDwe195TOmw0GtX4+HhVll2shBPn6qXrA3cgDA0owCsBY0baUMd4h+ZT83nnaYcUUjQS1Z74HleMannlugJew89WcYmE1NcnLf+tJ2RdHtvXCq718YBKJBIJ9fX1aXlZEDrRYScnJ11TTDpxrl66Pqiu1dShFNpAHpnitdDcZ7cWr5Kyfsl22y/YXruugFfws1WcYUgdHdkjy6cKhayR5j177Hmsu9bHAyphGIY6OjqyRmpPFQqFFI1GtWfPHscfk3biXL10fVB9pI4DFfJawFhsa0yT2ya1KbIpa3s0EnVNkS1577oCXsHPVnHJZOGiV7JGnefmrHZePB5QiWQyWbCIlCTTNDU3N6ekCzqsE+fqpesDd2GONpCHFwPGYltj6t3S6+oQJC9eV8AL7PrZ8kpw12otlPiRUmo7tx0PqMRCiR2x1HbV5MS5eun6wF0otIE8vBgwJknhurC6O7qdPo2CvHpdAbez42fLa8Fdq9FS4kdKqe3cdjygEi0ldsRS21WTE+fqpesDd2GONpCH1wLGvILrClRHpT9bfg/uysyZnp/PfY9S9eZo1+p4QCUyc5Dn5+dzwr4kd81BduJcvXR9UH3M0QYqFK4La7xnXNLJQLGMzOuxnjGKwVXiugLVUcnPlmFYI9n5CsLMtoEBq51XhcPWyLx08o8HGZnXY2P2Fb21Ph5QiXA4rPETHTa0rMNmXo+NjbmiiHTiXL10feAuFNpAAV4JGPMaritQHeX+bAUluCsWs0bmN2VfHkWj1Rmxr/XxgErEYjFNTk5q07IOG41GXbd0lRPn6qXrA/fg0fFqMk3p0GFp8ZjUUC81N+X+aRuuZ6QNVweMeZUT17XcY9IH4CWr7a8//KF0ww0rf9+HH5b+4i9sPFGH1DrwzYmAOb+G2nmVYRhKJpNaWFhQS0uLurq6XDv6ybm675hwF9bRdoMDB6VfzVpFdkZDvfS+dmnDGc6dFxBQiemE4lPxrCWQopGoxnvGi46il7sf4BXPPCNdeeXK7Z5+WururvbZoFJ+DrXzokQioXg8nrU8VDQa1fj4OKOggAdRaDvtwEHp9ZnCXz+/k2IbqKHEdEJ9O/tyQqIyc1cLPVZb7n6AlxDc5R9+D7XzmkQiob6+vpwArcy8Xh45BryHQttJpim98Gr2SPZyjfXSxz7EY+RADWTSmE8dkT5VoTTmcvcDvChToEnZRRoFmndk/mBSaL49fzCprUxS9d4CN4SkasCbSB13UmZOdjFHj1ntAFRdcjZZsFiWJFOm5lJzSs5mJz2Vux/gRQR3eV9QQu28IplMFiyyJck0Tc3NzSnJDQF8a43TJ+A7KxXZq20HuJzbQ80WDi+U9D2Xtyt3P6cR3IZyxWJSby8hWl61UOJHUantasWv4VILJV7oUtsB8B4Kbbs11NvbDnAxJ4LCVnvMlqaWkr7v8nbl7uckgttQqXCYwDOvainxo6jUdrXg56CwlhIvdKntAHgPc7TtxhxtBIQTQWHlHDMz13o+NZ+zX2bfYnO0V7ufUwhuA4LNa6F2fg8Ky8zRnp+fz3mPEnO0Aa9ijraTQiFrCa9iOtspsuFpRtpQfCqetwDNbBuYGpCRNhw/ZrgurPGecUkni86MzOuxnrGcYrnc/ZzgxP0A4C7hsLWEl5T7K0bm9diYO4pswzAUj8fzFqCZbQMDAzIM735mhcNhjZ+4IaFlNyTzemxsjCIb8DEK7WrYcIa1hNfyx8Mb61naC77gRFBYJceMbY1pctukNkWyk56ikWjRkd5y96s1gtsASN4JtQtKUFgsFtPk5KQ2Lbsh0WjU8yP2AFbGHO1q2XCGdNbpJ1PIG+ql5iZGslEStwdaOREUVukxY1tj6t3Su+rrWu5+teTV4DYUZxgEk2H1vBBqZ0dQWCUharUMYIvFYurt7fVl4JtdFhcXNTExoZmZGXV2dqq/v18NDQ1On5bnORE0yL3MRqFdTaGQdLrL5pDD9bwQaOVEUJgdxwzXhdXd0b3qY5e7X614MbgNxSUSUjyevVxTNGo9GswgGFbi9lC7SoPCKglRcyKALRwOq9vNN8RBw8PDGh0dzZomcOedd2pwcFAjIyMOnpm3OdHPuZe5CEMDXMQrgVZOBIV5LZyslrg2/pJISH19uYFWmQei3PQIMFCOSoLCKglR83sAm9cMDw9rx44dBb8+NDQU2AKtEk708yDdy9XUoRTagEtkiqVCc23dVixl/iggKau4q0XqeC2P6RVcG3/IJEcXmr7qtuRooFyZYkBSVkFQrBjIFOiF5ncXK9Ar2Rf2W1xc1Lp164oG3oXDYR05ciTQjx6vlhP9PGj3ktRxwIO8FmjlRFCYV8LJnMC18YdksnCRLVmj3HNzVjvAy8oJCqskRC0oAWxeMTExsWKqvGEYmpiYqNEZ+YMT/Zx7WRhztAGX8GKglRNBYV4IJ3MK18b7SsyIKrkd4GarDQqrJETNjgA22GdmZsbWdrA40c+5l4VRaAMu4dVAKyeCwtweTuYkro23lZgRVXI7wO1WExRWSYhapQFssFdnZ6et7WBxop9zLwtjjjbgEgRaAcjM0Z6fzw1Dk5ijjWCrJEStkn1hv6DN660VJ/p50O4lc7QBDwrXhTXeMy7pZIBVRub1WM8YRTbgY+GwtYSXdDJlPCPzemyMIhvBFA6HNX7iByS07Ack83psbCxvAVHJvrBfQ0ODBgcHi7YZHBz0RWFWS070c+5lYRTagIsQaAUgFrOW8FqWEaVolKW9gHJC1OzYF/YbGRnR0NBQTtEXDod9tRxUrTnRz7mX+fHoOOBCRtog0AoIOMOw0sUXFqw52V1djGQDGYZhlByiZue+sN/i4qImJiY0MzOjzs5O9ff3B3L0025O9PMg3EvW0QYAAAAAwEbM0QYAAAAAwCEU2gAAAAAA2IhCGwAAAAAAG1FoAwAAAABgIwptAAAAAABsRKENAAAAAICNKLQBAAAAALARhTYAAAAAADai0AYAAAAAwEYU2gAAAAAA2IhCGwAAAAAAG1FoAwAAAABgIwptAAAAAABsRKENAAAAAICNKLQBAAAAALARhTYAAAAAADai0AYAAAAAwEYU2gAAAAAA2IhCGwAAAAAAG1FoAwAAAABgozVOn0A5TNOUJKVSKYfPBAAAAAAQBJn6M1OPFuPJQvvw4cOSpLa2NofPBAAAAAAQJIcPH1Zzc3PRNiGzlHLcZdLptH73u9+pqalJoVDI6dMpKpVKqa2tTXNzc4pEIk6fDjyEvoNy0XdQCfoPykXfQbnoOyhXrfuOaZo6fPiwWltbVVdXfBa2J0e06+rqFI1GnT6NVYlEInxwoCz0HZSLvoNK0H9QLvoOykXfQblq2XdWGsnOIAwNAAAAAAAbUWgDAAAAAGAjCu0qa2xs1Ne//nU1NjY6fSrwGPoOykXfQSXoPygXfQflou+gXG7uO54MQwMAAAAAwK0Y0QYAAAAAwEYU2gAAAAAA2IhCGwAAAAAAG1FoAwAAAABgIwptAAAAAABsRKFdhp/+9Kf6zGc+o9bWVoVCIT322GMF2956660KhUIaGxvL2n706FHdfvvtOuuss/RHf/RH+uxnP6u9e/dW98ThuJX6zk033aRQKJT175JLLslqQ98JplI+d6anp/XZz35Wzc3Nampq0iWXXKLZ2dmlr9N3gmul/rP8cyfzb8eOHUtt6D/BtFLfeffdd3XbbbcpGo1q7dq12rp1qx588MGsNvSdYFqp77z11lu66aab1NraqnXr1qmnp0e//OUvs9rQd4Lpm9/8pi6++GI1NTXp7LPP1nXXXac33ngjq41pmrrnnnvU2tqqtWvXqru7W7/4xS+y2jjdfyi0y/CHP/xBF154oR544IGi7R577DH953/+p1pbW3O+NjAwoEcffVSPPPKInn32Wb377rv69Kc/LcMwqnXacIFS+k5PT48WFhaW/v37v/971tfpO8G0Ut+ZmZnR5Zdfrg984AN65pln9D//8z/6m7/5G5122mlLbeg7wbVS/zn1M2dhYUHf//73FQqF9PnPf36pDf0nmFbqO3fccYempqb0z//8z5qentYdd9yh22+/XY8//vhSG/pOMBXrO6Zp6rrrrtOvf/1rPf744/rv//5vbd68WVdddZX+8Ic/LLWj7wTT7t279eUvf1kvvPCCdu3apePHj+uaa67J6hsjIyMaHR3VAw88oBdffFEbN27U1VdfrcOHDy+1cbz/mKiIJPPRRx/N2b53715z06ZN5muvvWZu3rzZ/Pu///ulr73zzjtmfX29+cgjjyxtm5+fN+vq6sypqakanDXcIF/fufHGG83e3t6C+9B3YJr5+871119vfvGLXyy4D30HGYX+v3Wq3t5e85Of/OTSa/oPTDN/3/ngBz9ofuMb38ja9pGPfMT82te+ZpomfQeW5X3njTfeMCWZr7322tK248ePm+vXrzf/8R//0TRN+g5O2r9/vynJ3L17t2mapplOp82NGzea991331Kb//3f/zWbm5vN73znO6ZpuqP/MKJdBel0Wl/60pc0NDSkD37wgzlff/nll3Xs2DFdc801S9taW1t1wQUX6LnnnqvlqcKFnnnmGZ199tl6//vfr1tuuUX79+9f+hp9B/mk02k9+eSTev/7369rr71WZ599tj72sY9lPaZH30Gp3nrrLT355JO6+eabl7bRf1DI5ZdfrieeeELz8/MyTVNPP/203nzzTV177bWS6DvI7+jRo5KU9dRVOBxWQ0ODnn32WUn0HZx06NAhSdL69eslSXv27NG+ffuy+kZjY6OuuOKKpb7hhv5DoV0F3/rWt7RmzRp95Stfyfv1ffv2qaGhQWeccUbW9nPOOUf79u2rxSnCpT71qU/pX/7lX/STn/xE999/v1588UV98pOfXPofEn0H+ezfv1/vvvuu7rvvPvX09Oipp57S5z73OcViMe3evVsSfQele+ihh9TU1KRYLLa0jf6DQr797W/r/PPPVzQaVUNDg3p6ejQxMaHLL79cEn0H+X3gAx/Q5s2bddddd+ngwYNaXFzUfffdp3379mlhYUESfQcW0zQ1ODioyy+/XBdccIEkLd3/c845J6vtqX3DDf1nTU2OEiAvv/yyxsfH9V//9V8KhUKr2tc0zVXvA3+5/vrrl/77ggsu0EUXXaTNmzfrySefzPqldzn6TrCl02lJUm9vr+644w5J0oc//GE999xz+s53vqMrrrii4L70HSz3/e9/X1/4wheyRpoKof/g29/+tl544QU98cQT2rx5s37605+qv79fLS0tuuqqqwruR98Jtvr6ev3rv/6rbr75Zq1fv17hcFhXXXWVPvWpT624L30nWG677Ta9+uqrS086nGp5Pyilb9Sy/zCibbNkMqn9+/ervb1da9as0Zo1a/Tb3/5WX/3qV9XR0SFJ2rhxoxYXF3Xw4MGsfffv35/zlxkEW0tLizZv3ryUwknfQT5nnXWW1qxZo/PPPz9r+9atW5dSx+k7KEUymdQbb7yhv/qrv8raTv9BPu+9957uvvtujY6O6jOf+Yw+9KEP6bbbbtP111+vv/u7v5NE30FhH/3oR/XKK6/onXfe0cLCgqampvT222/r3HPPlUTfgXT77bfriSee0NNPP61oNLq0fePGjZKUMzJ9at9wQ/+h0LbZl770Jb366qt65ZVXlv61trZqaGhI//Ef/yHJ+mCpr6/Xrl27lvZbWFjQa6+9pssuu8ypU4cLvf3225qbm1NLS4sk+g7ya2ho0MUXX5yz9MWbb76pzZs3S6LvoDTf+9739NGPflQXXnhh1nb6D/I5duyYjh07prq67F8nw+Hw0pM29B2spLm5WRs2bNAvf/lLvfTSS+rt7ZVE3wky0zR12223KZFI6Cc/+cnSH18yzj33XG3cuDGrbywuLmr37t1LfcMN/YdHx8vw7rvv6le/+tXS6z179uiVV17R+vXr1d7erjPPPDOrfX19vTZu3KgtW7ZIsj5Qbr75Zn31q1/VmWeeqfXr1+vOO+/UH//xHxd9zAreV6zvrF+/Xvfcc48+//nPq6WlRb/5zW90991366yzztLnPvc5SfSdIFvpc2doaEjXX3+9PvGJT+jKK6/U1NSU/u3f/k3PPPOMJPpO0K3UfyQplUrpRz/6ke6///6c/ek/wbVS37niiis0NDSktWvXavPmzdq9e7f+6Z/+SaOjo5LoO0G2Ut/50Y9+pA0bNqi9vV0///nPFY/Hdd111y2FV9F3guvLX/6yHn74YT3++ONqampaGrlubm7W2rVrFQqFNDAwoO3bt+u8887Teeedp+3bt2vdunW64YYblto63n9qkm3uM08//bQpKeffjTfemLf98uW9TNM033vvPfO2224z169fb65du9b89Kc/bc7Ozlb/5OGoYn3nyJEj5jXXXGNu2LDBrK+vN9vb280bb7wxp1/Qd4KplM+d733ve+b73vc+87TTTjMvvPBC87HHHsv6HvSd4Cql//zDP/yDuXbtWvOdd97J+z3oP8G0Ut9ZWFgwb7rpJrO1tdU87bTTzC1btpj333+/mU6nl74HfSeYVuo74+PjZjQaXfqd52tf+5p59OjRrO9B3wmmfP1GkvmDH/xgqU06nTa//vWvmxs3bjQbGxvNT3ziE+bPf/7zrO/jdP8JnXgzAAAAAADABszRBgAAAADARhTaAAAAAADYiEIbAAAAAAAbUWgDAAAAAGAjCm0AAAAAAGxEoQ0AAAAAgI0otAEAAAAAsBGFNgAAAAAANqLQBgAAAADARhTaAAAAAADYiEIbAAAAAAAb/X8eYHFveXHhCAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 그래프 크기 조정\n", "plt.figure(figsize=(12,8))\n", "\n", "myScatter('Extremely Weak','black')\n", "myScatter('Weak','blue')\n", "myScatter('Normal','green')\n", "myScatter('Overweight','pink')\n", "myScatter('Obesity','purple')\n", "myScatter('Extreme Obesity','red')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 19, "id": "c25f8844", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:16:54.440276Z", "start_time": "2023-01-26T02:16:54.423244Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
GenderHeightWeightLabel
165Male18178Normal
231Female15378Normal
234Male14578Obesity
\n", "
" ], "text/plain": [ " Gender Height Weight Label\n", "165 Male 181 78 Normal\n", "231 Female 153 78 Normal\n", "234 Male 145 78 Obesity" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bmi.loc[bmi['Weight']==78]" ] }, { "cell_type": "code", "execution_count": 20, "id": "4f8cfd0f", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:18:36.654659Z", "start_time": "2023-01-26T02:18:36.638658Z" } }, "outputs": [], "source": [ "bmi.loc[231,'Label'] = 'Obesity'" ] }, { "cell_type": "code", "execution_count": 21, "id": "e74caea1", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:18:44.966738Z", "start_time": "2023-01-26T02:18:44.950738Z" } }, "outputs": [ { "data": { "text/plain": [ "'Obesity'" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bmi.loc[231,'Label']" ] }, { "cell_type": "markdown", "id": "ca3c72c9", "metadata": {}, "source": [ "### 모델 선택 및 하이퍼 파라미터 튜닝\n", "- 머신러닝 모델을 불러와서 사용하는 단계\n", "- 머신러닝 모델의 학습에 변화를 주고 싶다 - 하이퍼 파라미터 튜닝\n", "- 하이퍼 파라미터 = 수정 가능한 파라미터" ] }, { "cell_type": "markdown", "id": "ba58966f", "metadata": {}, "source": [ "#### 모델 로드\n", "- KNN 모델 : 머신러닝 모델" ] }, { "cell_type": "code", "execution_count": 29, "id": "7810a1ff", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:40:14.334710Z", "start_time": "2023-01-26T02:40:14.327710Z" } }, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsClassifier\n", "knn_bmi = KNeighborsClassifier(n_neighbors=5)" ] }, { "cell_type": "markdown", "id": "1ec24f23", "metadata": {}, "source": [ "#### 문제와 정답 분리" ] }, { "cell_type": "code", "execution_count": 23, "id": "372f66f3", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:35:59.208948Z", "start_time": "2023-01-26T02:35:59.193951Z" } }, "outputs": [], "source": [ "# 문제 = Height, Weight\n", "X = bmi.loc[:,'Height':'Weight']\n", "\n", "# 정답 = Label\n", "y = bmi.loc[:,'Label']" ] }, { "cell_type": "markdown", "id": "ba610248", "metadata": {}, "source": [ "#### 훈련(train)과 평가(test)로 분리\n", "- 훈련 : 평가 = 7 : 3" ] }, { "cell_type": "code", "execution_count": null, "id": "6e47d0fe", "metadata": {}, "outputs": [], "source": [ "X_train = X.iloc[:350]\n", "X_test = X.iloc[350:]\n", "y_train = y.iloc[:350]\n", "y_test = y.iloc[350:]" ] }, { "cell_type": "markdown", "id": "e94320a7", "metadata": {}, "source": [ "##### 훈련, 평가 데이터 분리 함수" ] }, { "cell_type": "code", "execution_count": 24, "id": "12f0872e", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:36:01.858541Z", "start_time": "2023-01-26T02:36:01.839540Z" } }, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)" ] }, { "cell_type": "code", "execution_count": 25, "id": "72f5e7c9", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:36:35.543103Z", "start_time": "2023-01-26T02:36:35.535103Z" } }, "outputs": [ { "data": { "text/plain": [ "((350, 2), (150, 2), (350,), (150,))" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train.shape, X_test.shape, y_train.shape, y_test.shape" ] }, { "cell_type": "markdown", "id": "600ff0d8", "metadata": {}, "source": [ "### 학습" ] }, { "cell_type": "code", "execution_count": 30, "id": "69788d8f", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:42:54.653079Z", "start_time": "2023-01-26T02:42:54.640057Z" } }, "outputs": [ { "data": { "text/plain": [ "KNeighborsClassifier()" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# fit(문제, 정답)\n", "# KNN 모델 BMI데이터를 학습 > BMI데이터에 대한 규칙을 찾음\n", "# X데이터(Height, Weight)를 통해서 y데이터(Label)의 규칙을 찾음\n", "knn_bmi.fit(X_train,y_train)" ] }, { "cell_type": "markdown", "id": "328ae7a5", "metadata": {}, "source": [ "### 평가\n", "- 모델이 제대로 만들어졌는지 평가 = score\n", "- 새로운 데이터에 대해서 예측 = predict" ] }, { "cell_type": "code", "execution_count": 31, "id": "aac54303", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T02:47:39.810240Z", "start_time": "2023-01-26T02:47:39.800240Z" }, "collapsed": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\base.py:450: UserWarning: X does not have valid feature names, but KNeighborsClassifier was fitted with feature names\n", " warnings.warn(\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "data": { "text/plain": [ "array(['Normal'], dtype=object)" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 예측\n", "# predict(문제)\n", "# 문제는 2차원 데이터\n", "knn_bmi.predict([[174,68]])" ] }, { "cell_type": "code", "execution_count": 32, "id": "4bdf5ddd", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T03:06:01.724597Z", "start_time": "2023-01-26T03:06:01.704598Z" }, "collapsed": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "data": { "text/plain": [ "0.8933333333333333" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 만들어진 모델을 평가\n", "# score(문제데이터, 정답데이터)\n", "# X_test가 예측한 정답과 정답 데이터(y_test)를 비교\n", "knn_bmi.score(X_test,y_test)" ] }, { "cell_type": "code", "execution_count": 33, "id": "da1af84f", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T03:07:44.203932Z", "start_time": "2023-01-26T03:07:44.176929Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "data": { "text/plain": [ "0.9428571428571428" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 학습을 할 때 사용된 데이터이기 때문에 test데이터보다 score값이 높음\n", "knn_bmi.score(X_train,y_train)" ] }, { "cell_type": "markdown", "id": "7917b8c9", "metadata": {}, "source": [ "### 하이퍼 파라미터 튜닝\n", "- KNN모델의 하이퍼 파라미터(n_neighbors)의 변화에 따라 score값을 확인" ] }, { "cell_type": "code", "execution_count": 36, "id": "397530c3", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T03:30:19.870352Z", "start_time": "2023-01-26T03:30:19.402109Z" }, "collapsed": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n", "C:\\Users\\SMHRD\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.\n", " mode, _ = stats.mode(_y[neigh_ind, k], axis=1)\n" ] } ], "source": [ "# 점수를 저장할 list 생성\n", "train_acc = []\n", "test_acc = []\n", "\n", "# n_neighbors를 1~30까지 돌림\n", "for i in range(1,31):\n", " # n_neighbors를 변경해가면서 모델 생성\n", " knn = KNeighborsClassifier(n_neighbors=i)\n", " \n", " # 생성된 모델에 학습\n", " knn.fit(X_train,y_train)\n", " \n", " # 만들어진 규칙으로 score 값 저장\n", " train_acc.append(knn.score(X_train,y_train))\n", " test_acc.append(knn.score(X_test,y_test))\n", " \n", " # print(f\"{i}번째 score : {knn.score(X_test,y_test)}\")" ] }, { "cell_type": "code", "execution_count": 37, "id": "d4fbe06c", "metadata": { "ExecuteTime": { "end_time": "2023-01-26T03:30:22.967107Z", "start_time": "2023-01-26T03:30:22.840434Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5jklEQVR4nO3deVhUZfvA8e8w7MgqyKIIuKO44oIYaWYY5daKvuVSWtrmq7a8ma9lyy+zxaxcKpe05VUrtbLcsMxdUcIF9x0XEEEFlH04vz+OM4osMjDMsNyf65qL4cxzzvOccXRun/tZNIqiKAghhBBC1HBWlm6AEEIIIYQpSFAjhBBCiFpBghohhBBC1AoS1AghhBCiVpCgRgghhBC1ggQ1QgghhKgVJKgRQgghRK0gQY0QQgghagVrSzfAnAoLC7lw4QLOzs5oNBpLN0cIIYQQ5aAoCpmZmfj5+WFlVXp/TJ0Kai5cuIC/v7+lmyGEEEKICjh79iyNGjUq9fU6FdQ4OzsD6pvi4uJi4dYIIYQQojwyMjLw9/c3fI+Xpk4FNfqUk4uLiwQ1QgghRA1zp6EjMlBYCCGEELWCBDVCCCGEqBUkqBFCCCFErVCnxtQIIYQQpqYoCgUFBeh0Oks3pcbSarVYW1tXerkVCWqEEEKICsrLyyMpKYmsrCxLN6XGc3R0xNfXF1tb2wpfQ4IaIYQQogIKCws5deoUWq0WPz8/bG1tZWHXClAUhby8PC5dusSpU6do3rx5mQvslUWCGiGEEKIC8vLyKCwsxN/fH0dHR0s3p0ZzcHDAxsaGM2fOkJeXh729fYWuIwOFhRBCiEqoaK+CKMoU76P8SQghhBCiVjA6qNm0aRP9+/fHz88PjUbDL7/8csdzNm7cSGhoKPb29jRp0oQvv/yyWJlly5bRunVr7OzsaN26NStWrChWZvbs2QQFBWFvb09oaCibN282tvlCCCGEqKWMDmquX79O+/btmTlzZrnKnzp1igceeICIiAji4+N54403GDt2LMuWLTOU2b59O9HR0QwdOpS9e/cydOhQHn/8cXbu3Gkos3TpUsaNG8ekSZOIj48nIiKCqKgoEhMTjb0FIYQQQphQr169GDdunKWbgUZRFKXCJ2s0rFixgkGDBpVa5j//+Q+//fYbhw4dMhwbM2YMe/fuZfv27QBER0eTkZHB6tWrDWXuv/9+3N3dWbx4MQDdunWjU6dOzJkzx1AmODiYQYMGMXXq1HK1NyMjA1dXV9LT02XvJyGEEJWSk5PDqVOnDBmEmuBOs7OGDx/OwoULjb7u5cuXsbGxueOGk2Up6/0s7/d3lY+p2b59O5GRkUWO9e3bl927d5Ofn19mmW3btgHqCPO4uLhiZSIjIw1lSpKbm0tGRkaRh6kVFirM2nCcCUv3cC23wOTXF0IIIUwlKSnJ8JgxYwYuLi5Fjn322WdFyuu/p+/Ew8OjUgGNqVR5UJOcnIy3t3eRY97e3hQUFJCamlpmmeTkZABSU1PR6XRllinJ1KlTcXV1NTz8/f1NcUtFWFlp+GbrKZbHn+fUpesmv74QQoiaQ1EUsvIKzP4ob9LFx8fH8HB1dUWj0Rh+z8nJwc3NjR9//JFevXphb2/P999/T1paGkOGDKFRo0Y4OjrStm1bQxZF7/b0U2BgIO+//z5PP/00zs7ONG7cmK+//tqUb3WJzLJOze3dXfo3/9bjJZW5/Vh5ytxq4sSJTJgwwfB7RkZGlQQ2TTzrkXrtMidTr9G2kavJry+EEKJmyM7X0frNtWav9+A7fXG0Nc1X+n/+8x8++eQTvvnmG+zs7MjJySE0NJT//Oc/uLi48McffzB06FCaNGlCt27dSr3OJ598wrvvvssbb7zBzz//zHPPPcfdd99Nq1atTNLOklR5UOPj41OsNyUlJQVra2vq169fZhl9z4ynpydarbbMMiWxs7PDzs7OFLdRpqYNnIg9fZkTKdeqvC4hhBCiKo0bN46HH364yLFXXnnF8Pyll15izZo1/PTTT2UGNQ888ADPP/88oAZKn376KX///XfNDmq6d+/OypUrixxbt24dnTt3xsbGxlAmJiaG8ePHFykTHh4OgK2tLaGhocTExPDQQw8ZysTExDBw4MCqvoU7aupVD4ATkn4SQog6zcFGy8F3+lqkXlPp3Llzkd91Oh0ffPABS5cu5fz58+Tm5pKbm4uTk1OZ12nXrp3huT7NlZKSYrJ2lsTooObatWscP37c8PupU6fYs2cPHh4eNG7cmIkTJ3L+/Hm+/fZbQJ3pNHPmTCZMmMAzzzzD9u3bmT9/fpF83L///W/uvvtupk2bxsCBA/n1119Zv349W7ZsMZSZMGECQ4cOpXPnznTv3p2vv/6axMRExowZU5n7N4kmXuof7IlL0lMjhBB1mUajMVkayFJuD1Y++eQTPv30U2bMmEHbtm1xcnJi3Lhx5OXllXkdfceFnkajobCw0OTtvZXR7/zu3bu55557DL/rx6zop4ElJSUVWTsmKCiIVatWMX78eGbNmoWfnx+ff/45jzzyiKFMeHg4S5Ys4b///S+TJ0+madOmLF26tEi3VnR0NGlpabzzzjskJSUREhLCqlWrCAgIqNCNm5K+p+ZU6nV0hQpaK9nQTAghRO2wefNmBg4cyJNPPgmoG3keO3aM4OBgC7esOKODml69epU5yrqk+e09e/bkn3/+KfO6jz76KI8++miZZZ5//nlDfq46aeTuiK3WityCQi5czcbfQzY2E0IIUTs0a9aMZcuWsW3bNtzd3Zk+fTrJycnVMqiRvZ9MQGulIdBTDWSOSwpKCCFELTJ58mQ6depE37596dWrFz4+PmUuumtJlVpRuKapyhWFn/s+jtUJyUzu15qRdwWZ9NpCCCGqn5q4onB1ViNWFK4rbs6Akp4aIYQQwhIkqDGRpg1uzICStWqEEEIIi5CgxkSaeKo9NSdTZa0aIYQQwhIkqDER/Vo1lzJzSc8u3wZgQgghhDAdCWpMxNneBm8XdUuGkzKuRgghhDA7CWpMyJCCku0ShBBCCLOToMaEDIOFpadGCCGEMDsJakxIpnULIYQQliNBjQk18ZL0kxBCCGEpEtSYUNMbM6BOp12nQFe1O5EKIYQQxtJoNGU+RowYUeFrBwYGMmPGDJO1tSJq9v7o1YyfqwP2Nlbk5Bdy9ko2QZ5Odz5JCCGEMJOkpCTD86VLl/Lmm29y5MgRwzEHBwdLNMtkpKfGhKysNATdmAElKwsLIYSobnx8fAwPV1dXNBpNkWObNm0iNDQUe3t7mjRpwttvv01BQYHh/ClTptC4cWPs7Ozw8/Nj7NixAPTq1YszZ84wfvx4Q6+PJUhPjYk19XLiUFIGJ1OvAd6Wbo4QQghzUhTIzzJ/vTaOUMlAYu3atTz55JN8/vnnREREcOLECZ599lkA3nrrLX7++Wc+/fRTlixZQps2bUhOTmbv3r0ALF++nPbt2/Pss8/yzDPPVPp2KkqCGhMzzIBKkcHCQghR5+Rnwft+5q/3jQtgW7khD//3f//H66+/zvDhwwFo0qQJ7777Lq+99hpvvfUWiYmJ+Pj40KdPH2xsbGjcuDFdu3YFwMPDA61Wi7OzMz4+PpW+nYqS9JOJ6bdLkGndQgghapK4uDjeeecd6tWrZ3g888wzJCUlkZWVxWOPPUZ2djZNmjThmWeeYcWKFUVSU9WB9NSYmL6nRja2FEKIOsjGUe01sUS9lVRYWMjbb7/Nww8/XOw1e3t7/P39OXLkCDExMaxfv57nn3+ejz76iI0bN2JjY1Pp+k1BghoT0/fUXL6ex+XreXg42Vq4RUIIIcxGo6l0GshSOnXqxJEjR2jWrFmpZRwcHBgwYAADBgzghRdeoFWrVuzfv59OnTpha2uLTqczY4uLk6DGxBxtrfFztedCeg4nL13Dw8nD0k0SQggh7ujNN9+kX79++Pv789hjj2FlZcW+ffvYv38/7733HgsXLkSn09GtWzccHR357rvvcHBwICAgAFDXqdm0aRODBw/Gzs4OT09Ps9+DjKmpAk0byMrCQgghapa+ffvy+++/ExMTQ5cuXQgLC2P69OmGoMXNzY25c+fSo0cP2rVrx59//snKlSupX78+AO+88w6nT5+madOmeHl5WeQeNIqiKBap2QIyMjJwdXUlPT0dFxeXKqtnym8HWLjtNKPvbsLEB4KrrB4hhBCWk5OTw6lTpwgKCsLe3t7Szanxyno/y/v9LT01VUBmQAkhhBDmJ0FNFWgqG1sKIYQQZidBTRXQBzVnLmeRVyAbWwohhBDmIEFNFfB2scPJVouuUCHxsvTWCCGEEOYgQU0V0Gg0NLnRW3NctksQQgghzEKCmirS9MZgYXVjSyGEELVVHZpEXKVM8T5KUFNFZGNLIYSo3fRbA2RlWWBX7lpI/z5WZssFWVG4iujTTzKtWwghaietVoubmxspKSkAODo6otFoLNyqmkdRFLKyskhJScHNzQ2tVlvha0lQU0WaNriRfrp0DUVR5IMuhBC1kI+PD4AhsBEV5+bmZng/K0qCmioSWN8JjQYycgpIvZaHl7OdpZskhBDCxDQaDb6+vjRo0ID8/HxLN6fGsrGxqVQPjZ4ENVXE3kZLI3cHzl7O5sSlaxLUCCFELabVak3ypSwqp0IDhWfPnm3YmyE0NJTNmzeXWX7WrFkEBwfj4OBAy5Yt+fbbb4u83qtXLzQaTbHHgw8+aCgzZcqUYq9XtpuqqsnKwkIIIYT5GN1Ts3TpUsaNG8fs2bPp0aMHX331FVFRURw8eJDGjRsXKz9nzhwmTpzI3Llz6dKlC7GxsTzzzDO4u7vTv39/AJYvX05eXp7hnLS0NNq3b89jjz1W5Fpt2rRh/fr1ht+re1Tc1Ksefx+5JIOFhRBCCDMwOqiZPn06I0eOZNSoUQDMmDGDtWvXMmfOHKZOnVqs/Hfffcfo0aOJjo4GoEmTJuzYsYNp06YZghoPD48i5yxZsgRHR8diQY21tXW17525lWxsKYQQQpiPUemnvLw84uLiiIyMLHI8MjKSbdu2lXhObm5usS3EHRwciI2NLXVQ1fz58xk8eDBOTk5Fjh87dgw/Pz+CgoIYPHgwJ0+eLLO9ubm5ZGRkFHmYk6SfhBBCCPMxKqhJTU1Fp9Ph7e1d5Li3tzfJycklntO3b1/mzZtHXFwciqKwe/duFixYQH5+PqmpqcXKx8bGkpCQYOgJ0uvWrRvffvsta9euZe7cuSQnJxMeHk5aWlqp7Z06dSqurq6Gh7+/vzG3W2n6oObslSxy8nVmrVsIIYSoayo0UPj2NVfKWodl8uTJREVFERYWho2NDQMHDmTEiBFAyWNi5s+fT0hICF27di1yPCoqikceeYS2bdvSp08f/vjjDwAWLVpUajsnTpxIenq64XH27FljbrPSPOvZ4mxvjaLA6TTprRFCCCGqklFBjaenJ1qttlivTEpKSrHeGz0HBwcWLFhAVlYWp0+fJjExkcDAQJydnfH09CxSNisriyVLlhTrpSmJk5MTbdu25dixY6WWsbOzw8XFpcjDnDQajWyXIIQQQpiJUUGNra0toaGhxMTEFDkeExNDeHh4mefa2NjQqFEjtFotS5YsoV+/flhZFa3+xx9/JDc3lyeffPKObcnNzeXQoUP4+voacwtmd3NcjQwWFkIIIaqS0bOfJkyYwNChQ+ncuTPdu3fn66+/JjExkTFjxgBqyuf8+fOGtWiOHj1KbGws3bp148qVK0yfPp2EhIQS00bz589n0KBB1K9fv9hrr7zyCv3796dx48akpKTw3nvvkZGRwfDhw429BbOSGVBCCCGEeRgd1ERHR5OWlsY777xDUlISISEhrFq1ioCAAACSkpJITEw0lNfpdHzyySccOXIEGxsb7rnnHrZt20ZgYGCR6x49epQtW7awbt26Eus9d+4cQ4YMITU1FS8vL8LCwtixY4eh3urKkH6SGVBCCCFEldIoiqJYuhHmkpGRgaurK+np6WYbX3M8JZM+0zfhZKsl4e2+srGlEEIIYaTyfn9XaPaTKL/GHk5orTRcz9NxMSPX0s0RQgghai0JaqqYrbUVjT0cARlXI4QQQlQlCWrMoOmNwcIyA0oIIYSoOhLUmIEMFhZCCCGqngQ1ZiDTuoUQQoiqJ0GNGcjGlkIIIUTVk6DGDPRBzfmr2WTlFVi4NUIIIUTtJEGNGbg72eLuaANIb40QQghRVSSoMZObg4VlXI0QQghRFSSoMRMZVyOEEEJULQlqzERmQAkhhBBVS4IaM5G1aoQQQoiqJUGNmTRtoAY1p1KvUVhYZ/YQFUIIIcxGghoz8Xd3wEarISe/kAvp2ZZujhBCCFHrSFBjJtZaKwLq68fVSApKCCGEMDUJasxINrYUQgghqo4ENWbURNaqEUIIIaqMBDVmZJgBlSLpJyGEEMLUJKgxI0P6KVV6aoQQQghTk6DGjPTpp4sZuWTm5Fu4NUIIIUTtIkGNGbk62OBZzw6Q7RKEEEIIU5OgxsyaynYJQgghRJWQoMbM9CsLS0+NEEIIYVoS1JhZE0/pqRFCCCGqggQ1ZqbvqZGgRgghhDAtCWrMrNmNGVCnU7PQycaWQgghhMlIUGNmfm4O2Fpbkacr5NyVLEs3RwghhKg1JKgxM62VRsbVCCGEEFVAghoL0G+XIDOghBBCCNORoMYCmshaNUIIIYTJSVBjAbKxpRBCCGF6EtRYgCH9JBtbCiGEECYjQY0FBN1IP6Vey+NqVp6FWyOEEELUDhUKambPnk1QUBD29vaEhoayefPmMsvPmjWL4OBgHBwcaNmyJd9++22R1xcuXIhGoyn2yMnJqVS91VU9O2t8XOwBOCGDhYUQQgiTMDqoWbp0KePGjWPSpEnEx8cTERFBVFQUiYmJJZafM2cOEydOZMqUKRw4cIC3336bF154gZUrVxYp5+LiQlJSUpGHvb19heut7po2kMHCQgghhCkZHdRMnz6dkSNHMmrUKIKDg5kxYwb+/v7MmTOnxPLfffcdo0ePJjo6miZNmjB48GBGjhzJtGnTipTTaDT4+PgUeVSm3uquiadM6xZCCCFMyaigJi8vj7i4OCIjI4scj4yMZNu2bSWek5ubW6THBcDBwYHY2Fjy8/MNx65du0ZAQACNGjWiX79+xMfHV6pefd0ZGRlFHtVFU5nWLYQQQpiUUUFNamoqOp0Ob2/vIse9vb1JTk4u8Zy+ffsyb9484uLiUBSF3bt3s2DBAvLz80lNTQWgVatWLFy4kN9++43Fixdjb29Pjx49OHbsWIXrBZg6dSqurq6Gh7+/vzG3W6VkY0shhBDCtCo0UFij0RT5XVGUYsf0Jk+eTFRUFGFhYdjY2DBw4EBGjBgBgFarBSAsLIwnn3yS9u3bExERwY8//kiLFi344osvKlwvwMSJE0lPTzc8zp49a+ytVpkmN6Z1J6Zlka8rrPB10rPzOSmBkRBCCGFcUOPp6YlWqy3WO5KSklKsF0XPwcGBBQsWkJWVxenTp0lMTCQwMBBnZ2c8PT1LbpSVFV26dDH01FSkXgA7OztcXFyKPKoLXxd7HGy0FBQqJF42fmNLRVH4afdZ7v5wA/d9uom4M1eqoJVCCCFEzWFUUGNra0toaCgxMTFFjsfExBAeHl7muTY2NjRq1AitVsuSJUvo168fVlYlV68oCnv27MHX17fS9VZXVlaam9slpBjX03L2chbDFsTy6s/7SM/OR1eo8HNc9emFEkIIISzB2tgTJkyYwNChQ+ncuTPdu3fn66+/JjExkTFjxgBqyuf8+fOGtWiOHj1KbGws3bp148qVK0yfPp2EhAQWLVpkuObbb79NWFgYzZs3JyMjg88//5w9e/Ywa9asctdbEzX1qseBCxmcTC3fDChdocI3W0/xybqjZOfrsLO24sF2viz/5zyrE5J5e0AIttaynqIQQoi6yeigJjo6mrS0NN555x2SkpIICQlh1apVBAQEAJCUlFRk7RidTscnn3zCkSNHsLGx4Z577mHbtm0EBgYayly9epVnn32W5ORkXF1d6dixI5s2baJr167lrrcmMqan5khyJv9Zto89Z68C0C3Igw8eaUdjD0c2HU0l9VouW4+nck+rBlXZZCGEEKLa0iiKoli6EeaSkZGBq6sr6enp1WJ8zcq9F3hpcTydGrux/PkeJZbJLdAxa8MJ5vx9nHydgrOdNRMfCGZwF3+srNRB0lN+O8DCbad5qGNDPo3uYMY7EEIIIapeeb+/je6pEaZj2K370vUSZ3LFnbnCf5bt4/iNnpw+wd68NygEH9ei6/70b+/Lwm2nWXcgmZx8HfY2WvPcgBBCCFGNSFBjQUGeavopPTufy9fzqF/PDoDruQV8tPYIi7afRlHAs54tUwa04cG2viVOYe/o705DNwfOX81mw+EUotr6mvU+hBBCiOpARpVakIOtloZuDsDNjS03Hr1E5KebWLhNDWge6dSImPE96dfOr9Q1eaysNPRrpwYyK/ddME/jhRBCiGpGemosrGmDepy/ms3uM5dZEpvI8vjzADRyd+D9h9pydwuvcl2nf3s/vtp0kj8PpXAtt4B6dvJHK4QQom6RnhoLa3IjBfXhmiMsjz+PRgNP9whi7bi7yx3QALTxc6GJpxO5BYWsP3ixqppbRE6+zjDeRwghhLA0CWosTL8HFEAL73osfy6cN/u3xsnInhaNRkO/9n4A/LbXPCmo137eR5/pG1mTkGSW+oQQQoiySFBjYfe38aFnCy9evq8Fv78UQcfG7hW+Vv8b42o2Hb3E1aw8UzWxRKdTrxvG78zacII6tDKAEEKIakqCGgvzcrZj0dNdeene5pVeDbi5tzOtfJwpKFRYk1D67uWmoB/IDLD/fDq7TsveU0IIISxLgppapv+NFFRVzoJKz87nx93qXlOtfJwBmL/lZJXVJ4QQQpSHBDW1zIAbQc32E2mkZOZUSR1LYhPJytPR0tuZL4Z0BGDdwYucSSvfHlZCCCFEVZCgppbx93Ckg78bhQqs2mf6AbwFukIWbTsNwMi7gmju7UzPFl4oCnyz9bTJ6xNCCCHKS4KaWuhmCsr0Qc3qhGQupOfgWc+WAR3UekZFBAHw4+6zpGfnm7xOIYQQojwkqKmF1O0U1L2jzl3JMtl1FUVh3pZTADwZFmDYY+quZp609HYmK0/H0l2JZV1CCCGEqDIS1NRCPq72dA30AOAPE/bW/JN4hb1nr2JrbcWTYQGG4xqNhqfvCgRg4dbTFOgKTVanEEIIUV4S1NRS+tSQKWdBzdus9tI81KEhnjc239Qb2KEh9Z1suZCew+oqnk4uhBBClESCmloqKsQXrZWGhPMZnLxU+a0Mzl7OYu0BNVh5+q6gYq/b22gNvTfztpySxfiEEEKYnQQ1tZSHky13NfMEYOXeyqegFm47TaECEc09aXljbZrbPRkWgK21FXvPXuWfRFmMTwghhHlJUFOL9TfsBXW+Uj0nmTn5LN2lLrY3soReGj0vZzsG3Uh7zb8xoFgIIYQwFwlqarHINt7YWltx4tJ1DidnVvg6S3ed5VpuAc0a1KPnHXYOH3lXEwDWJCRz9rLpZl4JIYQQdyJBTS3mYm/DPS3VIGRlBXfuLtAVsvCWxfY0Gk2Z5Vv6OBPR3JNCBcN5QgghhDlIUFPL3boXVEVSUOsOXuTclWw8nGx5qGPDcp2jH0i8dNdZMnNkMT4hhBDmIUFNLde7VQMcbbWcvZzNnrNXjT5fPzbmiW6NDYvt3UnP5l40a1CPa7kFhrE4QgghRFWToKaWc7S1pk+wN2D8LKj4xCvEnbmCrdaKod0D7nzCDVZWGp7uofbWLNx2Gl2hTO8WQghR9SSoqQP0O3f/vu+CUQGGvpemf3s/GjjbG1Xnw50a4u5ow7kr2aw7IIvxCSGEqHrWlm6AqHoRLTxxsbcmJTOXXacvE9ak/h3POX8127AycFnTuEujX4zvi7+OM2/LKaLa+hp9jbIoisLRi9fIyddV+BpNG9Sjnp38FRBCiNpC/kWvA+ystdwf4sOPu8+xcu+FcgU1i26kjcKb1qe1n0uF6h0aFsCXG08Qd+YK8YlX6NjYvULXuV1ugY4X/xdPzMGLlbqOm6MNi57qSnt/N5O0SwghhGVJ+qmO0M+CWp2QTP4dNpy8nlvA4lh1t+2K9NLoNXCxZ0B7dcaUqRbjy87T8cy3ccQcvIiNVkNDN4cKPdwcbbialc+T83ay+/Rlk7RNCCGEZUlPTR3RvUl9POvZknotj63HU+nVskGpZX/afZbMnAKaeDpxTxnlymPkXUEs++ccqxOSOX81m4ZuDhW+1vXcAkYt2s32k2k42GiZP7wz4Te2gjDWtdwCRi7cxc5Tlxm2IJb5w7vQvemde7CEEEJUX9JTU0dYa6144Ma4lrJmQekKFRZsPQ3AU3cFYWVV9mJ7d9Laz4XwpvXRFSp8W4nF+DJy8hm+IJbtJ9OoZ2fNtyO7VjigAahnZ83Cp7oS0dyTrDwdI76JZdPRSxW+nhBCCMuToKYO0aeg1h1ILnWA7fpDF0m8nIWrgw2PdCrfYnt3ok9h/S82keu5BUaffzUrj6HzdrL7zBVc7K35flQ3ugR6VLpdDrZa5g7rTO9WDcgtKGTUot38eahy43SEEEJYjgQ1dUhoY3d8Xe3JzC1gYym9EvM331xsz9HWNNnJe1o2oImnE5k5Bfy027jF+NKu5fKvuTvZey4dd0cb/vdMGB1MOLDX3kbLl0+Gcn8bH/J0hYz+Lo7V+yu/q7kQQgjzk6CmDrGy0tCvnT4FVXwvqP3n0ok9fRlrKw3DugeatN6nbvTWLNha/sX4UjJzGPz1Dg4mZeBZz44lz3YnpKGrydqlZ2ttxcx/dWRAez8KChVeXBzPr3vOm7weIYQQVUuCmjpGn4Jaf+hisVTQ/C0nAejXzhcfV+MW27uTRzo1xNXBhsTLWawvR4onKT2bwV/t4FjKNbxd7Fg6OoyWPs4mbdOtrLVWfBrdgUdDG6ErVBi3dA8/yhYPQghRo1QoqJk9ezZBQUHY29sTGhrK5s2byyw/a9YsgoODcXBwoGXLlnz77bdFXp87dy4RERG4u7vj7u5Onz59iI2NLVJmypQpaDSaIg8fH5+KNL9Oa9vQlcD6juTkFxYJLpLTc/h9n5p2GXlXE5PX62hrzRPdGgN3nt599nIWj3+1nZOp12no5sCPo7vT1Kueydt0O62Vhg8faccT3RqjKPDasn18t+NMldcrhBDCNIwOapYuXcq4ceOYNGkS8fHxREREEBUVRWJiYonl58yZw8SJE5kyZQoHDhzg7bff5oUXXmDlypWGMn///TdDhgxhw4YNbN++ncaNGxMZGcn580VTAG3atCEpKcnw2L9/v7HNr/M0Gs3NnbtvmQW1aPtpCgoVugZ50LaR6VM8AMO6B2JtpSH21GX2n0svsczp1OtEf7Wds5ezCajvyNLRYQTUd6qS9pTEykrDe4NCeKpHIACTf0lg3uaTZqtfCCFExRkd1EyfPp2RI0cyatQogoODmTFjBv7+/syZM6fE8t999x2jR48mOjqaJk2aMHjwYEaOHMm0adMMZX744Qeef/55OnToQKtWrZg7dy6FhYX8+eefRa5lbW2Nj4+P4eHl5WVs8wU3U1Abj6aQnpVPVl4B/9upBqWjKrHY3p34uNobxvToU123Op6SyeNfbedCeg5NvZxY+mx3Grk7Vll7SqPRaHizX2ue69UUgPf+OMSsDcfN3g4hhBDGMSqoycvLIy4ujsjIyCLHIyMj2bZtW4nn5ObmYm9fdHyGg4MDsbGx5Ofnl3hOVlYW+fn5eHgUnbZ77Ngx/Pz8CAoKYvDgwZw8Wfb/oHNzc8nIyCjyENDC25mW3s7k6xTWHkxmWdw50rPzCajvyL03dvSuKvrU1u/7kkhOzzEcP5SUQfRXO0jJzKWVjzNLnu1u8nE9xtBoNLzWtyXj+7QA4KO1R5gecxRFkR3HhRCiujIqqElNTUWn0+HtXfSLz9vbm+Tkkndi7tu3L/PmzSMuLg5FUdi9ezcLFiwgPz+f1NTUEs95/fXXadiwIX369DEc69atG99++y1r165l7ty5JCcnEx4eTlpaWqntnTp1Kq6uroaHv7+/Mbdbq/Vvr/aY/Lbnws3F9sID0VZysb07advIla5BHhQUKizarta7/1w6Q+buIO16HiENXVj8TBheznZV2o7y0Gg0/LtPc/5zfysAPv/zGB+sOSyBjRBCVFMVGiis0RT94lMUpdgxvcmTJxMVFUVYWBg2NjYMHDiQESNGAKDVaouV//DDD1m8eDHLly8v0sMTFRXFI488Qtu2benTpw9//PEHAIsWLSq1nRMnTiQ9Pd3wOHtWZrPo6VNQW46ncir1Os721jzW2TxBnz7F9b+diWw9nsq/5u3galY+Hfzd+GFUGO5OtmZpR3k916spb/ZrDcBXG0/y9sqDEtgIIUQ1ZFRQ4+npiVarLdYrk5KSUqz3Rs/BwYEFCxaQlZXF6dOnSUxMJDAwEGdnZzw9iy5z//HHH/P++++zbt062rVrV2ZbnJycaNu2LceOHSu1jJ2dHS4uLkUeQhVQ34n2twwI/lfXxjjZmWcrsHuDvQmo70h6dj5PzNtJZk4BXQM9+H5UN1wdbMzSBmM9fVcQ//dQCAALt53mjRUJ5V5vRwghhHkYFdTY2toSGhpKTExMkeMxMTGEh4eXea6NjQ2NGjVCq9WyZMkS+vXrh5XVzeo/+ugj3n33XdasWUPnzp3v2Jbc3FwOHTqEr6+vMbcgbqHvrdFaaRgeHmi2erVWGp66pb4ezeqz8Oku1DNTUFVRT3QL4KNH22GlgcWxiYR/8Cdv/prAtuOpFNxh53MhhBBVz+hvkQkTJjB06FA6d+5M9+7d+frrr0lMTGTMmDGAmvI5f/68YS2ao0ePEhsbS7du3bhy5QrTp08nISGhSNroww8/ZPLkyfzvf/8jMDDQ0BNUr1496tVT1yd55ZVX6N+/P40bNyYlJYX33nuPjIwMhg8fXuk3oa56pFMj1iQkE9HcC79K7J5dEY938Wd1QjI+rvZMe6Qd9jbFU5HV0WOd/bG30TJpxX4uZuTy7fYzfLv9DO6ONtzX2puoEF/Cm9XHzrpm3I8QQtQmGqUCgwNmz57Nhx9+SFJSEiEhIXz66afcfffdAIwYMYLTp0/z999/A3Do0CH+9a9/ceTIEWxsbLjnnnuYNm0aLVu2NFwvMDCQM2eKL3L21ltvMWXKFAAGDx7Mpk2bSE1NxcvLi7CwMN59911at25d7nZnZGTg6upKenq6pKJEpeQW6Nh2Io01+5NZdzCZK1k3Z/I521nTO7gBUSE+3N3Cy2R7aAkhRF1V3u/vCgU1NZUENaIqFOgKiT19mTUJyaw9kMzFjFzDa/Y2VvRq0YD7Q3zoHdwAF/vqOWZICCGqMwlqSlArg5rCQrh6Girzx+geCFYWSJfkZsK1lIqfb+sEztVrq4zCQoX4s1dZeyCZ1QlJnL2cbXjNVmtFj2b1uT/Eh8jWPtVulpcQQlRXEtSUoFYGNT+PhISfK3eNlg/CkP+Zpj3lde0SzAyFnJK3Syi3jkPhgY/AxrxjgspDURQOJmWwJiGZ1QnJHE+5ZnjN2d6ab0Z0oXOgRxlXEEIIARLUlKjWBTX52fBBAOhywc4FqMDCebnp6nkvHzZvr0fsXFj1CljZgE0Ft0LIzQAUaNAGHl8Ens1N2kRTO56SyZqEZFbEn+fEpes42mqZP7wL3ZvWt3TThBCiWpOgpgS1Lqg5sQG+GwQuDWH8AShlAcQyzb0Xzu+GBz6Grs+YvImlWtgPTm+GyPcg/KWKXePk37BsFFy/BDZO0P8zaPeYSZtZFbLzdDz73W42H0vFztqKucM6c3cL2cdMCCFKU97v7wqtKCyqiZN/qz+b9KpYQAPQZpD688AvlW9PeWVehDNb1eetB1b8Ok16wZgtEBgB+ddh+ShY+W+1B6sac7DVMndYZ+5t1YDcgkJGLdrN+oMXLd0sIYSo8SSoqcluDWoqSh9UnNmqBhvmcOg3UAqhYSi4Na7ctZx9YNivcPdrgAbiFsK8+yC1eu+qbW+jZc6ToUSF+JCnK2TM93Gs3p9k6WYJIUSNJkFNTZV1GZL2qs+Delb8Om6N1eACRQ02zOHgr+rP1oNMcz0rLfSeBE8uA0dPuLgfvu4JCctMc/0qYmttxRdDOjKwgx8FhQovLo7n1z3nLd0sIYSosSSoqalObUIdJNsanEved6vc9MGFOVJQ11JMk3oqSbN71XRUQA/IuwY/Pw2/j4f8HNPWY0LWWiumP96Bx0IboStUGLd0Dz/uko1XhRCiIiSoqalMkXrSM2cKSp968usE7gGmv76LLwz7DSJeUX/fvQDm3wdpJ0xfl4lorTRMe6QdT3RrjKLAa8v28d2O4itsCyGEKJsENTWVKYMa9wA1yDBHCkrfG6QfoFwVtNZw7+Qb6aj6kLwPvuoJB1ZUXZ2VZGWl4b1BITzdIwiAyb8kMG/zSQu3SgghahYJamqiK6fhyimwsoaAsndHLzd9kKEf71IVrl2qutRTSZr1gdGboXF3yMuEn0bAH69AQe4dT7UEjUbD5H7BPNerKQDv/XGIWRuq94BnIYSoTiSoqYlOblR/NuoCds6mueatKajKbF1QFkPqqaO6NYM5uDaE4b/DXePV33fNhfmRcPmUeeo3kkaj4bW+LRnfpwUAH609wvSYo9Sh5aSEEKLCZPvgmsiUqSc990A12LgQrwYfXUaZ7tp6B39Rf5pq1lN5aa2hzxRoHA4rRkPSHvjqbnjoK2j1gHnbApC8H3IyILBHiS9rNBr+3ac5ttZWTFtzmM//PEZugY7X72+FpqLrEemlHIYTf1Z8rzCNFbSMAo+gyrVDCCGqgAQ1NU1hIZy60VNjyqAG1GDjQrw67sXUQc21S3B6i/q8KsfTlKVFJIzZrM6KOrtTTUe9fBgczbj/Ul4WLHxQDWrGbAGfkFKLPterKXbWVrzz+0G+2niS3PxC3urfuuKBTUEefPcQZF6oYONv2DkHntsOdvUqdx0hhDAxCWpqmosJkJUGtvVurC9jQm0Gwfq3bqSgLkE9Ey7df3ilmnry7WC+1FNJXBvBiD/gywi4dAgO/wGdhpqv/uMxNzfx3DEHBs0qs/jTdwVhZ2PFpBUJLNx2mtyCQv5vUAhWVhUIbA4sVwMaBw91vFFFnNoEVxPhz7fVjUSFEKIakaCmptGnngLvAq2Naa/tHqgGHUl7bqSgRpru2uaY9VReWhsIeQQ2vKemxMwZ1Ny6FtD+H6HPW1CvQZmnPNEtADtrLa/9vJfFsYnkFuj46NH2aI0JbBQFtt8IoMJfhIiXjW873NxvLPZrdRxW4F0Vu44QQlQBGShc01TFeJpbGWZB/WK6a15PVTevBPOPpymN/j5P/q2uzmwO+dlwdK36vJ4P6PJg17xynfpoaCNmDO6I1krD8n/Oc/eHG3j394PsPn2ZwsJyjI85vUWd2m7tAKFPVfwemt4DoSPU57++AHnXK34tIYQwMQlqapKCXDizTX1eVUGNPug4vUVNQZnCIX3qqX31GWDq2RwatIHCAjiyyjx1HotRN9509Yf731eP7Zpf7g04B7T3Y9a/OlHPzprzV7OZv+UUj365nW5T/+S/v+xn6/FUCnSFJZ+8Y7b6s8OQyo8huu9dcGmkLi2w/u3KXUsIIUxIgpqa5GwsFGRDPW/walU1dXgEqSkopVAdB2MK+l6fNg+Z5nqmYu4dyg2zvwZC8EA1uMlKhX0/lvsS94f4sGtSH758MpRBHfxwtrPmUmYu3+9I5Il5O+n8f+t59ae9/HX4IrkFOvWktBNwZLX6POz5yt+HvQsM+Fx9HvvVzQHgQghhYRLU1CS3pp4qO7W3LKb8sr+eBqeqWepJT9+ek39D9pWqrSs/G46suVmv1hq6jVZ/3zHHqCnWDrZa7g/xYcbgjsRNvo9vnurC4C7+eDjZcjUrn5/izvH0wt2EvruesYvjOf3Hx4ACzfuqPVSm0Oxe6DRMff7ri5KGEkJUCxLU1CRVPZ5Gz5CC2qyOh6mMwytB0VWv1JOeVwt1Q9DCfDhcxSmo4+tvpp4adVaPdRqmzmK7dAhO/FWhy9paW3FPywZ88Eg7Yt+4l8XPhDG8ewDeLnZcyy3g771HaXBC3a38k2v3sSL+HOnZ+aa5p8j3wKWhurr1n++a5ppCCFEJEtTUFNlX4MI/6vOgnlVbl0eQGoQohep4mMrQ9/ZUt14aPX27TDkwuiSG92HgzV42e1foeGPm1fayp3aXh7XWiu5N6/P2wBC2v34vy58P57Nme3DU5HKosDFfnPJl/NK9dH4vhuELYlkSm0jatUpsGWHvCv1vpKF2fnlzvJcQQliIBDU1xektapDh2UJd+r+qmeLL/nqauq4JVI+p3CXRt+vEBsi+WjV15GfD0VtST7fqNhrQqKv8phwyWZVWVho6NazHPem/AOByz78Z27s5zRvUI1+nsPHoJV5fvp8u/7eewV9vZ9G20ySn5xhfUfM+0PFJQLkxGyrLZPcghBDGkqCmpjBX6klP/2V/arManFTE4d/V1JNPO/BoYrKmmZRXS/AKVlNQVTUL6vifkHdNnTGkTz3peQRBcD/1uX6Gkqkc+EVdbM+pAQ0jhjIhsiUxE3qyfkJPXu3bkrYNXSlUYMfJy7z12wHCpv7JQ7O38tXGEySmGRGcRP4fOPvB5ZPw13umvQchhDCCBDU1hbmDGo8majCi6Co+C+rACvVnde2l0avqWVC3znoqaYB32Avqz71LKz+GSU9RYMeNlFbXZ8DazvBSswb1eOGeZqx86S42v3YP/30wmM4B7mg0EJ94lamrD3P3RxuI+mwzn/95jGMXM8veUNPBDfp/pj7fMRsSd5jmHoQQwkgS1NQEV89C2nF1M0FzruBamS/7W1NP1XU8jZ6+fSf+Mn0KKj/n5qyn0oK7xmHqZqK6XNi9wDT1Ju5Q9/HS2kHnp0st5u/hyKiIJvz8XDg7J97Lu4NC6NGsPlorDYeSMpgec5T7Pt3EvdM38tHaw+w/l15ygNMiEjo8ASjwy/PlXntHCCFMSYKamkC/gWXDUHVwprnov+xPbTI+BWVIPbWF+k1N3jSTatBKXfenMP/mei6mcuJPyMtUZwk17FxyGY0Gur+oPo+dqy6yWFnbZ6o/2w8GJ89yndLAxZ6hYQH8MCqM3ZP68OGj7bi3VQNstVacvHSdWRtO0H/mFt5Ysb/kC/T9P3D2hcsnJA0lhLAICWpqAnOnnvTqN1WDEkWnBinGMKRcBpm6VVWjqmZB3TrryaqMv26tB6qBz/UU2P9z5eq8fFLdqBMqvNieu5Mtj3f2Z/6ILsRN7sPnQzryQFsfrDSwOPYsG4+WsNq0g/vNNNT2WZC4s4I3IIQQFSNBTXWnKJYLaqBiX/ZZl+Hkjd6l6raKcGkMs6D+urmLdmXl59zs+blTcKe1ga7Pqs+3zzJqMb5idn4FKOpO3A0qv/K0s70NA9r7MfuJUJ7qoa41NPmXBHLydcULt+gL7f+FYTaUpKGEEGYkQU11l3IQrl8CG0do1MX89euDkpMby7/xoz715F0DUk96DYLBs6W6yaSpUlAn/lJTT85+5fuzCx2u/jmnHLiZcjRWTjrEf68+N8WWCLeZcF8LfF3tSbycxRd/HSu50P3vqxt2ph2DDe+bvA1CCFEaCWqqO30vTUB4kRksZlO/qRqcGJOC0qdc2gyssmZVCVPPgrp11lNZqSc9B/cbg22B7RWc3v3Pt+r0ca9gaNq7Ytcog5OdNVMGtAHg600nOXYxs3ghB3foP0N9vn0mnN1l8nYIIURJJKip7iyZetLTByfl+bLPunyzl6F1DUk96RlmQf1Z+RRUQe7NHh9jprSHPQdo4NhauHTUuDp1BTdST0D356tsf7C+bXzoE+xNvk5h0i8JJc+GahkF7QarC0b++ryaihNCiComQU11VpAHp7eqzy0Z1OiDk1PlSEEd/gMKC8A7BDybVX3bTKlBsLpisy7v5jTsijrxF+Rm3Eg9dS3/efWbqgEBwM45xtV56DdIPwuOntD2cePONdKUAa1xsNESe+oyP8WdK7nQ/VPVHeVTj8LfkoYSQlS9CgU1s2fPJigoCHt7e0JDQ9m8eXOZ5WfNmkVwcDAODg60bNmSb7/9tliZZcuW0bp1a+zs7GjdujUrVqyodL013vnd6iaIjp7QoI3l2uHZTA1SCgtuzqopTU2b9XQrjcZ0s6AMs54GlC/1dKvuNxbj27O4/OOY4Ob+UV1GgY29cXUaqZG7I+PvU3f8nrrqEJev5xUv5OgB/Waoz7d9Aed2V2mbhBDC6KBm6dKljBs3jkmTJhEfH09ERARRUVEkJiaWWH7OnDlMnDiRKVOmcODAAd5++21eeOEFVq68uUrt9u3biY6OZujQoezdu5ehQ4fy+OOPs3PnzSmhxtZbKxhSTz2N/2I0tfJ82Wddvtnm6r6KcGn07T7+J+RkVOwaBbk3t1yoSHAX0ENdzbkgu/yL8Z2NVYNgrS10GWl8nRXwVI8gWvk4cyUrn6mrStm3qtUDaq+RUnhjUT5JQwkhqo5GKXP98+K6detGp06dmDPnZtd4cHAwgwYNYurUqcXKh4eH06NHDz766CPDsXHjxrF79262bNkCQHR0NBkZGaxefXPWyf3334+7uzuLFy+uUL0lycjIwNXVlfT0dFxcXIy5bcuYHwlnd8KAL6DTMMu2JfUYzOwMVtbwyjH1f+G3i/9encbboA08X0N3bFYUmNlFnbnz8FxoV4E0zpE1sDhaXYhu/MGKBaR7l8CK0eosonH7wdq27PI/DlcDzg5PwqDK7/hdXv8kXuGROdtQFFj6bBjdmtQvXijrMszqpq7B0+Pf0PM/ZmtfEVpbdeq8EKLGKe/3t7UxF83LyyMuLo7XX3+9yPHIyEi2bSv5Syw3Nxd7+6Jd4Q4ODsTGxpKfn4+NjQ3bt29n/PjxRcr07duXGTNmVLhefd25uTdXZ83IqOD/vC0hJ+Nmd70lx9PoeTZXg5WUA2ovRMcni5cxzHoaZM6WmZZGo7Z/00fq/VQkqNH3ZgVXIPWk1+ZhiHkLriXDgeXqysCluXJGHU8D6gBhM+rU2J0hXRvzv52JTPolgVVjI7C1vu2eHT2g36ew9AnY+pn6sARrexi6Qp1JKISolYz6Fzc1NRWdToe3t3eR497e3iQnJ5d4Tt++fZk3bx5xcXEoisLu3btZsGAB+fn5pKaqm/clJyeXec2K1AswdepUXF1dDQ9/f39jbteyzmxVp1F7NAG3xpZujaqsKc/ZV26mnmrieJpb6dfmOb7e+BRUQS4cvpF6qkxwZ22rbkQJd16ML/ZrNb3TpBd4m3/s1X/6tsKzni3HU67x9aYTJRcK7gedhpu3YbcryIGN0yzbBiFElTKqp0ZPc9tUUUVRih3Tmzx5MsnJyYSFhaEoCt7e3owYMYIPP/wQrVZr1DWNqRdg4sSJTJgwwfB7RkZGzQlsqsNU7tu1HgQb/k9tW/YVdT0SvcOr1L2TGrQGrxaWaqFpNGgN9ZurKaija6HdY+U/9+TfkJuupo38wyrXjs5Pw6aPIXkfnN4CQRHFy+RkQNwi9bl+t28zc3W0YXK/1vx7yR6++Os4/dv7EVDfqXjBAZ9D1DQ1ADO3jCSY1VX980lOAJ8Q87dBCFHljOqp8fT0RKvVFusdSUlJKdaLoufg4MCCBQvIysri9OnTJCYmEhgYiLOzM56e6kZ7Pj4+ZV6zIvUC2NnZ4eLiUuRRY1THoMarhfqFX5h/szdCrybPerqdPgUFcKD4LLwy6ctXZNbT7Rw9oMMQ9fmOUhbji/9eXbXYs4W6LYKFDGjvx13NPMktKGTyrwdKXrsGwMYBbJ3M//BsBsH91TbsMHKqvBCixjDqX11bW1tCQ0OJiYkpcjwmJobw8LLz1DY2NjRq1AitVsuSJUvo168fVjf+0e/evXuxa65bt85wzcrUWyNlJMGlw4AGAkv437kllTQLKvsqnNigPq/J42lupb9PY1JQt6aeTBXc6bc6OLIa0m5L7RTqbq5lE/acRWfIaTQa3h0Ugq21FZuOXuL3fUkWa0up9Duh7/8RrqVYti1CiCph9L+CEyZMYN68eSxYsIBDhw4xfvx4EhMTGTNmDKCmfIYNuzlT5+jRo3z//fccO3aM2NhYBg8eTEJCAu+/f3Mxrn//+9+sW7eOadOmcfjwYaZNm8b69esZN25cueutVfQr8vp1KHmWkSUZNn7coKagQB04bEg9tbRY00zKuw3Ubwa6XDUFVR63pp4aVzL1pOfZHJr3BZTiPQyHf4erieDgoa7ea2FBnk680EtdcPGd3w+Snp1v4Rbdxr+LugeXLg92zbN0a4QQVcDooCY6OpoZM2bwzjvv0KFDBzZt2sSqVasICAgAICkpqcjaMTqdjk8++YT27dtz3333kZOTw7Zt2wgMDDSUCQ8PZ8mSJXzzzTe0a9eOhQsXsnTpUrp161buemuV6ph60vNqWTwFZVhobpClWmV6FVmIr8iCe9oyixpFP6Npzw83A0m4uT9U56fB1tF09VXCmF5NaOLlxKXMXD5Zd8TSzSlOv7Dhrvmyg7gQtZDR69TUZDVinRpFgenBkJkEw36tnoHN39PUZe+bR6pruXzUTA1yXoitPT01AMn74cu7QGsHr50AO+fSyxbkwcfN1D2jRqyCwB6ma4eiqO24mAB9psBd4+FcHMzrDVY2MD4BnH1MV18lbTuRyr/m7kSjgRXP96CDv5ulm3STrgA+7wjpidD/c3VndCFEtVfe72/Z+6m6ST2qBjTW9pWfPVNVbk1B7V2sBjRewbUroAF1awiPpuVLQZ38Ww1o6nmbLvWkp9HcHFuz82vQ5cOOGwvstX20WgU0AOFNPXm4Y0MUBd5Yvp8CnQVmO5VGaw3dnlWf75hT9lR5IUSNI0FNdaNPPTXuXuX791SYV0s1iCnMh7/eU4/VlgHCtzJmFlSRBfdMmHrSa/soODWAzAvqujX6VFeYeRfbK683HgzG1cGGg0kZLNx22tLNKarTMLCtB5cOqRuPCiFqDQlqqpvqPJ7mVvov+7xr6s/aNJ7mVrfOgsq9VnKZgjx10C5UXXBnbXdzMb71b6kLMwZGgG+7qqmvkjzr2TExqhUA02OOcuFqxcavZOfpWJOQzLgl8XR+bz1PzNvB8ZRS/hzKy94VOg5Vn28335YSQoiqJ0GNKZzYAAnLK38dXT6curHzeHUPam4NYrxaQYNWFmtKlfJpq67qXJADR9eUXObURjX15NRA7WGrKp2fVsf36OkHvVZTj3f2p3OAO1l5Ot5eeaDc52Xm5PPrnvM8930cnd6NYcz3cfyy5wKp13LZejyNBz7bzMy/jpFfmbRWt9GABk78CSmHK34dIUS1IkFNZWVehGWj4Oen4I+XK7cL8fl/1IXUHNzVXZqrswat1GAGam8vDZRvFlRVzXq6nZMntI9Wn3s0vTHVu/qystLwfw+1xdpKw9oDF1l/8GKpZa9cz+PHXWd56ptYQt9dz7+X7GF1QjLZ+ToauTvwTEQQC5/qwj0tvcjTFfLxuqP0/2ILe89erVjjPILUrRug9IUNhRA1ToW2SRC3cKyvzqDY/Im69sW5XfDYQvV/98bSp56Celp0IbVye+BjdaBwt9GWbknVajMItkyHYzFqCsqu3s3XdPk3U0/mCO7umaQGzqEjasRnpKWPM6MimvDlxhO89dsBwpvVx9FW/WfnYkYO6w4kszohmZ2nLqMrvDlot6mXE1Ehvtwf4kMbPxfDdig9W3jx294LvL3yIIeTM3lo9lae7hHEhMgWhuuWW9gLcGiluiP6vW+qQaMQokaTKd2mcmw9LH8Gsi+DnQsM+ML48RULoiBxG/SbAZ2fMm37RMUpijoN+MopeHQBhDxy87Vj6+GHR9TU08uHq7anpobKztNx36cbOXclmyFdG9PUy4nVCcn8k3ilyOSjNn4u3N/Gh6i2PjRrUMb0eSDtWi7v/n6QX/ZcAMDfw4EPHm5Hj2ZGBCaKAnN7w4V/1GCx52sVuT0hhBnIlG5za94HxmxRp2HnZsBPw2HVq+rS+eWRew3OxarPq/t4mrqmyCyoX4q+dvDGrKjg/hLQlMLBVss7A9XdwxfHJvLeH4eIO6MGNJ0au/HGA63Y9Oo9/DE2gpfubX7HgAagfj07ZgzuyDcjuuDnas/Zy9k8MW8nr/60l/Sscq5krNHcHJcUO7f8f1eFENWWBDWm5NoQRvwOPcapv8d+DQv6wuVTdz73zDYoLAC3ADXfL6oXfWrpWAzkXVef6/Lh8B/q89o4pd2Eerfy5tHQRlhpoHuT+rwzsA07Jt7L8ud78OzdTWlcv2IrIt/TqgHrJvRkWPcANBr4Ke4c907fyOr95dx7qvVAcGkI11Ng/88VaoMQovqQoMbUtDZw39vwrx/VAb8X4uGrnmruviw1ZSp3XeXbHtwDoSD75kJ8pzaq2xY4eUGACVcQrqU+erQdR96LYvGzYQzrHoiPq2nWYapnZ807A0P4aXR3mno5kXotl+d++IfR3+3mYsYdBu5rbaCrfjG+2bIYnxA1nAQ1VaVFXzUd1airusnh0idh9evqmiYlkaCmeitpFpQ+FSWpp3LRaDTYaKvun5zOgR5qCqt3M8OMqz7TN7IkNpEyhw6GDgcbR3UbCv1mskKIGkmCmqrk2gieWgXhY9Xfd86Bb+6HK2eKlsu8CCk31vEI6mneNory06eYjq5T16Ux56wnUS72NlpejmzJypfuon0jVzJzCnh9+X7+NXcnp1Ovl3ySgzt0fFJ9vl2mdwtRk0lQU9W0NhD5LgxZAvZucD4Ovoq4ORYD4NQm9adPO3Cqb5FminLw7aCOeSrIhnWT1dSTo6eknqqhYF8Xlj/fg/8+GIy9jRXbT6Zx/2ebSDifXvIJ3cYAGji2FlKPmbWtQgjTkaDGXFpGwZjN0LCz+r/8Jf+CtZPUdJSknmqGW2dB/bNI/RncX90kUVQ7WisNoyKasHbc3XRs7EZOfiHfbD1dcuH6TdW/oyCL8QlRg0lQY05ujeGp1dD9RfX37TPhmyh1XyGQoKYmuD3VJLOeqr2A+k688UAwAOsOJJOTryu5oH56957FkHXZTK0TQpiSBDXmZm0Lff8PBv9P3Vjv/G64lgxa26rdN0iYhl9HNTgFdTXpgLss2x5RLqGN3fF1tSczt4CNRy+VXCigh5oCLsiG3QvM20AhhElIUGMprR6E0ZuhYaj6e+BdYFuxtTqEGWk00PZx9XmbhyX1VENYWWno184XgJV7L5RcqNhifKXMVBRCVFsS1FiSewA8tQYema9uqyBqhp6vqX9m971t6ZYII/Rv7wfAn4dSyMorKLlQm4ehno/ae3pghRlbJ4QwBQlqLM3aFto+qk7/FjWDtZ36Z2brZOmWCCO0behKQH1HsvN1rD+UUnIha1vo+oz6fPtMWYxPiBpGghohRJ2g0Wjo307trfltTykpKIDOT4O1AyTvgzNbzdQ6IYQpSFAjhKgzBnRQg5qNR1NK3/jS0QM6DFGfy2J8QtQoEtQIIeqMFt7OtPR2Jl+nsPZgcukFw55Xfx5ZBWknzNM4IUSlSVAjhKhT+re/wywoAM/m0LwvoMDOL83TMCFEpUlQI4SoU/rdGFez7UQaqddySy/Y/UZvTfz36pYYQohqT4IaIUSdEujpRLtGrugKFVbvTyq9YFBP8A6B/CyIW2S+BgohKkyCGiFEnTPgxpo1K/eWEdRoNDfH1sR+DbpSBhYLIaoNCWqEEHXOgzdWF449fZmk9OzSC7Z9FJwaQMZ5OPirmVonhKgoCWqEEHWOr6sDXQM9APhjXxm9NdZ2tyzGN0sW4xOimpOgRghRJ5VrFhTcWIzPHi78A2d3mqFlQoiKkqBGCFEnRbX1xUoDe8+lczr1eukFnTyh3Y1NTLfPNE/jhBAVIkGNEKJO8qxnR49mngD8vu8OvTX6AcOH/4DLp6q4ZUKIipKgRghRZ/UvzywogAbB0PReUAph51dmaJkQoiIkqBFC1Fl92/hgo9Vw5GImR5Izyy7c/QX1Z/x3kJNe9Y0TQhitQkHN7NmzCQoKwt7entDQUDZv3lxm+R9++IH27dvj6OiIr68vTz31FGlpaYbXe/XqhUajKfZ48MEHDWWmTJlS7HUfH5+KNF8IIQBwdbChZ4sGQDlSUE17g1cw5F2Df74zQ+uEEMYyOqhZunQp48aNY9KkScTHxxMREUFUVBSJiYkllt+yZQvDhg1j5MiRHDhwgJ9++oldu3YxatQoQ5nly5eTlJRkeCQkJKDVannssceKXKtNmzZFyu3fv9/Y5gshRBH6WVC/7b2AUtaUbY0Gwp5Tn+/8EnQFZmidEMIYRgc106dPZ+TIkYwaNYrg4GBmzJiBv78/c+bMKbH8jh07CAwMZOzYsQQFBXHXXXcxevRodu/ebSjj4eGBj4+P4RETE4Ojo2OxoMba2rpIOS8vL2ObL4QQRfQJ9sbexoozaVnsP3+HtFK7x8HRE9LPwuGV5mmgEKLcjApq8vLyiIuLIzIyssjxyMhItm3bVuI54eHhnDt3jlWrVqEoChcvXuTnn38uklq63fz58xk8eDBOTk5Fjh87dgw/Pz+CgoIYPHgwJ0+eLLO9ubm5ZGRkFHkIIcStnOysuTfYGyjHmjU2DtBlpPp8+6wqbpkQwlhGBTWpqanodDq8vb2LHPf29iY5ObnEc8LDw/nhhx+Ijo7G1tYWHx8f3Nzc+OKLL0osHxsbS0JCQpH0FEC3bt349ttvWbt2LXPnziU5OZnw8PAiY3NuN3XqVFxdXQ0Pf39/Y25XCFFH6PeC+n1fEoWFd1g1uMso0NrCuV1wNtYMrRNClFeFBgprNJoivyuKUuyY3sGDBxk7dixvvvkmcXFxrFmzhlOnTjFmzJgSy8+fP5+QkBC6du1a5HhUVBSPPPIIbdu2pU+fPvzxxx8ALFpU+u65EydOJD093fA4e/asMbcphKgjerbwwtnOmqT0HOISr5RduF4DaKtfjE96a4SoTowKajw9PdFqtcV6ZVJSUor13uhNnTqVHj168Oqrr9KuXTv69u3L7NmzWbBgAUlJRdeGyMrKYsmSJcV6aUri5ORE27ZtOXbsWKll7OzscHFxKfIQQojb2dtoiWyjzqb8bc8dUlAA3W8sxnfoN7ha8iQJIYT5GRXU2NraEhoaSkxMTJHjMTExhIeHl3hOVlYWVlZFq9FqtQDFZhr8+OOP5Obm8uSTT96xLbm5uRw6dAhfX19jbkEIIUqknwW1an8SBbrCsgt7t4EmvWQxPiGqGaPTTxMmTGDevHksWLCAQ4cOMX78eBITEw3ppIkTJzJs2DBD+f79+7N8+XLmzJnDyZMn2bp1K2PHjqVr1674+fkVufb8+fMZNGgQ9evXL1bvK6+8wsaNGzl16hQ7d+7k0UcfJSMjg+HDhxt7C0IIUUyPZp64O9qQdj2P7SdLH6tnEHZjMb5/voXcOyzcJ4QwC2tjT4iOjiYtLY133nmHpKQkQkJCWLVqFQEBAQAkJSUVWbNmxIgRZGZmMnPmTF5++WXc3Nzo3bs306ZNK3Ldo0ePsmXLFtatW1divefOnWPIkCGkpqbi5eVFWFgYO3bsMNQrhBCVYaO1IqqtL//bmcjKvReIaH6HJSOa9YH6zSHtGMR/f3MNGyGExWiUMlebql0yMjJwdXUlPT1dxtcIIYrZcTKNwV/vwMXeml3/7YOdtbbsE3YvgN/Hg1sAjI0HqzuUF0JUSHm/v2XvJyGEuKFLoAfeLnZk5BSw6WjqnU9oNxgc3OHqGXUHbyGERUlQI4QQN2itNDzYVr9zdzlmQdk6Quen1ec7Zldhy4QQ5SFBjRBC3EI/Cyrm4EWy8sqxv1OXZ8DKBhK3w/m4Km6dEKIsEtQIIcQtOvi74e/hQHa+jr8Op9z5BBdfCHlEfb69aG9Nga6Qrzed4IHPNvPd9tN3Xq1YCFEpEtQIIcQtNBoN/dsZkYKCm4vxHVgB6ecAOHghg4dmb+P9VYc5mJTB5F8PEP31dk5culYVzRZCIEGNEEIU0//GXlAbjlwiIyf/zif4tofACFB0FOz4io/WHmbAzC3sP5+Oi701I8IDcbLVsuv0FaI+28ysDcfJv9MCf0IIo0lQI4QQt2nl40yzBvXIKyhk3YGL5TspTO2tyd4+n282HKCgUCEqxIf1L/dkyoA2rB1/Nz1beJFXUMhHa48wYOZW9p27WnU3IeqewkJIWAbH/7R0SyxGghohhLiNsSmozJx8Jh9qyKlCb5y5zgjHrXz5ZChzngylgbM9AI3cHVn4VBc+jW6Pu6MNh5IyGDRrK++vOkR2nq5K70fUAVmXYfFg+Plp+OFROLfb0i2yCAlqhBCiBP1uzILacjyVy9fzSi3356GLRH66ie92nmOBLgqAl13/4v7WxVck1mg0PNSxETETejKgvR+FCny96ST3f7aJbSfKsS6OECU5uwu+jIBja9XflUL45XnIz7FsuyxAghohhChBU696tPFzQVeosDohqdjrqddyeWlxPCMX7SYpPYfGHo48+OQEsHdFe+UUHF1T6rU969nx+ZCOzB/eGV9Xe86kZfGvuTt5fdk+0rPLMYZHCABFgW1fwDf3Q8Y58GgCw34DpwaQegQ2fmDpFpqdBDVCCFGKATcGDP+252YKSlEUVsSf477pG1m59wJWGnj27iasHXc3YcEBEPqUWnD7nRfjuzfYm3Xj7+bJsMYALNl1lvumb2RNQrLpb0bULtlXYMm/YN1/obAA2jwEz26EJj2h/wy1zNbP6tzaSRLUCCFEKR5sp6agYk9fJjk9h3NXsnhq4S7GL93Llax8Wvk488sLPXjjgWAcbG/s+9T1WbCyhjNb4MKeO9bhbG/De4Pa8uPo7jTxdCIlM5cx38fx3PdxpGTWvfSBKIdzu+HLu+HIKtDawoOfwKPfgP2NPZFaPQhtH7uZhirItWx7zUiCGiGEKEUjd0dCA9xRFPjPsn1EfrqJv49cwlZrxat9W7Lypbto18it6EmuDdX/NYNRWyd0DfJg1b8jeOGepmitNKxOSKbPJxv5cfdZ6tC+w6IsiqL2AC64H9ITwT0IRq2HLqNAoylaNupDcPKCS4dh4zTLtNcCJKgRQogy9L/RW7Px6CWy8nR0CXS/EXw0w0Zbyj+hN6Z3k7AMMsq5gB9gb6Pl1b6t+O3FHoQ0dCEjp4DXft7HiG92cS23HFs2iNor+wosfRLWToTCfGg9EEZvVNdIKomjB/T7VH2+ZQac/8dsTbUkCWqEEKIMD7bzw93RBidbLe8ObMPSZ7vTrEG9sk9q2Akad1fHOsTONbrONn6u/PJ8DyZGtcLO2oqNRy8xbP7O8i0EKGqf83Hw1d1w+Hc13RT1ETy2COxdyz4vuL+6hYeig19fqBNpKI1Sh/o1MzIycHV1JT09HRcXF0s3RwhRQ6Rdy8XW2gpne5vyn3Ropfo/awd3GH8AbJ0qVPfes1cZtiCW9Ox82jZ05buRXXFztK3QtUQNoygQ+zWsnaT2zrgFwGML1aC5vK6nwayukJUKd78Kvf9bZc2tSuX9/paeGiGEuIP69eyMC2gAWj4A7oFq2mDv4grX3d7fjcXPhOHhZMv+8+kM/noHqddq//+467ycdPhxGKx+TQ1oWvWD0ZuMC2gAnOpDv+nq883T4UK86dtajUhQI4QQVcFKC93GqM93zFGXsK+g1n4uLH02DC9nOw4nZzL46x2kZMjMqFrrwh413XToN7CygfunQfT34OBWseu1HqgOXld0N2ZDlb6YZE0n6SchhKgquZkwvTXkZoBHU9Aa2duj5x0C93/AyWwHnpi3k6T0HALrO/K/Z8Lwc3MwbZtrg6R96vot18q5b1d1c/kk6PLArTE8uhAahVb+mtdTYVa3G2mo16D3pMpf04zK+/0tQY0QQlSlP9+BzZ9U/jr1fODR+Zx16cSQuTs4dyWbRu4OLH4mDH8Px8pfvzZQFIj7Bla/DroanqJr+SAMmqWOyTKVA7/AT8NBo4Vn/gK/Dqa7dhWToKYEEtQIIcxOV6COYyioYLooPwvWTVaXvddYwT2TuND2Of41L5bTaVn4utrzw6huNPG6w4ys2i43E1aOg4Sf1d+b94XuL6jvWU1j7wI+7YqvPWMKPw6Hg7+ovX/PbADrmjHoXIKaEkhQI4SokfKuwx8v3xxw3PReLt33OUP+d4LjKdfwcrbjf6O60dzb2bLttJTkBLUHIu242gvR5y3o/hJY1cCApqpduwSzu0FWGvR8He6ZaOkWlYvMfhJCiNrC1gkGzYEBM8HaHk78idcP9/HzA9DKx5lLmblEf72DgxcyLN1S81IUiFsE8+5VAxpnP3hqFfT4twQ0pannBQ98rD7f/LE6/qgWkT91IYSoCTQa6DRUHQtRvzlkXsBt6UOsaB9LOz9nLl/PY8jcHew7d9XSLTWP3GuwYjSsHKum9prdB2O2QOMwS7es+mvzEAQPUBeH/OV50NWeRR0lqBFCiJrEuw08+ze0fRwUHQ4b32WZ+2f0bKQhPTufJ+buJO7MZUu3smpdPAhz74F9S9V0071vwb9+VNdkEXem0aibYDp4wMX9phnIXk1IUCOEEDWNXT14+Gvo/zlY22NzYj3f5L7M0IZJZOYWMHR+LDtOplm6lVUj/nuY2xtSj4KzL4z4HSImSLrJWPUawAMfqc83fQTJ+y3bHhORT4EQQtREGg2EDodRf0L9ZlhlXuCdy68x1fsvsvPyGfFNLJuOXrJ0K00n7zqseO7GHkbZ0PReNd0UEG7pltVcIY+oKxUXFsAvz9WKNJQENUIIUZP5hKjpqJBH0Cg6hqTPY4X7TOzyMxi1aDd/HqqhC9DdKuWw2juz93/qFO3ek+GJn8HJ09Itq9k0GnhwuroWTvJ+2PKppVtUaRLUCCFETWfnDI/Mh36fgtaODtk7+Kvef2lTeIQx38fV7MBmz2J1/Mylw+oChMNXwt2vSLrJVJy91V2/ATZ+qE6Pr8FknRohhKhNkvapa7ZcPokOLe/nD2ap9QB+e/GumrVAX14WrHoV9nyv/t7kHnh4rjolWZiWosCSJ+DIH+DbXt0JnEos/OfqD1prU7UOkMX3SiRBjRCiTsjJUKc6H1gBwEf5j7PecygrXgjH0da0XzZV4tIRdeXbS4fUdFOviRDxsrpJqKgamcnq3lA5Vyt/rZePqj1AJiSL7wkhRF1l7wKPfgN93gbgWZtVJF68xKQVCVT7/8fuXQpf36MGNE4NYNiv0PM1CWiqmrMPDPhCneZt41S5R1Vs71BONSBkF0IIYTSNBsJfgrhvcL1ymkett/BdvD2dAtwZGhZg6dYVl58Nq1+Df75Vfw+6Gx6eZ/L/8YsytB6gPmqwCvXUzJ49m6CgIOzt7QkNDWXz5s1llv/hhx9o3749jo6O+Pr68tRTT5GWdnMNhYULF6LRaIo9cnKKbgBnbL1CCFGnWWmh23MAvOzyJxoKeWflAeITr1i4YbdJPQbz+twIaDTqnkRDf5GARhjN6KBm6dKljBs3jkmTJhEfH09ERARRUVEkJiaWWH7Lli0MGzaMkSNHcuDAAX766Sd27drFqFGjipRzcXEhKSmpyMPe3r7C9QohhAA6PgF2LrhlneGVwDPk6xSe/+Ef0q7lWrplqv0/w9e94GICOHnB0BXqJouSbhIVYHRQM336dEaOHMmoUaMIDg5mxowZ+Pv7M2fOnBLL79ixg8DAQMaOHUtQUBB33XUXo0ePZvfu3UXKaTQafHx8ijwqU68QQgjU6d6hwwEYbbeGJp5OJKXnMG7pHnSFFhxfk58DK8fBspGQdw0CI9TF9JreY7k2iRrPqKAmLy+PuLg4IiMjixyPjIxk27ZtJZ4THh7OuXPnWLVqFYqicPHiRX7++WcefPDBIuWuXbtGQEAAjRo1ol+/fsTHx1eqXoDc3FwyMjKKPIQQos7pOho0WqzPbGbB/Q442GjZfCyVGeuPWqY9aSfUdFPcN4AG7n5NHRDs7HPHU4Uoi1FBTWpqKjqdDm/vonlOb29vkpOTSzwnPDycH374gejoaGxtbfHx8cHNzY0vvvjCUKZVq1YsXLiQ3377jcWLF2Nvb0+PHj04duxYhesFmDp1Kq6uroaHv7+/MbcrhBC1g5s/tB4IQOCxhXzwSFsAvvjrOH8dNvPCfAnL4Kue6kaKjp7w5DLoPUnSTcIkKjRQWHPbdC1FUYod0zt48CBjx47lzTffJC4ujjVr1nDq1CnGjBljKBMWFsaTTz5J+/btiYiI4Mcff6RFixZFAh9j6wWYOHEi6enphsfZs2eNvVUhhKgdur+g/tz/EwObahneXZ0BNW7JHhLTsqq+/vwc+H0C/Pw05GVCQA813dTs3qqvW9QZRk3p9vT0RKvVFusdSUlJKdaLojd16lR69OjBq6++CkC7du1wcnIiIiKC9957D19f32LnWFlZ0aVLF0NPTUXqBbCzs8POzs6YWxRCiNqpUWdo1BXOxcKueUx68A32nktnz9mrPPdDHMueC8fepop6Sy6fVBfTS96n/h7xMvR6w+SrzgphVE+Nra0toaGhxMTEFDkeExNDeHjJO6VmZWVhddseHVqt+hentEWgFEVhz549hoCnIvUKIYS4jb63ZvcCbJVcZj/RCQ8nWw5cyOCtXw9UTZ0HflHTTcn71IXdnlgG974pAY2oEkannyZMmMC8efNYsGABhw4dYvz48SQmJhrSSRMnTmTYsGGG8v3792f58uXMmTOHkydPsnXrVsaOHUvXrl3x8/MD4O2332bt2rWcPHmSPXv2MHLkSPbs2VMkRXWneoUQQtxBq37g2hiy0mDfUvzcHPhiSEesNLB091mW7jLhEhm6fHXvpp+GQ24G+Iep6abmfUxXhxC3MTpUjo6OJi0tjXfeeYekpCRCQkJYtWoVAQFqfjYpKanI2jEjRowgMzOTmTNn8vLLL+Pm5kbv3r2ZNm2aoczVq1d59tlnSU5OxtXVlY4dO7Jp0ya6du1a7nqFEELcgdYauo2GdZNg+2zoNJwezTx5ObIlH609wuRfD9DGz5WQhq6Vr+vvDyD2a/V5j3HQ+7+gtan8dYUog2xoKYQQdUlOOkxvow7WfWIZNO9DYaHCs9/tZv2hFBq5O/D7S3fh5mhb4SouHt6O19IHsVJ0JHT9kJAHRpvwBkRdJBtaCiGEKM7eFToNVZ/vmAWAlZWGTx7vQGMPR85dyWb80j0UGrkw38lL15i14TgPf7GBK/97BitFx++6MB7Z1pgDF9JNfRdClEiCGiGEqGu6jQaNFZz4Cy4eBMDVwYY5T3bCztqKDUcuMWvD8TIvoSgKBy9kMD3mKJGfbqT3Jxv5aO0Rel5cRCurs6RbufKz97/JLSjkue//IT0r3xx3Juo4CWqEEKKucQ9UBw0D7JhtONzGz5X3BoUAMH39UTYdvVTktMJChfjEK0xdfYheH//NA59v5vM/j3H04jWsrTQMDbzKSza/AeD6yOfMeLoPjdwdSLycxcs/Gd/7I4SxZEyNEELURYk7YEFf0NrB+ANQz8vw0sTl+1kcm4i7ow2/vXgX569msyYhmbUHkklKzzGUs7O24u4WXkSF+HBvc3dcv49UN6ZsPQgeXwRAwvl0Hp6zjbyCQl7t25IX7mlm7jsVtUB5v78lqBFCiLpIUWDevXA+DnpNhF6vG17Kydfx2Jfb2X8+HSsN3NrB4mSrpXewN/e38aFXSy+c7G5Mot0wFTZ+AI714fmdRYKkpbsS+c+y/Vhp4LuR3ejRzNNcdylqCRkoLIQQonQaDYQ9rz7fNU/dxuAGexsts5/ohJujDYWKOt7m0dBGzBvWmbjJ9/HFkI482M73ZkCTtA82f6w+f+DjIgENQHSXxjzeuRGFCry0OJ6k9Gxz3KGog6SnRggh6ipdPnzWHjLOw4CZN2dF3XDuShYXrubQsbEbNtpS/g9ckAdze6sbVAYPgMe/VQOm2+Tk63hkzjYOXMigY2M3lj7bHVtr+X+1KB/pqRFCCFE2rY06Ewpgxxw1JXWLRu6OdA3yKD2gAdgyXQ1oHDzgwU9KDGhA7f2Z80QoLvbWxCde5f/+OGiquxDCQIIaIYSoyzoNBxsnSDkAJ/827tzk/bDpI/X5Ax9BvQZlFm9c35FPozsAsGj7GX7dc9749gpRBglqhBCiLnNwg45PqM+3zyr/ebp8+OU5KCyA4P4Q8ki5Trs32JuXeqszoF5ftp8jyZlGNliURleo8OGaw3y09jDXcgss3RyLkKBGCCHqum5jAA0cj4FLR8p3zpZP1Z4aB3d4cHqpaaeSjOvTgruaeZKdr+O57+PIzJGF+Uzhs/VHmf33CWZtOEHk9I1sOJxi6SaZnQQ1QghR19VvCi0fUJ/fshhfqZITYOOH6vMHPr5j2ul2WisNnw3ugJ+rPSdTr/Paz/uoQ3NWqsRfhy/y+V/qKtBeznZcSM/hqYW7GLcknsvX8yzcOvORoEYIIQR0f0H9uXcJXE8rvZwuH359Hgrz1VWJy5l2ul39enbMeqITNloNqxOSmbf5VIWuI+Ds5SzGLdkDwPDuAWx8tRej7grCSgO/7LlAn+kb+XXP+ToROEpQI4QQAgLCwbc9FORA3ILSy22dAUl7wd7N6LTT7To2dufNfq0B+GDNYXaeLCOYEiXKydcx5vs4MnIK6ODvxqQHW+Noa81/+7Vm+fM9aOXjzOXrefx7yR6eXriLC1dr9xpBEtQIIYS4sRjfjd6a2LlQkFu8zMUD8Pc09fkDH4Gzd6WrfTIsgIc6NkRXqPDi4nhSMnLufJIweOvXAxy4kIGHky2zn+hUZO2fDv5u/PbiXbx8XwtstepGpfdN38h320/X2n24JKgRQgihavMQOPvCtYuQsLzoa4bZTvnq+Ju2j5mkSo1Gw/89FEJLb2cuZeby4v/iydcVmuTatd3SXYks3X0WKw18MaQjfm4OxcrYWlvx0r3NWfXvuwgNcOd6no7Jvx4g+uvtHE+5ZoFWVy0JaoQQQqisbaHrM+rzHbOKLsa39bObaad+n1Yq7XQ7R1tr5jzZCWc7a2JPX+bDNYdNdu3aKuF8OpN/PQDAy5Et77ifVrMGzvw0ujtvD2iDk62WXaev8MBnm5n517FaFURKUCOEEOKm0KfA2kGdrn16s3rs4kH4+wP1edSH4Oxj8mqbeNXjo8faAzB38ylW7U8yeR21xdWsPMZ8H0deQSF9ghvwXM+m5TrPykrD8PBA1k3oSa+WXuTpCvl43VH6f7GFfeeuVm2jzUSCGiGEEDc5ekCHf6nPt88GXcHN2U4toqDd41VW9f0hPoy+uwkAr/60lxOXal96pLIKCxXGL93DuSvZNPZw5JPHOmBlZVyvWUM3B74Z0YVPo9vj7mjD4eRMBs3ayv/9cZDsPF0Vtdw8JKgRQghRVNhz6s+jq+GP8XAhHuxdTZ52KsmrfVvSLciD63k6xnwXR3p2zVqYLyUzh7d+TeDrTSeqJK0za8NxNhy5hJ21FXOe7ISro02FrqPRaHioYyPWT+jJgPZ+FCpqD1nfGZs4WYODSQlqhBBCFOXZHFrcrz7/51v15/3TwMW3yqu21lrxxb860sDZjmMp13hi3g6u1IDF4xRF4cfdZ7lv+iYWbT/D+6sOmzyts+noJaavPwrAe4NCaOPnWulr1q9nx+dDOrJgRGd8Xe1JvJzFJzFHK31dS5GgRgghRHFhz9983rwvtB9stqobONuz6Omu1HeyJeF8BkPm7iD1WglTzKuJxLQshs6P5bWf95GenU+wrwseTrYmTeucv5rNv5fEoygwpKs/j3X2N1HrVb1befPV0FAA/jx0kes1dO8oCWqEEEIUF3Q3NL0XXP2h/4wqTzvdLtjXhSXPhtHA2Y7DyZlEf7Wdi9VsDRtdocK8zSfpO2MTW46nYmdtxcSoVqx8sQcx4+9mYIeiaZ2tx1MrVE9ugY7nv4/jSlY+bRu68lb/Nia+E1Xbhq4E1nckJ7+Q9YcuVkkdVU2CGiGEEMVpNDB0OYzbDy5+FmlCc29nlo7ujq+rPScuXefxr7ZzvpqsiHs4OYOHZ2/lvT8OkZ2vo3uT+qwddzejezbFWmtF/Xp2fDZYTev43UjrPDFvJ6/9vJf0LOPGCb37+0H2nkvH1cGG2U90wt5GWyX3pNFo6N9e/bNeubdmzj6ToEYIIUTpzNxDc7sgTyd+HN0dfw8HzqRl8fiX20lMy7JYe3ILdExfd4R+n29h77l0nO2t+eDhtvzvmW4EejoVK9+7lTfrJvRkWPcAAH7cfY4+n25kdTmnrC//5xzf70hEo4EZgzvg7+Fo0vu5nT6o2Xg0xejgqzqQoEYIIUS15u/hyI+juxPk6cT5q9k8/tV2i8zQiTtzmQc/38Lnfx2noFAhsrU36yf0ZHDXxmjKCP7q2VnzzsAQfhrTnSZeTlzKzOW5H/5h9He7y9wW4lBSBm+s2A/A2N7NuaelcbuhV0QLb2daejuTr1NYezC5yuszNQlqhBBCVHu+rg4sfTaM5g3qkZyRw+Nf7eDoxUyz1H0tt4C3fk3g0S/VrQU869kx+4lOfDU0FG8X+3Jfp0ugB6vGRvDiPc2wttKw9sBF7p2+kaW7EovtoJ2Rk89z38eRk1/I3S28GHtvc1PfVqn6t1dnua3ce8FsdZqKBDVCCCFqhAYu9ix5NoxgXxdSr+Uy+OsdHLiQXqV1bjiSQt9P1WnaigKPhTZi/YS7eaCtb5m9M6Wxt9HySt+W/PbiXbRr5EpmTgH/WbafJ+bt5EzadUCdHv7Kj3s5nZZFQzcHPovugNbIBfYqQ5+C2nYirVrPOiuJRrk9PKzFMjIycHV1JT09HRcXF0s3RwghRAVczcpj2IJY9p1Lx8Xemu9GdqO9v5tJ67h8PY93fz/IivjzADRyd2Dqw22JaO5lsjoKdIV8s/U0n8QcISe/EHsbKybc14J8ncJHa49gq7XipzHdTX5v5TFwpjpm6N2BbRjaPdDs9d+uvN/fEtQIIYSocTJy8nnqm13EnblCPTtrFj7Vhc6BHpW+7unU66xOSGbu5pNcvp6HlQae6hHEy5EtcLS1NkHLizuTdp2Jy/ez7URakeP/91AIT3QLqJI672Te5pO898chugZ68OOY7hZpw60kqCmBBDVCCFF7XM8tYOSiXew4eRlHWy3zhncmvGnZu1XfTlEUjl68xuqEJNYkJHM4+eY4nZbezkx7tB0dzNBTol+R+L0/DpGZU8AjnRrx8WPtKpTiMoWk9Gy6T/0LgO0Te+Pr6mCRduhJUFMCCWqEEKJ2yc7T8ex3u9l8TF387uthnenZouwUkaIo7DuXzpoDyaxJSOZU6nXDa9ZWGro3rc8DbX15pFMjbK3NO/Q0JTOH+MSr9G7VAButZYe9Pv7ldmJPX+a/DwYzKqKJRdtS3u/vCr1js2fPJigoCHt7e0JDQ9m8eXOZ5X/44Qfat2+Po6Mjvr6+PPXUU6Sl3exmmzt3LhEREbi7u+Pu7k6fPn2IjY0tco0pU6ag0WiKPHx8fCrSfCGEELWEg62WucM60ye4AbkFhTyzaDcxB4uvhqsrVIg9dZm3Vx6gxwd/MXDWVub8fYJTqdextbaiT7A3Hz/Wnt3/7cN3I7sxpGtjswc0oG4R0beNj8UDGrg5C+q3GjQLyuh3benSpYwbN45JkyYRHx9PREQEUVFRJCYmllh+y5YtDBs2jJEjR3LgwAF++ukndu3axahRowxl/v77b4YMGcKGDRvYvn07jRs3JjIykvPnzxe5Vps2bUhKSjI89u/fb2zzhRBC1DL2NlpmPxFKVIgPebpCnvs+jj/2JZGvK2TT0Uu8sWI/3d7/k8e/2s43W09zIT0HR1stD7bz5YshHfln8n3MG96ZR0Mb4eZoa+nbqTai2vqitdKw71w6p2/pzarOjE4/devWjU6dOjFnzhzDseDgYAYNGsTUqVOLlf/444+ZM2cOJ06cMBz74osv+PDDDzl79myJdeh0Otzd3Zk5cybDhg0D1J6aX375hT179hjT3CIk/SSEELVXga6Ql3/ay697LmClAWd7G9Kzb66K62JvTZ/W3kSF+BLR3LPKthuoTYbO38nmY6m8EtmCF3ubb62c21VJ+ikvL4+4uDgiIyOLHI+MjGTbtm0lnhMeHs65c+dYtWoViqJw8eJFfv75Zx588MFS68nKyiI/Px8Pj6Ij2Y8dO4afnx9BQUEMHjyYkydPGtN8IYQQtZi11orpj3fgsdBGFCqQnp2PZz1bhnRtzLdPd2X3f+9j+uMduK+1twQ05VTT9oIyan5aamoqOp0Ob2/vIse9vb1JTi55OeXw8HB++OEHoqOjycnJoaCggAEDBvDFF1+UWs/rr79Ow4YN6dOnj+FYt27d+Pbbb2nRogUXL17kvffeIzw8nAMHDlC/fv0Sr5Obm0tu7s2FgzIyMoy5XSGEEDWM1krDtEfa0btVAzycbOkc6GHWhetqm75tfJi0Yj9HLmZyJDmTlj7Olm5SmSo0Eun2KWaKopQ67ezgwYOMHTuWN998k7i4ONasWcOpU6cYM2ZMieU//PBDFi9ezPLly7G3v7n8dFRUFI888ght27alT58+/PHHHwAsWrSo1HZOnToVV1dXw8Pf39/YWxVCCFHDWFlpiGrrS7cm9SWgqSRXBxt6tlD3nPp9X/UfMGxUUOPp6YlWqy3WK5OSklKs90Zv6tSp9OjRg1dffZV27drRt29fZs+ezYIFC0hKKtqd9fHHH/P++++zbt062rVrV2ZbnJycaNu2LceOHSu1zMSJE0lPTzc8ShvDI4QQQoiSDeigpqB+23uh2B5V1Y1RQY2trS2hoaHExMQUOR4TE0N4eHiJ52RlZWFlVbQarVbNZd765nz00Ue8++67rFmzhs6dO9+xLbm5uRw6dAhfX99Sy9jZ2eHi4lLkIYQQQojy6xPcAAcbLWfSsth/vmr32qoso9NPEyZMYN68eSxYsIBDhw4xfvx4EhMTDemkiRMnGmYsAfTv35/ly5czZ84cTp48ydatWxk7dixdu3bFz0+N/j788EP++9//smDBAgIDA0lOTiY5OZlr125uLf/KK6+wceNGTp06xc6dO3n00UfJyMhg+PDhlX0PhBBCCFEKR1tr7g1WU1DVfeduozeyiI6OJi0tjXfeeYekpCRCQkJYtWoVAQHq/hRJSUlF1qwZMWIEmZmZzJw5k5dffhk3Nzd69+7NtGnTDGVmz55NXl4ejz76aJG63nrrLaZMmQLAuXPnGDJkCKmpqXh5eREWFsaOHTsM9QohhBCiavRv78fv+5L4fV8SE6OCsaqmY5VkmwQhhBBClCknX0eX99aTmVvAT2O608UEm4cao0q3SRBCCCFE3WFvo6VviLo1UXVOQUlQI4QQQog70i/Et2p/EgW6Qgu3pmQS1AghhBDijsKb1sfDyZbUa3lsP5l25xMsQIIaIYQQQtyRjdaKqGqegpKgRgghhBDlok9BrUlIJrdAZ+HWFCdBjRBCCCHKpWugB94udmTkFLD5aKqlm1OMBDVCCCGEKBcrKw392t3cNqG6kaBGCCGEEOWmT0HFHLxIVl6BhVtTlAQ1QgghhCi39o1c8fdwIDtfx1+HUyzdnCIkqBFCCCFEuWk0GvrfSEFVt1lQEtQIIYQQwij6FNSGI5fIyMm3cGtukqBGCCGEEEZp5eNM8wb1yCsoJObARUs3x0CCGiGEEEIYRaPRGHprqtMsKAlqhBBCCGG0fu18AdhyPJXL1/Ms3BqVBDVCCCGEMFoTr3qENHRBV6iwOiHJ0s0BJKgRQgghRAVVt1lQEtQIIYQQokL63RhXs/PUZS5m5Fi4NRLUCCGEEKKCGro50DnAHUWB3/dZPgUlQY0QQgghKkw/C6o6pKAkqBFCCCFEhUW19cFKA3vOXuXs5SyLtkWCGiGEEEJUWANne7o3rQ/Ayn2W7a2RoEYIIYQQlTLAkIKy7LgaCWqEEEIIUSl92/hgo9VwKCmD4ymZFmuHtcVqFkIIIUSt4OZoy6iIJvi42ONZz85i7ZCgRgghhBCV9p/7W1m6CZJ+EkIIIUTtIEGNEEIIIWoFCWqEEEIIUStIUCOEEEKIWkGCGiGEEELUChLUCCGEEKJWkKBGCCGEELWCBDVCCCGEqBUqFNTMnj2boKAg7O3tCQ0NZfPmzWWW/+GHH2jfvj2Ojo74+vry1FNPkZaWVqTMsmXLaN26NXZ2drRu3ZoVK1ZUul4hhBBC1B1GBzVLly5l3LhxTJo0ifj4eCIiIoiKiiIxMbHE8lu2bGHYsGGMHDmSAwcO8NNPP7Fr1y5GjRplKLN9+3aio6MZOnQoe/fuZejQoTz++OPs3LmzwvUKIYQQom7RKIqiGHNCt27d6NSpE3PmzDEcCw4OZtCgQUydOrVY+Y8//pg5c+Zw4sQJw7EvvviCDz/8kLNnzwIQHR1NRkYGq1evNpS5//77cXd3Z/HixRWqtyQZGRm4urqSnp6Oi4uLMbcthBBCCAsp7/e3UT01eXl5xMXFERkZWeR4ZGQk27ZtK/Gc8PBwzp07x6pVq1AUhYsXL/Lzzz/z4IMPGsps37692DX79u1ruGZF6hVCCCFE3WJUUJOamopOp8Pb27vIcW9vb5KTk0s8Jzw8nB9++IHo6GhsbW3x8fHBzc2NL774wlAmOTm5zGtWpF6A3NxcMjIyijyEEEIIUTtVaJdujUZT5HdFUYod0zt48CBjx47lzTffpG/fviQlJfHqq68yZswY5s+fb9Q1jakXYOrUqbz99tvFjktwI4QQQtQc+u/tO42YMSqo8fT0RKvVFusdSUlJKdaLojd16lR69OjBq6++CkC7du1wcnIiIiKC9957D19fX3x8fMq8ZkXqBZg4cSITJkww/H7+/Hlat26Nv79/+W9aCCGEENVCZmYmrq6upb5uVFBja2tLaGgoMTExPPTQQ4bjMTExDBw4sMRzsrKysLYuWo1WqwVuRlzdu3cnJiaG8ePHG8qsW7eO8PDwCtcLYGdnh52dneH3evXqcfbsWZydnYv18GRkZODv78/Zs2dlEHE5yXtWMfK+VYy8bxUj75vx5D2rmKp83xRFITMzEz8/vzsWNMqSJUsUGxsbZf78+crBgweVcePGKU5OTsrp06cVRVGU119/XRk6dKih/DfffKNYW1srs2fPVk6cOKFs2bJF6dy5s9K1a1dDma1btyparVb54IMPlEOHDikffPCBYm1trezYsaPc9VZWenq6Aijp6ekmuV5dIO9Zxcj7VjHyvlWMvG/Gk/esYqrD+2b0mJro6GjS0tJ45513SEpKIiQkhFWrVhEQEABAUlJSkbVjRowYQWZmJjNnzuTll1/Gzc2N3r17M23aNEOZ8PBwlixZwn//+18mT55M06ZNWbp0Kd26dSt3vUIIIYSo24xep6a2kjVsjCfvWcXI+1Yx8r5VjLxvxpP3rGKqw/smez/dYGdnx1tvvVVkDI4om7xnFSPvW8XI+1Yx8r4ZT96ziqkO75v01AghhBCiVpCeGiGEEELUChLUCCGEEKJWkKBGCCGEELWCBDVCCCGEqBUkqAFmz55NUFAQ9vb2hIaGsnnzZks3qVqbMmUKGo2myMPHx8fSzap2Nm3aRP/+/fHz80Oj0fDLL78UeV1RFKZMmYKfnx8ODg706tWLAwcOWKax1cid3rcRI0YU+/yFhYVZprHVxNSpU+nSpQvOzs40aNCAQYMGceTIkSJl5PNWVHneM/msFTdnzhzatWuHi4sLLi4udO/endWrVxtet/TnrM4HNUuXLmXcuHFMmjSJ+Ph4IiIiiIqKKrKAoCiuTZs2JCUlGR779++3dJOqnevXr9O+fXtmzpxZ4usffvgh06dPZ+bMmezatQsfHx/uu+8+MjMzzdzS6uVO7xvA/fffX+Tzt2rVKjO2sPrZuHEjL7zwAjt27CAmJoaCggIiIyO5fv26oYx83ooqz3sG8lm7XaNGjfjggw/YvXs3u3fvpnfv3gwcONAQuFj8c2axtYyria5duypjxowpcqxVq1bK66+/bqEWVX9vvfWW0r59e0s3o0YBlBUrVhh+LywsVHx8fJQPPvjAcCwnJ0dxdXVVvvzySwu0sHq6/X1TFEUZPny4MnDgQIu0p6ZISUlRAGXjxo2KosjnrTxuf88URT5r5eXu7q7MmzevWnzO6nRPTV5eHnFxcURGRhY5HhkZybZt2yzUqprh2LFj+Pn5ERQUxODBgzl58qSlm1SjnDp1iuTk5CKfPTs7O3r27CmfvXL4+++/adCgAS1atOCZZ54hJSXF0k2qVtLT0wHw8PAA5PNWHre/Z3ryWSudTqdjyZIlXL9+ne7du1eLz1mdDmpSU1PR6XR4e3sXOe7t7U1ycrKFWlX9devWjW+//Za1a9cyd+5ckpOTCQ8PJy0tzdJNqzH0ny/57BkvKiqKH374gb/++otPPvmEXbt20bt3b3Jzcy3dtGpBURQmTJjAXXfdRUhICCCftzsp6T0D+ayVZv/+/dSrVw87OzvGjBnDihUraN26dbX4nBm9oWVtpNFoivyuKEqxY+KmqKgow/O2bdvSvXt3mjZtyqJFi5gwYYIFW1bzyGfPeNHR0YbnISEhdO7cmYCAAP744w8efvhhC7asenjxxRfZt28fW7ZsKfaafN5KVtp7Jp+1krVs2ZI9e/Zw9epVli1bxvDhw9m4caPhdUt+zup0T42npydarbZYBJmSklIs0hSlc3Jyom3bthw7dszSTakx9LPF5LNXeb6+vgQEBMjnD3jppZf47bff2LBhA40aNTIcl89b6Up7z0oinzWVra0tzZo1o3PnzkydOpX27dvz2WefVYvPWZ0OamxtbQkNDSUmJqbI8ZiYGMLDwy3UqponNzeXQ4cO4evra+mm1BhBQUH4+PgU+ezl5eWxceNG+ewZKS0tjbNnz9bpz5+iKLz44ossX76cv/76i6CgoCKvy+etuDu9ZyWRz1rJFEUhNze3enzOzDIcuRpbsmSJYmNjo8yfP185ePCgMm7cOMXJyUk5ffq0pZtWbb388svK33//rZw8eVLZsWOH0q9fP8XZ2Vnes9tkZmYq8fHxSnx8vAIo06dPV+Lj45UzZ84oiqIoH3zwgeLq6qosX75c2b9/vzJkyBDF19dXycjIsHDLLaus9y0zM1N5+eWXlW3btimnTp1SNmzYoHTv3l1p2LBhnX7fnnvuOcXV1VX5+++/laSkJMMjKyvLUEY+b0Xd6T2Tz1rJJk6cqGzatEk5deqUsm/fPuWNN95QrKyslHXr1imKYvnPWZ0PahRFUWbNmqUEBAQotra2SqdOnYpM6RPFRUdHK76+voqNjY3i5+enPPzww8qBAwcs3axqZ8OGDQpQ7DF8+HBFUdRptm+99Zbi4+Oj2NnZKXfffbeyf/9+yza6GijrfcvKylIiIyMVLy8vxcbGRmncuLEyfPhwJTEx0dLNtqiS3i9A+eabbwxl5PNW1J3eM/mslezpp582fF96eXkp9957ryGgURTLf840iqIo5ukTEkIIIYSoOnV6TI0QQgghag8JaoQQQghRK0hQI4QQQohaQYIaIYQQQtQKEtQIIYQQolaQoEYIIYQQtYIENUIIIYSoFSSoEUIIIUStIEGNEEIIIWoFCWqEEEIIUStIUCOEEEKIWkGCGiGEEELUCv8PsrouDhBmTvYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# x 축 = n_neighbors = range(1,31)\n", "# y 축 = score\n", "plt.plot(range(1,31), train_acc, label='Train')\n", "plt.plot(range(1,31), test_acc, label='Test')\n", "plt.legend()\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 5 }