
VoLUMF 60 16 MAY 1988 NUMBER 20

Long-Time Tails in a Chaotic System
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The long-time tail in the diffusive behavior in a strongly chaotic system (stadium billiard) is studied
from the point of view of "stickiness" of invariant lines. Diff'usion near the invariant line in the phase
space can be described by a one-dimensional continuous random-walk problem with pausing time which
is inversely proportional to the distance from the line. The problem is studied by numerical methods and
it is shown that the first-passage-time distribution has an algebraic decay tail in the form -t with the
estimated exponent v=2.933+0.005.

PACS numbers: 05.60.+w, 05,45.+b

It is generally believed that the origin of long-time
correlations in chaotic dynamical systems is due to the
effects of integrable components in the chaotic region.
For the purpose of studying the effects of integrable
components in the chaotic region, either analytically or
numerically, two-dimensional area-preserving maps are
often used as a model for simple Hamiltonian sys-
tems. ' Integrable components in these models are in-

variant lines constituting the border of the chaotic region
or boundary circles of islands in the chaotic region.

The long-time correlation effects of these lines usually
appear as "stickiness" of these lines. When an orbit is
once trapped close to the invariant lines, it stays stuck
for a long time before it returns to the chaotic sea. The
slow diffusion near the integrable region is often charac-
terized by the long-time tail of an algebraic decay in ei-
ther the survival probability or its time derivative, the
first-passage-time distribution. Recently I made detailed
analysis of the origin of the stickiness of the invariant
line of a certain model dynamical system slightly per-
turbed from the integrable one. A similar analysis can
be made of the stadium problem, although the existence
of the integrable component near the invariant line in

this problem is intuitively obvious, in contrast to the case
of the abstract model dynamical system where the
dynamical behavior near the invariant line is not easy to
analyze. In general, the location of the invariant line it-
self is hard to predict in perturbed dynamical systems,

let alone the dynamical behavior in the vicinity of the
line. Therefore the lesson we learn from the stadium
problem can give an insight to the chaos problem in the
abstract dynamical system where chaos is generated
from a small nonintegrable perturbation. On the other
hand, we can gain some more understanding on the na-

ture of chaos in the stadium problem or similar dynami-
cal systems such as the convergent hyperbolic orbits, ex-
istence of homoclinic orbits, horseshoe map, etc. , besides
the general mathematical results already known. In this
sense the comparative study of two dynamical systems
can enrich our understanding of the chaotic behavior of
dynamical systems in general.

Let us consider a billiard model in the stadium (Fig.
I), which is known to belong to a class of B systems, and
hence is a K system. Noting that near the invariant line
of period 2 there are integrable components of arbitrarily
long length in the time evolution of chaotic orbits, Vival-
di, Casati, and Guarneri calculated the velocity auto-
correlation function by taking the phase average instead
of the time average since the orbit is ergodic. They
found that the velocity autocorrelation function has an
algebraic decay tail with its exponent 3.

In this Letter I will follow a somewhat different route
to show that the integrable component slows down the
diffusion near the invariant line. The motion of a billiard
elastically reIIecting from the stadium-shaped boundary
as in Fig. 1 can be conveniently described by an area-
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FIG. 1. Stadium.

preserving mapping by the introduction of the so-called
BirkhoA' coordinates. These coordinates consist of a pair
of real numbers that specify, for each collision with a
boundary, the point of impact I and the tangent com-
ponent (with respect to the boundary) s =

i v i sina of the
velocity v at the point I right after the collision, where a
is the angle of reflection. Since a pair (l,s) uniquely
determines the pair (1',s') of the next collision, we can
define a mapping T by (1',s') =T(l,s). It can be shown
that T preserves the area.

The boundary of the stadium consists of four com-
ponents of curves, namely, two straight side lines (zero
curvature or neutral) of length d and two semicircles
(negative curvature or focusing) of radius r in the end
zones. If we take the origin of variables I at the mid-

point of the right-hand semicircle (Fig. I), and take
i v i =1, d = (1+xp) ', and r =pd, then we can restrict
the phase space of the system to the square [ —1, 1]
x [ —1, 1], where p is the parameter representing the ra-
tio r/d. There are two types of invariant lines in this
phase space, namely, the lines s= ~ 1 and i1i =[err/2, d
+rrr/21 on the line s=O. The first type corresponds to
the billiard motion which rolls along the boundary of the
stadium and the second type corresponds to the billiard
motion bouncing between two side lines perpendicularly.
The dynamical behavior in the vicinity of these invariant
lines shows stickiness of the line, a typical characteristic
of phase behavior near the invariant line.

Although the period of convergent periodic orbits
diverges as the orbits approach both invariant lines, only
invariant lines of the second type contribute to the long-
time tail since the time between successive collisions on
the semicircles in the limit of the rolling motion along
the arc approaches zero in the case of the first type. For
this reason I will restrict the discussion to the invariant
line of the second type and hereafter only the second
kind is implied when I mention the invariant line. A typ-
ical orbit in the phase space is shown in Fig. 2.

When a phase point moves near the invariant line the
distance s from the line is conserved. Every iteration of
T moves the point a distance LU=4r is i j(1 —s )
parallel to the line. When the point comes near the end

-1 .00

FIG. 2. A typical phase-space orbit with p =0.4, sl =J3 —1,
ll =J2 —1, and 5000 iterations. The two straight lines in the
center of the "button holes" are the period-2 invariant lines.
Stickiness of the line is "negatively" manifested by the orbit,
since the orbit is ergodic.

of the side line (which will be called the end point with

its I value denoted by I,), it enters the region of a semi-
circle and after either single or double collisions on the
wall of semicircle it is reflected back to side lines if the
incident angle a=sin 's is sufficiently small. Therefore
one can say that the orbit near the invariant line is made
of regular components of constant s and transitions be-
tween them.

Let us examine the law of transition in further detail.
Although the transition starts when the phase point
comes to a point less than Al short of the end point, it is

sufficient to consider only points within the distance Al/2
from the end point since if it is farther away than Al/2 it
will not enter the region of the semicircle but be reflected
to the opposite side line. Although it is a straightforward
matter to obtain the law of transition I will not present
the general expression since it is not only too complex to
present but also irrelevant to the long-time behavior of
this dynamical system. Instead, I will describe general
characteristics of the transition and the behavior in the
limit of small s which is relevant to the long-time behav-
ior. It is convenient to describe the new angle a'
=sin 's' in terms of the old angle a=sin 's and the
fractional distance, X = i1 —1, i/(d, l/2) of the old 1.

Let

sin2a jsina+ cos2a+ 1
A.p 2(sin2a/sina+ cos2a) '

which takes a value in the interval (0.5, 0.75). When X

varies from 0 to kp, a' decreases monotonically from 3a
to a/3 passing the value a at X=0.5. When X varies
from ko to 1, a' increases monotonically from a/3 to 3a
passing the value tt at k =0.75 (Fig. 3). When
X E [O,ko], the billiard comes out to the same side line
after a single reflection against the semicircle, while
when k e b.o, l], it comes out to the opposite sideline,
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FIG. 3. (a) The geometrical construction to show the rule of
reflection near the end point. Here QA =Al/2, QC/QA =0.5,
QC'IQA =ko, and QBIQA 0.75. (b) The full orbit starting
at A is redrawn and the orbit starting at C' can be visualized
from the inverted picture. The orbit starting at Q can also be
constructed from the part of inverted picture of (b).
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8'(s', s) =3[8(s' —s/3) —8(s' —3s)]/8s (2)

after double reflection as we can see from Fig. 3.
For small a, Xo can be approximated by

=0.666. . . . In Fig. 4 I plot the line segment of length
hl/2 starting at l=l, —5hl/6 on s=10 ' and its T'
image on the same phase region by reversing the sign of
I', i.e., I' —I'. This was done by my noting that when
/ is farther away than hl/2 and within the distance
5hl/6 from the end point, the billiard moves to the op-
posite side line and within the distance Al/3 from the
end point by a single reflection so that it returns to the
same side line after one more reflection from the semicir-
cle.

When the billiard takes a new s value it stays roughly
for a time

r = Int [I/(2sp ) ] + 1,

since if s is sufficiently small, the time it takes to move
from one end point to the other is approximately d/2rs
in units of a single collision time. In (1) Int(x) is the in-

teger part of x and 1 is added to account for the time it
takes to make the transition from old s to new s'. From
Fig. 4 it is clear that the transition probability W from
old s to new s' is uniform over the interval (s/3, 3s), i.e.,

FIG. 4. A 'B'C' is the T' image of line segment ABC (with
I' I') made of 300 points with each primed position corre-
sponding to the image of an unprimed position. a represents
the end point I, and g indicates the s=0 line where the invari-
ant line is located. In this picture p= —, andig=s=10 . If s
is small as in this picture ab bc ==cd =ef =AC/3 and
ig=3hg =jg/3.

is made, finer specification of the initial values of the or-
bit is amplified (as the line segment ABC is stretched to
A'8'C') and determines the next transition.

I have solved this random-walk problem by Monte
Carlo method. I place No particles at a certain position
so and let them execute a random walk by the rules (1)
and (2) and record the time they take to pass an arbi-
trarily set boundary point sb for the first time. For the
purpose of comparison with the result of Ref. 7 I chose
p= —', to make the pausing time (1) exactly the same
and so=0.005 and sb =0.15 to make the setting for the
Monte Carlo simulation exactly the same as in Ref. 7.
Figure 5 is a log-log plot of the number of particles N(t)
versus the first passage time (in units of 64 collisions).
They clearly indicate that the first-passage-time distribu-
tion Pr~, =N(t)/No has an asymptotic algebraic decay-
ing tail in the form of

with normalization. In the above 8(s) is the step func-
tion defined as Pffft a: ) (3)

1, s~0
8( ) ='0

We can view this problem as a continuous random walk
with pausing time given by (1). In our previous exam-
ple, we had (s/2, 2s) instead of (s/3, 3s) for the range
that the walker takes in a single step.

%e can now trace the origin of the random transition
from the randomness of the initial condition since we can
see from Fig. 4 that every time the transition from s to s'

When we estimate the slope and standard deviation from
the data by the Z -fit method we obtain

v =2.933 ~ 0.005. (4)

The straight line of the X fit is drawn in Fig. 5. The
value (4) is somewhat larger than 2.80~0.01 in Ref. 7
presumably because of faster diffusion (wider range per
random-walk step) given by (2).

In closing I would like to point out that the fact that
we find exactly the same diffusive characteristics in the
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behavior near the invariant line.
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FIG. 5. Log-log plot of the first-passage-time distribution.
The ordinate is the number and the abscissa is the time in units
of 64 collisions.

two apparently quite diferent dynamical systems, the
present problem and the one in Ref. 7, is suggestive that
the behavior shown in these examples is generic diA'usive
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