
 A Guide To TclDES

Munitions - grade Tcl Scripting!

Version 0.8

© 2004 Mac A. Cody

Table of Contents
Introduction..1
What Is DES?..1
DES Keys..1

Weak Keys...2
Semi-weak Keys..2
Possibly Weak Keys...3

DES Modes Of Operation..4
ECB Mode...4
CBC Mode...6
OFB Mode...7
CFB Mode...8

Weak Versus Strong Encryption: Triple-DES..10
Using TclDES..11

TclDES Installation...11
Loading TclDES..12
Key Set And Initialization Vector Management...13
TclDES Encryption Comands and Examples..15

Block Cipher Examples..17
Stream Cipher Examples...18

Import And Export Issues...20
Why is TclDES a munition?...20
How is TclDES being made available then?...20

Glossary..21
References..22

i

Illustration Index
Illustration 1. Electronic Code Block (ECB) Mode Of Operation. 4
Illustration 2. Cipher Block Chaining (CBC) Mode Of Operation. 5
Illustration 3. Output Feedback (OFB) Mode Of Operation. 7
Illustration 4. Cipher Feedback (CFB) Mode Of Operation. 9

ii

Index of Tables
Table 1: Weak DES Keys. 2
Table 2: Semi-weak DES Keys. 3
Table 3: Possibly weak DES Keys. 3
Table 4: Required Integral Message Length For Bit Segment Size. 17

iii

Introduction
This guide provides instruction on the setup and use of TclDES and TclDESjr,
which are pure-Tcl implementations of the National Institute of Standards
and Technology (NIST) Data Encryption Standard (DES). This guide will not
go into a detailed analysis of the operation of DES. Many documents are
availble that provide that information. Rather, this guide describes the
various operational modes of DES and how the procedures in TclDES and
TclDESjr are invoked to achieve these modes. Issues regarding the import
and export of TclDES will also be discussed.

What Is DES?
In 1972, the National Bureau of Standards (NBS), now known as NIST, issued
a call for proposal for a government-wide data encryption standard to be
used for secure communications and data protection of unclassified, sensitive
information. IBM responded with a modified version of the “Lucifer”
encryption algorithm known as the Data Encryption Algorithm (DEA). A
slightly modified form of this algorithm was adopted in 1976 as DES, and was
published as FIPS PUB 46 in 1977. The standard is currently in its third
revision [1]. DES is still known as DEA in the American National Standards
Institute (ANSI) standard publication ANSI X3.92-1981. A good historical
background of DES is presented in [2]. A good source for general information
about cryptography, including DES is presented in [3].

This guide will not provide a detailed presentation of the DES algorithm, as
there are many descriptions and analyses of the algorithm available openly
that satisfy that need, such as [4] and [5]. Here, it will be sufficient to treat
the DES algorithm as a black-box function with specific inputs and outputs
that have specific characteristics.

The DES algorithm is a block cipher, which takes as input a 64-bit data block
and a 56-bit key. The 56-bit key is permuted into sixteen 48-bit subkeys,
which are processed against the input data block. The output of the DES
algorithm is another 64-bit data block. The difference between DES
encryption and decryption is the order in which the subkeys are applied to
the input data.

The application of the DES algorithm to encrypt discrete, 64-bit data blocks is
called Electronic Code Block (ECB) mode. ECB is one of four DES modes of
operation. These four DES modes of operation will be discussed later in this
guide.

DES Keys
The 56-bit key is used by DES to generate a mapping between plaintext
(unencrypted data) and ciphertext (encrypted data). DES is a symmetric
cipher because same key is used for both encryption and decryption. DES

1

keys are usually stated as eight, 8-bit bytes. The least-significant bit of each
byte of the key is discarded during the generation of the sixteen 48-bit
subkeys. These bits are usually set so that each byte of the key has odd
parity, known as “normal form”.

The security of the encrypted data is maintained only as long as the value of
the key used to encrypt it is kept secret. In general, any randomly generated
key should be as secure as any other key. In practice, though, there are some
keys that are not desirable for use by DES. [6] identifies a number of DES
keys that are considered to be either weak, semi-weak, or possibly weak.
These keys are describe below.

Weak Keys

The DES keys, which are considered to be weak, are shown in Table 1. These
keys are weak because the encrypted data generated by DES with these keys
is identical to the unencrypted data. Note that there are only four weak keys
out of 72,057,594,037,927,936 possible keys, so DES is not necessarily
vulnerable due to the existence of weak keys. There are certainly other
reasons that DES can become vulnerable, as will be discussed later. TclDES
provides checks for the use of these keys during the generation of the
subkeys, forcing an error if any of them are encountered.

Table 1: Weak DES Keys.

Key Value
(hexidecimal with parity bits)

Actual Key

0101 0101 0101 0101 0000000 0000000

1F1F 1F1F 0E0E 0E0E 0000000 FFFFFFF

E0E0 E0E0 F1F1 F1F1 FFFFFFF 0000000

FEFE FEFE FEFE FEFE FFFFFFF FFFFFFF

Semi-weak Keys

There are twelve DES keys that are considered semi-weak. What is meant by
semi-weak in this case is that these keys form six pairs that are complement
keys. A complement key exists for a given key if the bit-wise complement of
that key encrypts the bit-wise complement of the plaintext into the bit-wise
complement of the ciphertext. These complement key pairs are listed in Table
Table 2. Rather than producing sixteen unique subkeys, the semi-weak keys
produce sixteen subkeys that have only two unique values, each being used
eight times in the DES algorithm. These keys should be avoided.

2

Table 2: Semi-weak DES Keys.

Key Value
(hexidecimal with parity bits)

Complement Key Value
(hexidecimal with parity bits)

01FE 01FE 01FE 01FE FE01 FE01 FE01 FE01

1FE0 1FE0 0EF1 0EF1 E01F E01F F10E F10E

01E0 01E0 01F1 01F1 E001 E001 F101 F101

1FFE 1FFE 0EFE 0EFE FE1F FE1F FE0E FE0E

011F 011F 010E 010E 1F01 1F01 0E01 0E01

E0FE E0FE F1FE F1FE FEE0 FEE0 FEF1 FEF1

Possibly Weak Keys

There are also fourty-eight DES keys that a regarded as possibly weak.
These keys produce only four distinct subkeys, rather than sixteen. The four
subkeys are used four times in the DES algorithm. The fourty-eight possibly
weak DES keys are listed in Table 3. These keys should be avoided.

Table 3: Possibly weak DES Keys.

Key Value (hexidecimal with parity bits)

1F1F 0101 0E0E 0101 E001 01E0 F101 01F1 011F 1F01 010E 0E01

FE1F 01E0 FE0E 01F1 1F01 011F 0E01 010E FE01 1FE0 FE01 0EF1

0101 1F1F 0101 0E0E E01F 1FE0 F10E 0EF1 E0E0 0101 F1F1 0101

FE01 01FE FE01 01FE FEFE 0101 FEFE 0101 E01F 01FE F10E 01FE

FEE0 1F01 FEF1 0E01 E001 1FFE F101 0EFE E0FE 1F01 F1FE 0E01

FE1F 1FFE FE0E 0EFE FEE0 011F FEF1 010E 1FFE 01E0 0EFE 01F1

E0FE 011F F1FE 010E 01FE 1FE0 01FE 0EF1 E0E0 1F1F F1F1 0E0E

1FE0 01FE 0EF1 01FE FEFE 1F1F FEFE 0E0E 01E0 1FFE 01F1 0EFE

FE1F E001 FE0E F101 0101 E0E0 0101 F1F1 E01F FE01 F10E FE01

1F1F E0E0 0E0E F1F1 FE01 E01F FE01 F10E 1F01 FEE0 0E01 FEF1

E001 FE1F F101 FE0E 011F FEE0 010E FEF1 01E0 E001 01F1 F101

1F01 E0FE 0E01 F1FE 1FFE E001 0EFE F001 011F E0FE 010E F1FE

1FE0 FE01 0EF1 FE01 0101 FEFE 0101 FEFE 01FE FE01 01FE FE01

1F1F FEFE 0E0E FEFE 1FE0 E01F 0EF1 F10E FEFE E0E0 FEFE F1F1

01FE E01F 01FE F10E E0FE FEE0 F1FE FEF1 01E0 FE1F 01F1 FE0E

FEE0 E0FE FEF1 F1FE 1FFE FE1F 0EFE FE0E E0E0 FEFE F1F1 FEFE

3

DES Modes Of Operation
Along with the DES algorithm, NBS/NIST also specified four modes of
operation for the purpose of allowing DES to be used in a wide variety of
applications. These modes of operation are: Electronic Code Block (ECB),
Cipher Block Chaining (CBC), Output Feedback (OFB), and Cipher Feedback
(CFB). The ECB and CBC modes of operation use the DES engine to process
data in blocks of eight bytes each. OFB and CFB use the DES engine to
process a stream of data bits. The modes are described in a separate FIPS
publications, [7], from the DES algorithm, as they describe how the DES
algorithm can be used rather than the algorithm itself. Each mode has
advantages and disadvantages in their usage. These modes of operation are
described in further detail below. A scholarly treatment of these modes of
operation can be found in [8]. The illustrations used in describing the modes
were taken from [9].

ECB Mode

Electronic Code Block (ECB) is the simplest DES mode of operation. A
message is encrypted or decrypted in blocks of eight bytes each until all
bytes of the message are processed. If the length of the plaintext message is
not an integral multiple of eight bytes, then a sufficient number of dummy
bytes (usually null characters) must be appended to complete the last eight-

4

Illustration 1. Electronic Code Block (ECB) Mode Of Operation.

byte block. A single 56-bit key is used to encrypt all of the message blocks.
Illustration 1 shows how the DES algorithm is applied in the ECB mode of
operation.

Beyond the simplicity of the ECB mode of operation, its other advantage is its
relative robustness to corruption of the encrypted data. If one byte of
encrypted data is corrupted, then the plaintext of only one eight-byte block is
lost. All other blocks are unaffected by the corruption.

The primary problem with the ECB mode of operation is that it is the least
secure application of the DES algorithm. Advances in computing technology
have made it possible to break the 56-bit key of DES in a few days. This has
been accomplished with high-speed, parallel computing, using a “brute-
force” attack, as described in [4]. A “brute-force” attack means that each DES
key, out of the possible 256 keys, is applied to the ciphertext until one
successfully decrypts the message. Consequently, the ECB mode of operation
for DES is considered insecure for most applications.

To provide a practical level of security with DES, it is now recommended that
one of the “Triple-DES” modes of operation be used to encrypt data. Triple-
DES is described later in this guide.

5

Illustration 2. Cipher Block Chaining (CBC) Mode Of Operation.

CBC Mode

The Cipher Block Chaining (CBC) mode of operation for DES is similar to
ECB mode in that it encrypts and decrypts messages in eight-byte blocks. As
with ECB mode, the message length must be an integral multiple of eight
bytes or padded to obtain that length. CBC mode is different in that it uses
the previously encrypted data block of the message as a mixing pattern for
the current block of the message. During encryption, the previous block of
ciphertext is fed forwand and exclusive-OR'ed with the current plaintext
block of the message before encryption with the DES algorithm. During
decryption, the previous block of ciphertext is fed forward and exclusive-
OR'ed with the output of the current plaintext block of the message it has
been decypted from ciphertext with the DES algorithm.

The first block of data to be encrypted or decrypted with CBC mode is a
special case, as there is no previous block of ciphertext available to
exclusive-OR with it. To resolve this problem, the user supplies a 64-bit
initialization vector to act as a mixing pattern for the first block of message
data. The CBC mode of operation is shown in Illustration 2. Note that if it is
desired to encrypt or decrypt a message as several sub-messages, all that is
necessary to do this is that the last eight-byte block of ciphertext be retained
to act as the initialization vector for the next sub-message. For this to work,
each sub-message must be an integral multiple of eight bytes.

CBC mode is a little more complicated to implement than ECB mode. It is
required that a block of ciphertext be carryed over from one iteration of the
encryption or decryption activity to the next. The initialization vector must
also be generated and communicated to those who need to decrypt the
message.

The robustness of CBC mode to data corruption is less than that of ECB
mode. If a byte of the ciphertext message is corrupted, that block and all
subsequent blocks of the plaintext message cannot be recovered during
decryption. Consequently, messages encrypted using CBC mode should be
transported using a reliable storage media or communication channel.

The extra effort required by CBC mode buys the user greater security over
ECB mode. In order to read the plaintext message, an adversary has to know
both the key and the 64-bit initialization vector used encrypt it. Even if the
key happened to be guessed through a brute-force attack, each plaintext
block is mixed with either the initialization vector or a ciphertext block whose
value is ultimately based on the initialization vector. Of course, if the key and
initialization vector for the first eight-byte block of ciphertext are discovered,
then all subsequent blocks can be easily decrypted. A brute-force attack of
both the key and the initialization vector would require a maximum of 256 *
264 or 2110 guesses.

6

OFB Mode

The Output Feedback (OFB) mode of operation provides a means by which
DES can be used as stream cipher. This means that the encryption algorithm
processes the message as a sequence of bits. The messages is segmented into
K-bit chunks, where K may equal 1 through 64, inclusively. To start an
encryption or decryption, an initialization vector of length L is supplied to the
input of the DES encryption algorithm. The value of L may equal 1 through
64, inclusively, but does not have to equal the K-bit segment size. The
initialization vector is placed in the least-significant bits of the input. The
remaining 64-L bits are set to zero.

The most-significant K bits of the output of the DES encryption algorithm are
mixed with K bits of the message bit stream using an exclusive-OR operator.
All 64 bits of the output are also fed back into the input of the DES
encryption algorithm to be encrypted again. The DES encryption algorithm is
used as a pseudo-random bit pattern generator. The OFB mode of operation
is shown in Illustration 3.

OFB mode is relatively simple to implement. The DES encryption algorithm is
used in the same fashion as ECB mode with the output fed back into the
input. The additional processing is in taking the K bits of the encryptor
output and mixing them with the message bit stream. In practice, the
message data is usually not available as a true bit stream, but as a sequence
of bytes. Therefore, unpacking and repacking of bits must occur if all bits in
every byte of the message are to contain actual data. Note that the OFB mode
function in the OpenSSL library does not use packed binary byte streams.

7

Illustration 3. Output Feedback (OFB) Mode Of Operation.

Rather, each K-bits of data are stored in the smallest integral multiple of
bytes that will hold the K bits. Those bits that are not part of the K-bits of the
message are set to zero.

The robustness of OFB mode to data corruption is good. If any bit of the
ciphertext message is corrupted, only that bit is affected in the decryption.
This is due to the independence between bits in the message stream. On the
other hand, synchronization must be maintained between the DES encryptors
at the transmitting and receiveing ends of the ciphertext message. If the DES
encryptors become unsynchronized, then none of the plaintext can be
recovered. Consequently, both encryptors must be restarted.

A ciphertext bit stream encrypted using OFB mode is vulnerable to
interception if an adversary has access to the output of the DES encrypted
ciphertext sequence used to mix with the plaintext bit stream. The encryption
key and initialization vector are not needed. Of course, the adversary's DES
encrypted ciphertext sequence must be synchronized with the ciphertext bit
stream in order to recover the plaintext bit stream. A brute-force attack to
guess the DES key value, the initialization vector value, and the size of K
would require a maximum of 25 * 256 * 264 or 2115 guesses.

CFB Mode

The Cipher Feedback (CFB) mode of operation uses the DES encryption
algorithm to implement a stream cipher, like OFB mode. CFB mode is slightly
more complicated, though. The messages is segmented into K-bit chunks,
where K may equal 1 through 64, inclusively. To start an encryption or
decryption, an initialization vector, also of length K bits, is supplied to the
input of the DES encryption algorithm. The initialization vector is placed in
the least-significant bits of the input. The remaining 64-K bits are set to zero.

With CFB encryption, the most-significant K bits of the output of the DES
encryption algorithm are mixed with K-bit segment of the plaintext bit stream
using an exclusive-OR operator. This forms a K-bit ciphertext bit stream. The
previous input of the DES encryption algorithm is shifted to the left by K bits
and the K-bit segment of the ciphertext bit stream that were just created are
inserted into the least-significant K bits of the input. The DES encryption
algorithm is ready for the next iteration of the pseudo-random bit pattern
generator for CFB encryption.

With CFB decryption, the most-significant K bits of the output of the DES
encryption algorithm are mixed with K bits of the ciphertext bit stream using
an exclusive-OR operator. This forms a K-bit plaintext bit stream. The
previous input of the DES encryption algorithm is shifted to the left by K bits
and the same K bits of the ciphertext bit stream are inserted into the least-
significant K bits of the input. This prepares the DES encryption algorithm for
the next iteration of the pseudo-random bit pattern generator for CFB mode
decryption. The OFB mode of operation is shown in Illustration 4.

8

CFB mode is a bit more complicated to implement as compared to OFB mode.
The DES encryption algorithm is used in the same fashion as ECB mode. The
additional processing is in taking the K bits of the encryptor output and
mixing them with the message bit stream. In addition it is also necessary to
shift the K-bit segment of the input to the DES encryption algorithm and
inserting the K bits of the cipher bit stream. In practice, the message data is
usually not available as a true bit stream, but as a sequence of bytes.
Therefore, unpacking and repacking of bits must occur if all bits in every byte
of the message are to contain actual data. Note that the CFB mode function
in the OpenSSL library does not use packed binary byte streams. Rather,
each K-bits of data are stored in the smallest integral multiple of bytes that
will hold the K bits. Those bits that are not part of the K-bits of the message
are set to zero.

The robustness of CFB mode to data corruption is comparable to CBC mode.
If any bit of the ciphertext message is corrupted, all bits in that K-bit block
and subsequent blocks of the plaintext message cannot be recovered during
decryption. Consequently, messages encrypted using CFB mode should be
transported using a reliable storage media or communication channel. In
addition, synchronization must be maintained between the DES encryptors at
the transmitting and receiveing ends of the ciphertext message. If the DES
encryptors become unsynchronized, then none of the plaintext can be
recovered. Consequently, both encryptors must be restarted.

A ciphertext bit stream encrypted using CFB mode is much more secure than
OFB mode. This is due to the input of the ciphertext bit stream into the DES

9

Illustration 4. Cipher Feedback (CFB) Mode Of Operation.

encryptor. In order to read the plaintext message, an adversary has to know
both the key and the K-bit initialization vector used encrypt it. Of course, the
adversary's DES encrypted ciphertext sequence must be synchronized with
the ciphertext bit stream in order to recover the plaintext bit stream. A brute-
force attack would have to guess the DES key value, the initialization vector
value, and the size of K. A brute-force attack of the key, the initialization
vector, and the value of K would require a maximum of 25 * 256 * 264 or 2115

guesses.

Weak Versus Strong Encryption: Triple-DES
As mentioned previously, advances in technology have made DES vulnerable
to attack due to the relatively short length of it key. DES, especially DES-ECB
mode of operation, is considered weak encryption. In order to provide
additional security, an extended version of DES called Triple-DES (3DES), or
Triple Data Encryption Algorithm (TDEA), was added to the standard. Triple-
DES applies the standard DES algorithm three times successively to each
block of data. 3DES is currently regarded as strong encryption.

Encryption using 3DES is performed using an encryption-decryption-
encryption (EDE) sequence. The first application of the DES algorithm is an
encryption operation on the 64-bit plaintext block. The second application of
the DES algorithm is a decryption operation on the output of the encrypted
64-bit block. The third application of the DES algorithm is another encryption
operation on the decrypted 64-bit block. Decryption using 3DES is performed
using an decryption-encryption-decryption sequence. The first application of
the DES algorithm is an decryption operation on the 64-bit ciphertext block.
The second application of the DES algorithm is an encryption operation on
the output of the decrypted 64-bit block. The third application of the DES
algorithm is another decryption operation on the encrypted 64-bit block.

All of this activity seems rather pointless if the 56-bit keys for each
application of the DES algorithm were the same. If they were, then 3DES
encryption would be no different than a single application of the DES
algorithm. With 3DES, each 56-bit key can be different, but they don't have to
be. In fact, one approved mode of 3DES uses the same key for each
application of the DES algorithm to maintain compatibility with standard
DES. Of course, this usage of 3DES is just as susceptable to compromise as
standard DES. The more secure methods of using 3DES involves either two or
three different 56-bit keys.

When two different keys (K1 and K2) are used, this form of 3DES is called
DES-EDE2. During DES-EDE2 encryption, key K1 is used for the two DES
encryption stages and key K2 is used for the intermediate DES decryption
stage. During DES-EDE2 encryption, key K1 is used for the two DES
decryption stages and key K2 is used for the intermediate DES encryption
stage. DES-EDE2 is much more secure than standard DES. A brute-force

10

attack to determine both 56-bit keys would take 256 * 256 or 2112 guesses.

When three different keys (K1, K2, and K3) are used, this form of 3DES is
called DES-EDE3. During DES-EDE3 encryption, key K1 is used for the first
DES encryption stage, key K2 is used for the intermediate DES decryption
stage, and K3 is used for the last DES encryption stage. During DES-EDE3
decryption, key K3 is used for the first DES decryption stage, key K2 is used
for the intermediate DES encryption stage, and K1 is used for the last DES
decryption stage. DES-EDE3 is extreemly secure when compared to standard
DES. A brute-force attack to determine both 56-bit keys would take 256 * 256

* 256 or 2168 guesses. Brute-force attacks against both DES-EDE2 and DES-
EDE3 are considered impractical.

Just as with standard DES, NIST has specified several modes of opereration
for using the 3DES algorithm:

• Triple DES-ECB (3DES-ECB) also known as TDEA-ECB (TECB)

• Triple DES-CBC (3DES-CBC) also known as TDEA-CBC (TCBC)

• Triple DES-OFB (3DES-OFB) also known as TDEA-OFB (TOFB)

• Triple DES-CFB (3DES-CFB) also known as TDEA-CFB (TCFB)

These modes of operation are identical to those that use the standard DES
algorithm, except the 3DES algorithm is used instead. Of course, either two
or three 56-bit keys need to be specified.

Using TclDES
The TclDES library package implements the DES and 3DES algorithms and
all modes of operation in pure Tcl. No platform-specific extensions are
required. Support functions to generate and manage key sets are also
provided.

Since 3DES is regarded as strong encryption, the legality of transferring the
TclDES library across international borders must be taken into consideration.
Consequently, a reduced-functionality version of TclDES exists with the 3DES
support removed. This library is called TclDESjr. For most of the proceeding
discussion, either library can be used interchangably. The examples that use
3DES or long key set generation only apply to TclDES, not TclDESjr.

TclDES Installation

To install the TclDES or TclDESjr library, first extract the distribution from
the archive file. If the distribution file is a UNIX tar file compressed with
gzip, enter the following commands from within the directory where the
distribution will go:

11

TclDES TclDESjr

gzip -d tclDES-0.8.tar.gz gzip -d tclDESjr-0.8.tar.gz

tar xvf tclDES-0.8.tar tar xvf tclDESjr-0.8.tar

or if GNU tar is available, simply enter:

TclDES TclDESjr

tar xzvf tclDES-0.8.tar.gz tar xzvf tclDESjr-0.8.tar.gz

If the distribution file is a PKZIP file, enter the following commands from
within the directory where the distribution will go:

TclDES TclDESjr

unzip tclDES-0.8.zip for Unix unzip tclDESjr-0.8.zip for Unix

pkzip tclDES-0.8.zip for DOS pkzip tclDESjr-0.8.zip for DOS

or use WINZIP under Microsoft Windows.

The distribution, extracted from the archive file, should contain the following:

TclDES TclDESjr
tclDES-0.8/readme.txt tclDESjr-0.8/readme.txt

tclDES-0.8/tcldes.html tclDESjr-0.8/tcldesjr.html

tclDES-0.8/tcldes.n tclDESjr-0.8/tcldesjr.n

tclDES-0.8/AGuideToTclDES.pdf tclDESjr-0.8/AGuideToTclDES.pdf

tclDES-0.8/tclDES0.8/des.tcl tclDESjr-0.8/tclDESjr0.8/desjr.tcl

tclDES-0.8/tclDES0.8/pkgIndex.tcl tclDESjr-0.8/tclDESjr0.8/pkgIndex.tcl

The library directory tclDES0.8 or tclDESjr0.8 and its contents are then
copied into a directory whose path is listed in the Tcl auto_path variable.
Alternately, the path to the TclDES or TclDESjr library can be added to the
auto_path variable from within the Tcl interpreter.

Loading TclDES

The TclDES or TclDESjr package is loaded into the Tcl interpreter by using
the package require command:

TclDES TclDESjr

package require tclDES <0.8> package require tclDESjr <0.8>

Optionally, the version of the library can be specifed if several versions of the
library are available to the Tcl interpreter.

Once loaded, there should now be a ::des namespace avalible to the Tcl
interpreter. This namespace contains the commands for the TclDES or
TclDESjr library. Note that either the TclDES or the TclDESjr library should
be loaded into a Tcl interpreter, but not both. Both librarys use the same

12

command set, so they cannot exist in the same namespace.

Key Set And Initialization Vector Management

As discussed previously, the DES algorithm uses a 56-bit key, which is
specified as a sequence of eight bytes. The least-significant bit of each byte is
unused by DES. When the DES key is presented in “normal form”, these bits
are are used to provide odd parity for their respective bytes. TclDES does not
require that the bytes of the key have odd parity, though, in order for the key
to work properly.

A DES key can be created via any number of means, either automated or
manually. The key must be a eight-byte binary string, though an eight-
character ASCII string can be used. A binary string provides a must larger set
of possible strings and allows the key to be expressed in normal form if
desired. Binary strings provide a higher measure of security, as they are
harder to guess than ASCII strings. Below is an example of generating a DES
key using the Tcl rand function:

Generate a 64-bit binary key from four 16-bit fragments.
set fragmentA [format %04x [expr int(65536 * rand())]]
set fragmentB [format %04x [expr int(65536 * rand())]]
set fragmentC [format %04x [expr int(65536 * rand())]]
set fragmentD [format %04x [expr int(65536 * rand())]]
set key [binary format H4H4H4H4 $fragmentA $fragmentB $fragmentC $fragmentD]

Note that the Tcl rand function is not cryptographically secure, as it uses a
pseudo-random number generator to create the values. Before generating
keys, it is recommended to review the information provided in the section
DES Keys.

Before a key can be used by the DES algorithm, it must be processed to form
the sixteen 48-bit subkeys that are applied to the data. The processing used
to create the subkeys only has to be done once. The subkeys can be used
multiple times by the DES algorithm for both encryption and decryption.

TclDES provides a key set generation and management facility to streamline
the handling of the DES subkeys. Rather than passing keys or subkeys to the
DES encryption and decryption functions, a handle to a key set is passed
instead. The handle is used as an index into the Tcl array, des::keysets,
which resides within the ::des namespace. Each array element consists of a
list of sixteen 48-bit subkeys that have been generated previously.

The des::keyset command is the user interface to the keyset facility. To
create a new key set, the create option is used, with the key value being
supplied as a parameter by the user. The key set is created and placed into
the des::keysets array. The index to the key set is automatically assigned
and has the form keysetN, where N is a the value of the array variable
des::keysets(ndx). The value of des::keysets(ndx) is set to 1 when the

13

TclDES library is loaded and is incremented by 1 after each new key set is
created. A key set handle value only be issued once and will never be
reissued until the TclDES library is reinstalled.

When an eight-byte string, representing a 56-bit key, is supplied a key set for
standard DES is created:

% set ks_handle1 [des::keyset create ABCDEFGH]
keyset1
% puts $des::keysets($ks_handle1)
151138818 671679530 17957383 671679500 84942852 151596290 621806083 17109007
605104649 50662656 873013506 50599957 805898794 33948420 269026560 102897969
268970240 102896161 34343992 69349396 33820936 70255160 35915056 271595008
170136620 806354984 136446736 806888482 153227317 940058632 153236480
671623178

Note that each 48-bit subkey is represented as two 32-bit values due to the
implementation of the DES algorithm. When a twenty-four byte string,
representing a 168-bit key (three, 56-bit keys), is supplied a key set for 3DES
is created:

% set ks_handle2 [des::keyset create ABCDEFGHIJKLMNOPQRSTUVWX]
keyset2
% puts $des::keysets($ks_handle2)
151138818 671679530 17957383 671679500 84942852 151596290 621806083 17109007
605104649 50662656 873013506 50599957 805898794 33948420 269026560 102897969
268970240 102896161 34343992 69349396 33820936 70255160 35915056 271595008
170136620 806354984 136446736 806888482 153227317 940058632 153236480
671623178 151142186 738788890 17958703 673777212 118498612 151588642
621811251 18165799 605108761 319105320 1007235350 50609181 806033454 33949454
269027077 237114675 285739781 102899235 34352699 69416978 100938507 70257468
35923250 271855365 170204198 806359341 404883992 806892851 153229597
940194329 153237800 671627802 151663106 738923819 17959431 741020685
118499340 220806418 655622923 18158111 605368105 320147200 1009329442
319035445 942344762 570827556 269161744 774519097 285882624 237646377
51121212 203633692 101978380 70321722 104073009 288634370 707081773 823396392
941826834 840444966 422187063 973744396 422196224 671754511

As before, each 48-bit subkey is represented as two 32-bit values. Note that
the create option in the TclDESjr version of the des::keyset command only
supports the creation of subkeys for 56-bit DES keys.

Once the need for a key set has passed, it may be removed from the
des::keysets array by using the destroy option of the des::keyset
command, supplying the handle name as a parameter:

% des::keyset destroy keyset1

The subkey generation facility can be accessed directly through the
des::createKeys command. The only parameter required is an eight-byte
string, representing a 56-bit key, or a twenty-four byte string, representing a
168-bit key (three, 56-bit keys). A list containing the subkeys, as described
above, is returned. Note that subkey lists created in this fashion cannot be
used by the encryption and decryption functions of TclDES, as they are not

14

stored in the des::keysets array in the ::des namespace.

The CBC, OFB, and CFB modes of operation require an initialization vector to
provide an initial feed-forward value (for CBC mode) or feedback value (for
OFB and CFB modes). Like the DES key, the initialization vector is
represented as a eight-byte string, preferably binary. TclDES uses the
variable that stores the initialization vector as a placeholder of the resulting
feed-forward or feedback data that is available at the end of the final
processing cycle of the CBC, OFB, and CFB modes modes of the DES and
3DES algorithms.

In TclDES, the initialization vector is passed via reference into the encryption
or decryption procedure. That is, the name of the variable containing the
initialization vector is passed, not the value of the vector. After the procedure
has fininshed execution, the original content of the variable is replaced by the
feed-forward or feedback value. The advantage of this approach is that the
encryption or decryption of a long message can be spread across multiple
calls of the procedure rather than all at once. This is very useful when
coupled with event-driven processing. The disadvantage is that the original
value of the initialization vector is lost. Consequently, a copy of any
initialization vector used for CBC, OFB, or CFB encryption must be retained
elsewhere so that the message can be decrypted later using the same
initialization vector.

TclDES Encryption Comands and Examples

TclDES provides support for all four DES/3DES modes of operation. There
are four commands in the des namespace that supports two ways for the
modes can be accessed. These commands will be described briefly below.
Examples of how the commands are used are presented afterward. Details on
these commands and their parameters can be found in the TclDES and
TclDESjr manual pages.

The first way that the DES/3DES modes are accessed is through the
des::encrypt and des::decrypt commands. These commands provide a
consistent interface to all four modes of operation and are oriented according
to whether encryption or decryption is being performed. Both commands
require as input parameters a key set handle and the message data. All other
parameters are optional. These parameters specify the mode of operation
(ECB by default), the name of the variable containing the initialization vector
used by the CBC, OFB, and CFB modes (an empty string by default), and the
bit segment size used by the OFB and CFB modes (64 bits by default). If any
mode other than ECB are specified, then the name of the variable containing
the initialization vector must be specified. If the CBC mode is specified, then
the bit segment size value is ignored. The output of the des::encrypt and
des::decrypt commands is the encrypted or decrypted message,
respectively.

15

The des::encrypt and des::decrypt commands are wrappers around the
des::block and des::stream commands. These commands represent the
other way to access the DES/3DES modes of operation. Using these
commands directly removes a layer of procedure call, but require that the
user be familiar with the appropriate values for the parameters, which are a
bit more cryptic.

The des::block command supports the ECB and CBC modes of operation.
The command requires as input parameters a key set handle, the message
data, and an encryption/decryption flag. Optional parameters are a flag
representing the mode of operation ('0' represents ECB mode, which is the
default) and the name of the variable containing the initialization vector (an
empty string by default). If the mode flag indicates CBC mode ('1' represents
CBC mode), then the variable containing the initialization vector must be
specified.

The des::stream command supports the OFB and CFB modes of operation.
The comand requires as input parameters a key set handle, the message
data, and an encryption/decryption flag. In addition, a mode flag ('0'
represents OFB mode and '1' represents CFB mode) and the name of the
variable containing the initialization vector are required. An optional
parameter is the bit segment size used by these modes (64 bits by default).

While the stream ciphers are designed to encrypt and decrypt continuous
sequences of bits, the most common format in which bits are conveyed is 8-
bit bytes. The value of the bit segment size, though, can range from 1 to 64
bits. If the bit segment size is an integral multiple of eight bits, then the bit
stream can be easily processed through the OFB and CFB algorithms as
bytes. If this is not the case, then unpacking and repacking of bits from bytes
is required to process the appropriate number of bits during each algorithm
cycle. Consequently, if the length of the message in bits is not an integral
multiple of the bit segment size, then there will not be an sufficient number
of bits available for the last algorithm cycle. Conversly, if the message does
not fit within an integral number of bytes, then the last byte must contain
unused bits and some mechanism must be created to indicate which bits are
not part of the actual message.

DES OFB and CFB mode functions in the OpenSSL library solve this problem
by not using packed binary byte streams. Rather, the message stream is
broken ino chunks of data that are equal to the length of the bit segment size.
Each chunk of data is stored in the smallest integral multiple of bytes that
will hold the bits. Those bits that are not part of the bit segment are not used
and are set to zero. TclDES uses packed bit data, so no bits are wasted in any
byte. As a result, the length of the message must be an integral multiple of a
string of bytes sufficient to satisfy the conditions described above. Table 4
lists the integral message length required for each bit segment size.

16

Table 4: Required Integral Message Length For Bit Segment Size.

Bit
Segment

Size (bits)

Integral
Message
Length
(bytes)

Bit
Segment

Size (bits)

Integral
Message
Length
(bytes)

Bit
Segment

Size (bits)

Integral
Message
Length
(bytes)

1 1 23 69 45 270

2 1 24 3 46 276

3 3 25 100 47 282

4 1 26 104 48 6

5 5 27 108 49 343

6 6 28 112 50 350

7 7 29 116 51 357

8 1 30 120 52 364

9 18 31 124 53 371

10 20 32 4 54 378

11 22 33 165 55 385

12 24 34 170 56 7

13 26 35 175 57 456

14 28 36 180 58 464

15 30 37 185 59 472

16 2 38 190 60 480

17 51 39 195 61 488

18 54 40 5 62 496

19 57 41 246 63 504

20 60 42 252 64 8

21 63 43 258

22 66 44 264

Block Cipher Examples

Below are several examples of how the DES/3DES block cipher modes of
operation, ECB and CBC, are invoked. Note that the size of the key used to
create the key set determines whether a particular encryption or decryption
operation is stardard DES or 3DES. Of course, 3DES encryption and
decryption are not available with the TclDESjr library.

17

ECB Mode

Given the variable keyset, which contains a handle to a set of subkeys, and
the variable data, which contains a plaintext message, the ECB mode of
operation for encrypt and decryption can be performed as follows:

set ct [des::encrypt $keyset $data ecb]
set pt [des::decrypt $keyset $ct ecb]

The default mode of operation for des::encrypt and des::decrypt is ECB,
so the mode option can be unspecified if ECB mode is desired:

set ct [des::encrypt $keyset $data]
set pt [des::decrypt $keyset $ct]

The des::block command can be used in a similar fashion:

set ct [des::block $keyset $data 1 0]
set pt [des::block $keyset $ct 0 0]

CBC Mode

The initialization vector used in CBC mode is passed via reference rather
than by value. This allows the variable to assume the value of the last feed-
forward ciphertext block at the completion to the command. The initialization
vector used for encryption must also be used for decryption, so a copy must
be retained. The CBC mode of operation for encrypt and decryption can be
performed as follows:

set ivec2 $ivec1
set ct1 [des::encrypt $keyset $data1 cbc ivec1]
set ct2 [des::encrypt $keyset $data2 cbc ivec1]
set pt1 [des::decrypt $keyset $ct1 cbc ivec2]
set pt2 [des::decrypt $keyset $ct2 cbc ivec2]

The des::block command can be used in a similar fashion:

set ivec2 $ivec1
set ct1 [des::block $keyset $data1 1 1 ivec1]
set ct2 [des::block $keyset $data2 1 1 ivec1]
set pt1 [des::block $keyset $ct1 0 1 ivec2]
set pt2 [des::block $keyset $ct2 0 1 ivec2]

Stream Cipher Examples

Below are several examples of how the DES/3DES stream cipher modes of
operation, OFB and CFB, are invoked. Note that the size of the key used to
create the key set determines whether a particular encryption or decryption
operation is stardard DES or 3DES. Of course, 3DES encryption and
decryption are not available with the TclDESjr library.

OFB Mode

Let the variable keyset contain a handle to a set of subkeys and the variable

18

data contain a plaintext message. The initialization vector used in OFB mode
is passed via reference rather than by value. This allows the variable to
assume the value of the last feedback block at the completion to the
command. The initialization vector used for encryption must also be used for
decryption, so a copy must be retained. The bit segment size (in this example
a value of '23') is the final parameter. The OFB mode of operation for encrypt
and decryption can be performed as follows:

set ivec2 $ivec1
set ct1 [des::encrypt $keyset $data1 ofb ivec1 23]
set ct2 [des::encrypt $keyset $data2 ofb ivec1 23]
set pt1 [des::decrypt $keyset $ct1 ofb ivec2 23]
set pt2 [des::decrypt $keyset $ct2 ofb ivec2 23]

Note that the length of each message must an integral multiple of the
minimum message size required by the specified bit segment size (for this
example, it would be 69 bytes). For a default bit segment size of 64 bits, the
last parameter can be unspecified:

set ivec2 $ivec1
set ct1 [des::encrypt $keyset $data1 ofb ivec1]
set pt1 [des::decrypt $keyset $ct1 ofb ivec2]

The des::stream command can be used in a similar fashion:

set ivec2 $ivec1
set ct1 [des::stream $keyset $data1 1 0 ivec1 23]
set ct2 [des::stream $keyset $data2 1 0 ivec1 23]
set pt1 [des::stream $keyset $ct1 0 0 ivec2 23]
set pt2 [des::stream $keyset $ct2 0 0 ivec2 23]

CFB Mode

The input parameters for the CFB mode of operation are identical to those of
the OFB mode of operation except for the mode selection parameter. for
encrypt and decryption can be performed as follows:

set ivec2 $ivec1
set ct1 [des::encrypt $keyset $data1 cfb ivec1 56]
set ct2 [des::encrypt $keyset $data2 cfb ivec1 56]
set pt1 [des::decrypt $keyset $ct1 cfb ivec2 56]
set pt2 [des::decrypt $keyset $ct2 cfb ivec2 56]

As with OFB mode, the length of each message must an integral multiple of
the minimum message size required by the specified bit segment size (for a
size of 56 bits, it would be 7 bytes). For a default bit segment size of 64 bits,
the last parameter can be unspecified:

set ivec2 $ivec1
set ct1 [des::encrypt $keyset $data1 cfb ivec1]
set pt1 [des::decrypt $keyset $ct1 cfb ivec2]

The des::stream command can be used in a similar fashion:

set ivec2 $ivec1

19

set ct1 [des::stream $keyset $data1 1 1 ivec1 56]
set ct2 [des::stream $keyset $data2 1 1 ivec1 56]
set pt1 [des::stream $keyset $ct1 0 1 ivec2 56]
set pt2 [des::stream $keyset $ct2 0 1 ivec2 56]

Import And Export Issues

Why is TclDES a munition?

Under the International Traffic in Arms Regulations (ITARs), encryption
software and hardware are considered munitions along with guns, tanks,
nuclear, biological, and chemical weapons. Encryption can potentially be
used by adversaries to conceal their communications from the United States
government. As a result, export of encryption software and hardware
requires licensing and approval by the U.S. government.

Fortunately, export restrictions have been eased significantly in recent years.
This is due to several reasons. For one, the large amount of commerce now
occuring on the Internet requires that encryption be widely available. With
commerce equating to money, there is a strong desire by the U.S.
government for American companies to remain competitive. Another reason
is that it has become virtually impossible to control the flow of cryptographic
software into and out of the United States. Many books on encryption,
containing source code, are readily available. Ironically, these books have no
restrictions on export due to the 1st Ammendment of the U.S. Constitution.
Also, the availablility of many encryption packages (such as OpenSSL and
PGP) make the entire effort of controlling encryption export rather moot.

How is TclDES being made available then?

The TclDES source code is being made publicly available and has been
registered with the U.S. Dept. of Commerce Bureau of Industry and Security
(BIS) under export license exception TSU (Technology and Software
Unrestricted) for export out of the United States. To qualify for this
exception, the sources to TclDES must be made available with minimial or no
cost. To satisfy this requirement, the TclDES sources are licensed under the
same Open Source license as Tcl (BSD). Details can be found in the TclDES
source code.

While license exception TSU allows for the export of TclDES out of the United
States, the import of the strong encryption (3DES) contained within TclDES
into other countries could be an issue. The BIS Export Administration
Regulations (EARs) and the Wassenaar Arrangement allow for the
unrestricted export (no licensing required) of symmetric key encryption with
key lengths of 56 or fewer bits. The Wassenaar Arrangement is signed by 33
founding countries, which includes most of the major industrialized nations.
To satisfy this restriction and make a pure-Tcl implementation of DES as
widely available as possible, a version of the TclDES source code was created

20

with the 3DES capabilities stripped out. This version is called TclDESjr.

Regardless of the statements made above, it is incumbent upon the user to
determine the legalities of the use of TclDES or TclDESjr in their locale or
the locale of their customer. The author of TclDES and TclDESjr is not liable
for the inappropriate import or export of either library by others.

Glossary
Below are the definitions of a number of terms used in the discussion of
encryption and decryption

block cipher An encryption algorithm that operates on discrete
blocks of data of a fixed size, usually along byte
boundaries.

ciphertext Commonly, text which has been encrypted or made
unintelligible using an encryption algorithm, though
generally referring to any binary data that has been
encrypted.

complement key A complement key exists for a given key if the bit-wise
complement of that key encrypts the bit-wise
complement of the plaintext into the bit-wise
complement of the ciphertext.

initialization vector A 64-bit block of data used by DES CBC, CFB, and
OFB modes of operation to supply the initial feedback
data.

key A data pattern used by a cipher to encrypt or decrypt
data.

normal form The formatting of an eight-byte DES key, where the
least-significant bit of each byte is set so that the
bytes have odd parity.

plaintext Commonly, text which which can be directly
understood by any observer, though generally
referring to any binary data that can be directly
understood.

possibly-weak key A DES key that produces only four unique subkeys
rather than the normal unique sixteen subkeys.

semi-weak key A DES key that forms a member of a complement key
pair.

stream cipher An encryption algorithm that operates on serial data,
usually a sequence of bits.

21

symmetric cipher A cipher in which the same key is used for both
encryption and decryption.

weak key A DES key by which the encrypted data generated by
the DES algorithm is identical to the unencrypted
data.

References
[1] Federal Information Processing Standards Publication, FIPS PUB 46-3,
DATA ENCRYPTION STANDARD (DES), U.S. Department Of
Commerce/National Institute of Standards and Technology, October 25, 1999
(http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf).

[2] Wikipedia, the free encyclopedia, Data Encryption Standard,
http://en.wikipedia.org/wiki/Data_Encryption_Standard).

[3] RSA Laboratories' Frequently Asked Questions About Today's
Cryptography. Version 4.1, RSA Laboratories, 20 Crosby Drive Bedford, MA
01730 USA , (ftp://ftp.rsasecurity.com/pub/labsfaq/rsalabs_faq41.pdf).

[4] Grabbe, J. Orlin, The DES Algorithm Illustrated,
(http://www.aci.net/kalliste/des.htm).

[5] Schneier, Bruce, Applied Cryptography, Second Edition: Protocols,
Algorthms, and Source Code in C, Wiley Computer Publishing, John Wiley &
Sons, Inc.

[6] Federal Information Processing Standards Publication, FIPS PUB 74,
GUIDELINES FOR IMPLEMENTING AND USING THE NBS DATA
ENCRYPTION STANDARD, U.S. Department Of Commerce/National Institute
of Standards and Technology, April, 1981
(http://www.itl.nist.gov/fipspubs/fip74.htm).

[7] Federal Information Processing Standards Publication, FIPS PUB 81, DES
MODES OF OPERATION, U.S. Department Of Commerce/National Institute of
Standards and Technology, December 2, 1980
(http://www.itl.nist.gov/fipspubs/fip81.htm).

[8] Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and
S. Vanstone, CRC Press, 1996 (http://www.cacr.math.uwaterloo.ca/hac).

[9] National Institute of Standards and Technology, NIST Special Publication
800-17, Modes of Operation Validation System (MOVS): Requirements and
Procedures.

22

