{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data=pd.read_csv('allstock_t.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AAAAACGAACQAACQUAAICAALAAMCAAMEAAN...ZTOZTRZTSZUMZZUOZVOZYMEZYNEZYXITSLA
0126.1625.231.2710.5411.153.9315.3822.392.3621.37...28.208.76167.0039.3913.734.8353.543.4915.18816.04
1122.8925.211.2210.6211.253.8815.5222.852.3020.85...28.488.87167.1539.2113.424.8451.673.4114.42755.98
2119.6123.671.2310.5611.293.7715.4323.842.6019.57...28.828.92164.7336.0813.405.1350.883.3913.51735.11
3118.6423.251.1810.6611.303.7315.1323.902.1418.81...28.058.79163.5935.7013.554.6148.973.3313.88729.77
4118.4923.051.1910.6311.243.7815.7723.582.0618.96...29.168.78165.5036.7813.934.7447.263.3013.46705.67
\n", "

5 rows × 6212 columns

\n", "
" ], "text/plain": [ " A AA AACG AACQ AACQU AAIC AAL AAMC AAME AAN ... \\\n", "0 126.16 25.23 1.27 10.54 11.15 3.93 15.38 22.39 2.36 21.37 ... \n", "1 122.89 25.21 1.22 10.62 11.25 3.88 15.52 22.85 2.30 20.85 ... \n", "2 119.61 23.67 1.23 10.56 11.29 3.77 15.43 23.84 2.60 19.57 ... \n", "3 118.64 23.25 1.18 10.66 11.30 3.73 15.13 23.90 2.14 18.81 ... \n", "4 118.49 23.05 1.19 10.63 11.24 3.78 15.77 23.58 2.06 18.96 ... \n", "\n", " ZTO ZTR ZTS ZUMZ ZUO ZVO ZYME ZYNE ZYXI TSLA \n", "0 28.20 8.76 167.00 39.39 13.73 4.83 53.54 3.49 15.18 816.04 \n", "1 28.48 8.87 167.15 39.21 13.42 4.84 51.67 3.41 14.42 755.98 \n", "2 28.82 8.92 164.73 36.08 13.40 5.13 50.88 3.39 13.51 735.11 \n", "3 28.05 8.79 163.59 35.70 13.55 4.61 48.97 3.33 13.88 729.77 \n", "4 29.16 8.78 165.50 36.78 13.93 4.74 47.26 3.30 13.46 705.67 \n", "\n", "[5 rows x 6212 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AAAAACGAACQAACQUAAICAALAAMCAAMEAAN...ZTOZTRZTSZUMZZUOZVOZYMEZYNEZYXITSLA
count1033.0000001033.0000001033.00000086.000000124.0000001033.0000001033.0000001033.0000001033.00000029.000000...1033.0000001033.0000001033.0000001033.000000691.000000438.000000931.0000001033.0000001033.0000001033.000000
mean73.18506329.8392062.7543189.99372110.3884688.63588634.29154944.3610072.77204318.648621...20.19864510.83362199.77071623.70702816.8848193.15050222.7217409.2912496.798984118.857686
std15.44204613.2072111.6984250.2817090.3545554.08632613.50823827.7770080.6762802.025071...6.4840801.68419233.6511605.8746065.6031381.30965513.2726755.2870566.098869135.816838
min43.2100005.4800000.6700009.62000010.0000001.7000009.0400007.9900001.50000016.370000...11.2300005.05000049.10000011.4500007.1900001.1100006.4800002.8900000.29000035.790000
25%64.73000020.0700001.1300009.78250010.1275005.60000027.22000016.7600002.23000017.620000...15.3600009.87000071.77000019.78000012.5150002.01250012.4300005.0300002.78000055.840000
50%69.70000029.2900002.0200009.94000010.3150008.38000034.81000038.8000002.64000018.120000...18.47000011.13000091.47000023.60000015.3600003.00000016.2900007.8600004.00000065.320000
75%79.70000041.6400004.60000010.06750010.45250011.78000046.28000068.7000003.39000018.960000...22.68000011.830000126.20000027.13000020.5700004.11750034.68000011.90000010.26000085.050000
max126.16000060.2300006.87000010.66000011.33000017.08000058.470000109.3500004.10000026.500000...38.64000014.110000174.35000039.39000037.0900006.79000054.99000025.19000028.580000816.040000
\n", "

8 rows × 6212 columns

\n", "
" ], "text/plain": [ " A AA AACG AACQ AACQU \\\n", "count 1033.000000 1033.000000 1033.000000 86.000000 124.000000 \n", "mean 73.185063 29.839206 2.754318 9.993721 10.388468 \n", "std 15.442046 13.207211 1.698425 0.281709 0.354555 \n", "min 43.210000 5.480000 0.670000 9.620000 10.000000 \n", "25% 64.730000 20.070000 1.130000 9.782500 10.127500 \n", "50% 69.700000 29.290000 2.020000 9.940000 10.315000 \n", "75% 79.700000 41.640000 4.600000 10.067500 10.452500 \n", "max 126.160000 60.230000 6.870000 10.660000 11.330000 \n", "\n", " AAIC AAL AAMC AAME AAN ... \\\n", "count 1033.000000 1033.000000 1033.000000 1033.000000 29.000000 ... \n", "mean 8.635886 34.291549 44.361007 2.772043 18.648621 ... \n", "std 4.086326 13.508238 27.777008 0.676280 2.025071 ... \n", "min 1.700000 9.040000 7.990000 1.500000 16.370000 ... \n", "25% 5.600000 27.220000 16.760000 2.230000 17.620000 ... \n", "50% 8.380000 34.810000 38.800000 2.640000 18.120000 ... \n", "75% 11.780000 46.280000 68.700000 3.390000 18.960000 ... \n", "max 17.080000 58.470000 109.350000 4.100000 26.500000 ... \n", "\n", " ZTO ZTR ZTS ZUMZ ZUO \\\n", "count 1033.000000 1033.000000 1033.000000 1033.000000 691.000000 \n", "mean 20.198645 10.833621 99.770716 23.707028 16.884819 \n", "std 6.484080 1.684192 33.651160 5.874606 5.603138 \n", "min 11.230000 5.050000 49.100000 11.450000 7.190000 \n", "25% 15.360000 9.870000 71.770000 19.780000 12.515000 \n", "50% 18.470000 11.130000 91.470000 23.600000 15.360000 \n", "75% 22.680000 11.830000 126.200000 27.130000 20.570000 \n", "max 38.640000 14.110000 174.350000 39.390000 37.090000 \n", "\n", " ZVO ZYME ZYNE ZYXI TSLA \n", "count 438.000000 931.000000 1033.000000 1033.000000 1033.000000 \n", "mean 3.150502 22.721740 9.291249 6.798984 118.857686 \n", "std 1.309655 13.272675 5.287056 6.098869 135.816838 \n", "min 1.110000 6.480000 2.890000 0.290000 35.790000 \n", "25% 2.012500 12.430000 5.030000 2.780000 55.840000 \n", "50% 3.000000 16.290000 7.860000 4.000000 65.320000 \n", "75% 4.117500 34.680000 11.900000 10.260000 85.050000 \n", "max 6.790000 54.990000 25.190000 28.580000 816.040000 \n", "\n", "[8 rows x 6212 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.describe()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AAAAACGAACQAACQUAAICAALAAMCAAMEAAN...ZTOZTRZTSZUMZZUOZVOZYMEZYNEZYXITSLA
A1.000000-0.546866-0.5756010.6588200.648158-0.820908-0.749643-0.610791-0.7406840.022504...0.812895-0.6227230.9051270.683145-0.5772490.4098580.814755-0.6954980.7832010.839405
AA-0.5468661.0000000.8151430.7680570.7265030.7824780.8737410.8303920.682925-0.118194...-0.7180330.717891-0.738771-0.3687000.8429650.356939-0.7740160.409851-0.767670-0.442666
AACG-0.5756010.8151431.0000000.4479570.1804940.7686770.8129530.7992560.6930580.422086...-0.5999050.727005-0.696504-0.4682580.6076710.259030-0.6564860.566730-0.627059-0.397638
AACQ0.6588200.7680570.4479571.0000000.9859810.8791440.8218620.2386980.298408-0.333966...-0.5500400.836415-0.0822770.6219650.8481170.4217770.583873-0.087699-0.1910170.872929
AACQU0.6481580.7265030.1804940.9859811.0000000.8789240.7565950.2604800.305446-0.431639...-0.4840030.7757810.0504010.6472990.514447-0.0463240.606103-0.140728-0.1967540.773121
..................................................................
ZVO0.4098580.3569390.2590300.421777-0.0463240.014492-0.0491500.5735020.053076-0.138094...0.176974-0.1699820.2235590.0186550.2593521.000000-0.2301480.1501860.0812270.431805
ZYME0.814755-0.774016-0.6564860.5838730.606103-0.845485-0.829789-0.773132-0.804468-0.160786...0.788578-0.6482680.9177720.732296-0.723101-0.2301481.000000-0.5564480.8025570.673927
ZYNE-0.6954980.4098510.566730-0.087699-0.1407280.7545950.6566180.5564560.7581930.295205...-0.6473440.610665-0.696765-0.4914610.4231360.150186-0.5564481.000000-0.604850-0.456071
ZYXI0.783201-0.767670-0.627059-0.191017-0.196754-0.892040-0.877533-0.753387-0.8087300.226944...0.946738-0.7333900.8845150.532797-0.7508000.0812270.802557-0.6048501.0000000.629662
TSLA0.839405-0.442666-0.3976380.8729290.773121-0.571510-0.634259-0.351846-0.4561200.000435...0.696491-0.6173070.7122250.495106-0.4976230.4318050.673927-0.4560710.6296621.000000
\n", "

6212 rows × 6212 columns

\n", "
" ], "text/plain": [ " A AA AACG AACQ AACQU AAIC AAL \\\n", "A 1.000000 -0.546866 -0.575601 0.658820 0.648158 -0.820908 -0.749643 \n", "AA -0.546866 1.000000 0.815143 0.768057 0.726503 0.782478 0.873741 \n", "AACG -0.575601 0.815143 1.000000 0.447957 0.180494 0.768677 0.812953 \n", "AACQ 0.658820 0.768057 0.447957 1.000000 0.985981 0.879144 0.821862 \n", "AACQU 0.648158 0.726503 0.180494 0.985981 1.000000 0.878924 0.756595 \n", "... ... ... ... ... ... ... ... \n", "ZVO 0.409858 0.356939 0.259030 0.421777 -0.046324 0.014492 -0.049150 \n", "ZYME 0.814755 -0.774016 -0.656486 0.583873 0.606103 -0.845485 -0.829789 \n", "ZYNE -0.695498 0.409851 0.566730 -0.087699 -0.140728 0.754595 0.656618 \n", "ZYXI 0.783201 -0.767670 -0.627059 -0.191017 -0.196754 -0.892040 -0.877533 \n", "TSLA 0.839405 -0.442666 -0.397638 0.872929 0.773121 -0.571510 -0.634259 \n", "\n", " AAMC AAME AAN ... ZTO ZTR ZTS \\\n", "A -0.610791 -0.740684 0.022504 ... 0.812895 -0.622723 0.905127 \n", "AA 0.830392 0.682925 -0.118194 ... -0.718033 0.717891 -0.738771 \n", "AACG 0.799256 0.693058 0.422086 ... -0.599905 0.727005 -0.696504 \n", "AACQ 0.238698 0.298408 -0.333966 ... -0.550040 0.836415 -0.082277 \n", "AACQU 0.260480 0.305446 -0.431639 ... -0.484003 0.775781 0.050401 \n", "... ... ... ... ... ... ... ... \n", "ZVO 0.573502 0.053076 -0.138094 ... 0.176974 -0.169982 0.223559 \n", "ZYME -0.773132 -0.804468 -0.160786 ... 0.788578 -0.648268 0.917772 \n", "ZYNE 0.556456 0.758193 0.295205 ... -0.647344 0.610665 -0.696765 \n", "ZYXI -0.753387 -0.808730 0.226944 ... 0.946738 -0.733390 0.884515 \n", "TSLA -0.351846 -0.456120 0.000435 ... 0.696491 -0.617307 0.712225 \n", "\n", " ZUMZ ZUO ZVO ZYME ZYNE ZYXI TSLA \n", "A 0.683145 -0.577249 0.409858 0.814755 -0.695498 0.783201 0.839405 \n", "AA -0.368700 0.842965 0.356939 -0.774016 0.409851 -0.767670 -0.442666 \n", "AACG -0.468258 0.607671 0.259030 -0.656486 0.566730 -0.627059 -0.397638 \n", "AACQ 0.621965 0.848117 0.421777 0.583873 -0.087699 -0.191017 0.872929 \n", "AACQU 0.647299 0.514447 -0.046324 0.606103 -0.140728 -0.196754 0.773121 \n", "... ... ... ... ... ... ... ... \n", "ZVO 0.018655 0.259352 1.000000 -0.230148 0.150186 0.081227 0.431805 \n", "ZYME 0.732296 -0.723101 -0.230148 1.000000 -0.556448 0.802557 0.673927 \n", "ZYNE -0.491461 0.423136 0.150186 -0.556448 1.000000 -0.604850 -0.456071 \n", "ZYXI 0.532797 -0.750800 0.081227 0.802557 -0.604850 1.000000 0.629662 \n", "TSLA 0.495106 -0.497623 0.431805 0.673927 -0.456071 0.629662 1.000000 \n", "\n", "[6212 rows x 6212 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.corr()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "cortable=data.corr()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAJNCAYAAABqVV/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkv0lEQVR4nO3df7Dl9V3f8dcbrom/Ug1mQdgfgtMdK3FMYlcmbqy/sIZYlcQRl9RGxmJZW7Q6dWyJzmh/DDOOba2tYxQaU7HVsFSTBjUmIsbEdjXJJsZEQmhQEu5lKWD8/WPiLLz7x37RI9kfn8vec8+59z4eM3fOOd/z/R7e8JlzD/vc8z2nujsAAAAAcDbnLXoAAAAAALYGIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABiysugBzsVznvOcvvTSSxc9BgAAAMC28a53vev3unvXqe7b0iHp0ksvzbFjxxY9BgAAAMC2UVUfPt19Tm0DAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCtpTde/elqrbFz+69+xb9nxMAAGBdVhY9AMB6HF9bzaFbji56jA1x5PDBRY8AAACwLt6RBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYMhcQ1JVfWpV/UxVfaCq7q2qL6iqC6rqrqr64HT57Jn9X1lV91fVfVX14nnOBgAAAMD6zPsdSf85yZu6++8keV6Se5PclOTu7t6f5O7pdqrq8iTXJnlukquSvKqqzp/zfAAAAAAMmltIqqq/leSLkvx4knT3X3b3Hya5Oslt0263JXnpdP3qJLd390e7+4Ek9ye5Yl7zAQAAALA+83xH0mcmeSzJf6uq36yqV1fVJyW5qLsfTpLp8sJp/91JVmeOX5u2AQAAALAE5hmSVpJ8XpIf7e4XJPmzTKexnUadYlt/zE5VN1TVsao69thjj23MpAAAAACc1TxD0lqSte5++3T7Z3IyLD1SVRcnyXT56Mz+e2eO35Pk+FMftLtv7e4D3X1g165dcxseAAAAgL9pbiGpu/9fktWq+qxp05VJ3p/kziTXTduuS/KG6fqdSa6tqmdW1WVJ9id5x7zmAwAAAGB9Vub8+N+W5Keq6hlJfjfJN+VkvLqjqq5P8mCSa5Kku++pqjtyMjadSHJjdz8+5/kAAAAAGDTXkNTd70ly4BR3XXma/W9OcvM8ZwIAAADg6ZnnZyQBAAAAsI0ISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgyMqiBwDmb/fefTm+trroMQAAANjihCTYAY6vrebQLUcXPcaGOHL44KJHAAAA2LGEJIBFOW8lVbXoKc7ZJXv25qHVBxc9BgAAsAmEJIBFeeLEtninmHeJAQDAzuHDtgEAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhsw1JFXVh6rqfVX1nqo6Nm27oKruqqoPTpfPntn/lVV1f1XdV1UvnudsAAAAAKzPZrwj6Uu7+/ndfWC6fVOSu7t7f5K7p9upqsuTXJvkuUmuSvKqqjp/E+YDAAAAYMAiTm27Oslt0/Xbkrx0Zvvt3f3R7n4gyf1Jrtj88QAAAAA4lXmHpE7yS1X1rqq6Ydp2UXc/nCTT5YXT9t1JVmeOXZu2AQAAALAEVub8+C/q7uNVdWGSu6rqA2fYt06xrT9mp5NB6oYk2bdv38ZMCQAAAMBZzfUdSd19fLp8NMnrc/JUtUeq6uIkmS4fnXZfS7J35vA9SY6f4jFv7e4D3X1g165d8xwfAAAAgBlzC0lV9UlV9awnryf5iiS/neTOJNdNu12X5A3T9TuTXFtVz6yqy5LsT/KOec0HAAAAwPrM89S2i5K8vqqe/Of8dHe/qaremeSOqro+yYNJrkmS7r6nqu5I8v4kJ5Lc2N2Pz3E+AAAAANZhbiGpu383yfNOsf0jSa48zTE3J7l5XjMBAAAA8PTN+1vbAAAAANgmhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAADAFrN7775U1bb42b1336L/c7IOK4seAAAAAFif42urOXTL0UWPsSGOHD646BFYB+9IAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDVhY9AABb3HkrqapFT7EhLtmzNw+tPrjoMQAAYGkJSQCcmydO5NAtRxc9xYY4cvjgokcAAICl5tQ2AAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgyNxDUlWdX1W/WVU/P92+oKruqqoPTpfPntn3lVV1f1XdV1UvnvdsAAAAAIzbjHckfXuSe2du35Tk7u7en+Tu6Xaq6vIk1yZ5bpKrkryqqs7fhPkAAAAAGDDXkFRVe5L8gySvntl8dZLbpuu3JXnpzPbbu/uj3f1AkvuTXDHP+QAAAAAYN+93JP1Qkn+Z5ImZbRd198NJMl1eOG3fnWR1Zr+1aRsAAAAAS2BuIamqvirJo939rtFDTrGtT/G4N1TVsao69thjj53TjAAAAACMm+c7kl6U5Guq6kNJbk/yZVX1P5I8UlUXJ8l0+ei0/1qSvTPH70ly/KkP2t23dveB7j6wa9euOY4PAAAAwKy5haTufmV37+nuS3PyQ7R/pbv/UZI7k1w37XZdkjdM1+9Mcm1VPbOqLkuyP8k75jUfAAAAAOuzsoB/5vcnuaOqrk/yYJJrkqS776mqO5K8P8mJJDd29+MLmA8AAACAU9iUkNTdv5rkV6frH0ly5Wn2uznJzZsxEwAAAADrM+9vbQMAAABgmxCSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMCQlUUPAABL47yVVNWip9gQl+zZm4dWH1z0GAAAbDNCEgA86YkTOXTL0UVPsSGOHD646BEAANiGnNoGAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGLKy6AEAAABgM+zeuy/H11YXPQZsaUISAAAAO8LxtdUcuuXoosfYEEcOH1z0COxQTm0DAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOGQlJVvWhkGwAAAADb1+g7kn54cBsAAAAA29TKme6sqi9IcjDJrqr6FzN3/a0k589zMAAAAACWyxlDUpJnJPnkab9nzWz/4yRfN6+hAAAAAFg+ZwxJ3f3WJG+tqp/o7g9v0kwAAAAALKGzvSPpSc+sqluTXDp7THd/2TyGAgAAAGD5jIak/5nkx5K8Osnj8xsHAAAAgGU1GpJOdPePznUSAAAAAJbaeYP7/VxV/bOquriqLnjyZ66TAQAAALBURt+RdN10+V0z2zrJZ27sOAAAAAAsq6GQ1N2XzXsQAAAAAJbbUEiqqm881fbu/smNHQcAAACAZTV6atvnz1z/+CRXJnl3EiEJAAAAYIcYPbXt22ZvV9WnJPnvc5kIAAAAgKU0+q1tT/XnSfZv5CAAAAAALLfRz0j6uZz8lrYkOT/JZye5Y15DAQAAALB8Rj8j6T/MXD+R5MPdvTaHeQAAAABYUkOntnX3W5N8IMmzkjw7yV/OcygAAAAAls9QSKqqr0/yjiTXJPn6JG+vqq+b52AAAAAALJfRU9u+J8nnd/ejSVJVu5L8cpKfmddgAAAAACyX0W9tO+/JiDT5yDqOBQAAAGAbGH1H0puq6s1JXjvdPpTkjfMZCQAAAIBldMaQVFV/O8lF3f1dVfW1Sb4wSSX59SQ/tQnzAQA73O69+3J8bXXRY5yzS/bszUOrDy56DACAc3K2dyT9UJLvTpLufl2S1yVJVR2Y7vvqOc4GAJDja6s5dMvRRY9xzo4cPrjoEQAAztnZPufo0u5+71M3dvexJJfOZSIAAAAAltLZQtLHn+G+T9jIQQAAAABYbmcLSe+sqn/y1I1VdX2Sd81nJAAAAACW0dk+I+k7kry+qr4hfx2ODiR5RpKXzXEuAAAAAJbMGUNSdz+S5GBVfWmSz5k2/0J3/8rcJwMAAABgqZztHUlJku5+S5K3zHkWAAAAAJbY2T4jCQAAAACSCEkAAAAADBKSAAAAABgy9BlJAACco/NWUlWLnmJDXLJnbx5afXDRYwAACyAkAQBshidO5NAtRxc9xYY4cvjgokcAABbEqW0AAAAADBGSAAAAABgyt5BUVR9fVe+oqt+qqnuq6t9M2y+oqruq6oPT5bNnjnllVd1fVfdV1YvnNRsAAAAA6zfPdyR9NMmXdffzkjw/yVVV9cIkNyW5u7v3J7l7up2qujzJtUmem+SqJK+qqvPnOB8AAAAA6zC3kNQn/el08+Omn05ydZLbpu23JXnpdP3qJLd390e7+4Ek9ye5Yl7zAQAAALA+c/2MpKo6v6rek+TRJHd199uTXNTdDyfJdHnhtPvuJKszh69N2wAAAABYAnMNSd39eHc/P8meJFdU1eecYfc61UN8zE5VN1TVsao69thjj23QpAAAAACczaZ8a1t3/2GSX83Jzz56pKouTpLp8tFpt7Uke2cO25Pk+Cke69buPtDdB3bt2jXPsQEAAACYMc9vbdtVVZ86Xf+EJF+e5ANJ7kxy3bTbdUneMF2/M8m1VfXMqrosyf4k75jXfACwrZ23kqraFj8AACyPlTk+9sVJbpu+ee28JHd0989X1a8nuaOqrk/yYJJrkqS776mqO5K8P8mJJDd29+NznA8Atq8nTuTQLUcXPcWGOHL44KJHAABgMreQ1N3vTfKCU2z/SJIrT3PMzUluntdMAAAAADx9m/IZSQAAAABsfUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAADAHOzeuy9VtS1+du/dt+j/nMCSWFn0AAAAANvR8bXVHLrl6KLH2BBHDh9c9AjAkvCOJAAAAACGCEkAAAAADBGSAAAAABjiM5IAAAA4s/NWUlWLngJYAkISAAAAZ/bEiW3xweE+NBzOnVPbAAAAABjiHUkAAKzPNjrF5ZI9e/PQ6oOLHgMAtgwhCQCA9dkmp7gkTnMBgPVyahsAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ1YWPQAAACzMeSupqkVPsSEu2bM3D60+uOgxANjmhCQAAHauJ07k0C1HFz3Fhjhy+OCiRwBgB3BqGwAAAABDhCQAAAAAhji1DQAAWBq79+7L8bXVRY8BwGkISQAAwNI4vrbqc6sAlphT2wAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAxZWfQAAADABjhvJVW16CkA2OaEJAAA2A6eOJFDtxxd9BTn7Mjhg4seAYAzcGobAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMCQlUUPAMts9959Ob62uugxAAAAYCkISXAGx9dWc+iWo4se45wdOXxw0SMAAACwDTi1DQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIbMLSRV1d6qektV3VtV91TVt0/bL6iqu6rqg9Pls2eOeWVV3V9V91XVi+c1GwAAAADrN893JJ1I8p3d/dlJXpjkxqq6PMlNSe7u7v1J7p5uZ7rv2iTPTXJVkldV1flznA8AAACAdZhbSOruh7v73dP1P0lyb5LdSa5Octu0221JXjpdvzrJ7d390e5+IMn9Sa6Y13wAAAAArM+mfEZSVV2a5AVJ3p7kou5+ODkZm5JcOO22O8nqzGFr0zYAAAAAlsDcQ1JVfXKSn03yHd39x2fa9RTb+hSPd0NVHauqY4899thGjQkAAADAWcw1JFXVx+VkRPqp7n7dtPmRqrp4uv/iJI9O29eS7J05fE+S4099zO6+tbsPdPeBXbt2zW94AAAAAP6GeX5rWyX58ST3dvcPztx1Z5LrpuvXJXnDzPZrq+qZVXVZkv1J3jGv+QAAAABYn5U5PvaLkrwiyfuq6j3Ttu9O8v1J7qiq65M8mOSaJOnue6rqjiTvz8lvfLuxux+f43wAAAAArMPcQlJ3/++c+nOPkuTK0xxzc5Kb5zUTAAAAAE/fpnxrGwAAAABbn5AEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBkZdEDAAAAADvYeSupqkVPsSEu2bM3D60+uOgx5mpuIamqXpPkq5I82t2fM227IMmRJJcm+VCSr+/uP5jue2WS65M8nuSfd/eb5zUbAAAAsCSeOJFDtxxd9BQb4sjhg4seYe7meWrbTyS56inbbkpyd3fvT3L3dDtVdXmSa5M8dzrmVVV1/hxnAwAAAGCd5haSuvttSX7/KZuvTnLbdP22JC+d2X57d3+0ux9Icn+SK+Y1GwAAAADrt9kftn1Rdz+cJNPlhdP23UlWZ/Zbm7YBAAAAsCSW5VvbTvWpWn3KHatuqKpjVXXssccem/NYAAAAADxps0PSI1V1cZJMl49O29eS7J3Zb0+S46d6gO6+tbsPdPeBXbt2zXVYAAAAAP7aZoekO5NcN12/LskbZrZfW1XPrKrLkuxP8o5Nng0AAACAM1iZ1wNX1WuTfEmS51TVWpLvS/L9Se6oquuTPJjkmiTp7nuq6o4k709yIsmN3f34vGYDAAAAYP3mFpK6++WnuevK0+x/c5Kb5zUPAAAAAOdmWT5sGwAAAIAlJyQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAkJVFD8D2s3vvvhxfW130GAAAAMAGE5LYcMfXVnPolqOLHmNDHDl8cNEjAAAAwNJwahsAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADDEt7Ytid179+X42uqixwAAAAA4LSFpSRxfW82hW44ueowNceTwwUWPAAAAAMyBU9sAAAAAGCIkAQAAADBESAIAAABgyNKFpKq6qqruq6r7q+qmRc8DAAAAwElLFZKq6vwkP5LkJUkuT/Lyqrp8sVMBAAAAkCxZSEpyRZL7u/t3u/svk9ye5OoFzwQAAABAli8k7U6yOnN7bdoGAAAAwIJVdy96hr9SVdckeXF3f/N0+xVJrujub5vZ54YkN0w3PyvJfZs+6Hw8J8nvLXoIFsLa71zWfuey9juTdd+5rP3OZe13Lmu/c22Xtf+M7t51qjtWNnuSs1hLsnfm9p4kx2d36O5bk9y6mUNthqo61t0HFj0Hm8/a71zWfuey9juTdd+5rP3OZe13Lmu/c+2EtV+2U9vemWR/VV1WVc9Icm2SOxc8EwAAAABZsnckdfeJqvrWJG9Ocn6S13T3PQseCwAAAIAsWUhKku5+Y5I3LnqOBdh2p+sxzNrvXNZ+57L2O5N137ms/c5l7Xcua79zbfu1X6oP2wYAAABgeS3bZyQBAAAAsKSEpE1UVddU1T1V9URVnfZT3Kvqqqq6r6rur6qbZrZfUFV3VdUHp8tnb87knKuRtauqz6qq98z8/HFVfcd037+uqodm7vvKTf+XYN1Gn7NV9aGqet+0tsfWezzLZ/A5v7eq3lJV906vDd8+c5/n/BZzutfumfurqv7LdP97q+rzRo9luQ2s/TdMa/7eqjpaVc+bue+Uv/9ZfgPr/iVV9Uczv8e/d/RYltvA2n/XzLr/dlU9XlUXTPd5zm9hVfWaqnq0qn77NPfvmNd6IWlz/XaSr03yttPtUFXnJ/mRJC9JcnmSl1fV5dPdNyW5u7v3J7l7us3WcNa16+77uvv53f38JH83yZ8nef3MLv/pyfunzxJj+a3nOful09rORmbP+a1rZO1OJPnO7v7sJC9McuPM7/vEc37LOMtr95NekmT/9HNDkh9dx7EsqcH1eyDJF3f35yb5d/nYz8441e9/ltg6nre/NvN7/N+u81iW0Mj6dfe/n/l/+lcmeWt3//7MLp7zW9dPJLnqDPfvmNd6IWkTdfe93X3fWXa7Isn93f273f2XSW5PcvV039VJbpuu35bkpXMZlHlY79pdmeR3uvvD8xyKuTvX56zn/NZ11rXr7oe7+93T9T9Jcm+S3Zs1IBvqTK/dT7o6yU/2Sb+R5FOr6uLBY1leZ12/7j7a3X8w3fyNJHs2eUY23rk8bz3nt7b1rt/Lk7x2UyZj7rr7bUl+/wy77JjXeiFp+exOsjpzey1//QeLi7r74eTkH0CSXLjJs/H0rXftrs3Hvuh86/QWydc4xWnLGF33TvJLVfWuqrrhaRzP8lnX2lXVpUlekOTtM5s957eOM712n22fkWNZXutdv+uT/OLM7dP9/me5ja77F1TVb1XVL1bVc9d5LMtpeP2q6hNz8t0rPzuz2XN+e9sxr/Urix5gu6mqX07y6ae463u6+w0jD3GKbb5abws409qv83GekeRrcvKtsE/60Zx8O3xPl/8xyT9+epOykTZo3V/U3cer6sIkd1XVB6a/8WCJbeBz/pNz8n8yv6O7/3ja7Dm/tYy8dp9uH6/7W9vw+lXVl+ZkSPrCmc1+/29NI+v+7iSf0d1/On3O3f/KydNdPOe3tvWs31cn+T9POa3Nc3572zGv9ULSBuvuLz/Hh1hLsnfm9p4kx6frj1TVxd398PQWuUfP8Z/FBjrT2lfVetbuJUne3d2PzDz2X12vqv+a5Oc3YmbO3Uase3cfny4frarX5+TbX98Wz/mlthFrX1Ufl5MR6ae6+3Uzj+05v7Wc6bX7bPs8Y+BYltfI2qeqPjfJq5O8pLs/8uT2M/z+Z7mddd1n/mIg3f3GqnpVVT1n5FiW2nrW72POMPCc3/Z2zGu9U9uWzzuT7K+qy6Z3plyb5M7pvjuTXDddvy7JyDucWA7rWbuPOZd6+oPok16Wkx/czvI767pX1SdV1bOevJ7kK/LX6+s5v3WNrH0l+fEk93b3Dz7lPs/5reVMr91PujPJN07f6PLCJH80nfY4cizL66zrV1X7krwuySu6+//ObD/T73+W28i6f/r0ez5VdUVO/rnrIyPHstSG1q+qPiXJF2fm9d9zfkfYMa/13pG0iarqZUl+OMmuJL9QVe/p7hdX1SVJXt3dX9ndJ6rqW5O8Ocn5SV7T3fdMD/H9Se6oquuTPJjkmgX8a/D0nHLtZtd+uv2JSf5+ksNPOf4Hqur5OfkWyA+d4n6W08i6X5Tk9dP/a64k+enuftOZjmdLGFn7FyV5RZL3VdV7puO+e/qGNs/5LeR0r91V9S3T/T+W5I1JvjLJ/Tn5rZzfdKZjF/CvwdMwuPbfm+TTkrxq+l1/Yvq2pjP9/meJDa771yX5p1V1IslfJLm2uzuJ5/wWNrj2ycm/BPql7v6zmcM957e4qnptki9J8pyqWkvyfUk+Ltl5r/V18vcZAAAAAJyZU9sAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhK4seAABgu6mqx5O8b2bTS5NcmuQNSR7Iyb/MezTJP+zuRzd7PgCAp8s7kgAANt5fdPfzZ34+NG3/ten25yZ5Z5IbFzciAMD6CUkAAJusqirJs5L8waJnAQBYD6e2AQBsvE+oqvdM1x/o7pdN1//etP3TkvxZku9ewGwAAE+bkAQAsPH+oruff4rtv9bdX5UkVfWvkvxAkm/ZzMEAAM6FU9sAABbjziRftOghAADWQ0gCAFiML0zyO4seAgBgPZzaBgCweZ78jKRK8kdJvnmx4wAArE9196JnAAAAAGALcGobAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIf8fghnp7eb1HHoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(20,10))\n", "sns.histplot(cortable['FB'])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAJNCAYAAABqVV/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl6ElEQVR4nO3dfbBk9X3f+c8XxpIty4nBGgiaB4PLU46RK0bOhJJRKrGNY5A3a3BKhGGzzmyWXcgGu6w45S1ItpLspqhSJdmsd1PBgZUVj3cdwfiBFXEU2YT4IVli4ZGCLSFENDYW92pYIPImsuOUlEHf/HEPVmeYh98d5tzumft6Vd3q7l+f03zhVN9m3tOnu7o7AAAAAHAmFy17AAAAAADOD0ISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwZMeyB3gt3vSmN/WVV1657DEAAAAALhgf/vCH/0137zzZfed1SLryyitz5MiRZY8BAAAAcMGoqk+d6j6ntgEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYMhsIamqvq6qnlz4+WxVvauqLq2qR6vqk9PlJQv73FNVR6vqmaq6Ya7ZAAAAANi82UJSdz/T3dd09zVJ/nCS303ycJK7kzzW3fuSPDbdTlVdneRAkrckuTHJfVV18VzzAQAAALA5W3Vq2/VJfr27P5XkpiSHpvVDSW6ert+U5MHu/lx3P5vkaJJrt2g+AAAAAM5gq0LSgSTvm65f3t3PJ8l0edm0vivJ2sI+69MaAAAAACtg9pBUVa9L8l1JfuJMm55krU/yeHdU1ZGqOvLSSy+dixEBAAAAGLAV70h6R5KPdPcL0+0XquqKJJkuX5zW15PsWdhvd5JjJz5Ydz/Q3fu7e//OnTtnHBsAAACARVsRkm7LF09rS5JHkhycrh9M8v6F9QNV9fqquirJviRPbMF8AAAAAAzYMeeDV9UbkvyJJHcuLL87yeGquj3Jc0luSZLufqqqDif5eJLjSe7q7pfnnA8AAACAcbOGpO7+3SRfdcLaZ7LxLW4n2/7eJPfOORMAAAAAZ2ervrUNAAAAgPOckAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhsz6rW3A9rNrz94cW19b9hhb5s279+TTa88tewwAAIAtISQB59Sx9bXcev/jyx5jyzx053XLHgEAAGDLOLUNAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAkB3LHgAudLv27M2x9bVljwEAAACvmZAEMzu2vpZb73982WNsmYfuvG7ZIwAAADATp7YBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMGTWkFRVX1lVP1lVn6iqp6vqm6vq0qp6tKo+OV1esrD9PVV1tKqeqaob5pwNAAAAgM2Z+x1J/3uSD3b3H0zyjUmeTnJ3kse6e1+Sx6bbqaqrkxxI8pYkNya5r6ounnk+AAAAAAbNFpKq6vcl+WNJfiRJuvvz3f1vk9yU5NC02aEkN0/Xb0ryYHd/rrufTXI0ybVzzQcAAADA5sz5jqSvSfJSkn9QVf+qqt5TVV+e5PLufj5JpsvLpu13JVlb2H99WgMAAABgBcwZknYk+aYkP9zdb03y7zOdxnYKdZK1ftVGVXdU1ZGqOvLSSy+dm0kBAAAAOKM5Q9J6kvXu/tB0+yezEZZeqKorkmS6fHFh+z0L++9OcuzEB+3uB7p7f3fv37lz52zDAwAAAPCfmy0kdff/l2Stqr5uWro+yceTPJLk4LR2MMn7p+uPJDlQVa+vqquS7EvyxFzzAQAAALA5O2Z+/O9L8uNV9bokv5Hkz2UjXh2uqtuTPJfkliTp7qeq6nA2YtPxJHd198szzwcAAADAoFlDUnc/mWT/Se66/hTb35vk3jlnAgAAAODszPkZSQAAAABcQIQkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIbsWPYAAAAAsF3s2rM3x9bXlj3Glnnz7j359Npzyx6Dc0hIAgAAgC1ybH0tt97/+LLH2DIP3XndskfgHHNqGwAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGDIrCGpqn6zqj5aVU9W1ZFp7dKqerSqPjldXrKw/T1VdbSqnqmqG+acDQAAAIDN2Yp3JH1rd1/T3fun23cneay79yV5bLqdqro6yYEkb0lyY5L7quriLZgPAAAAgAHLOLXtpiSHpuuHkty8sP5gd3+uu59NcjTJtVs/HsAmXLQjVbUtfnbt2bvs/9oAAMCS7Zj58TvJz1VVJ7m/ux9Icnl3P58k3f18VV02bbsryS8v7Ls+rQGsri8cz633P77sKbbEQ3det+wRAACAJZs7JL29u49NsejRqvrEabatk6z1qzaquiPJHUmyd6+/HQcAAADYKrOe2tbdx6bLF5M8nI1T1V6oqiuSZLp8cdp8Pcmehd13Jzl2ksd8oLv3d/f+nTt3zjk+AAAAAAtmC0lV9eVV9RWvXE/yHUk+luSRJAenzQ4mef90/ZEkB6rq9VV1VZJ9SZ6Yaz4AAAAANmfOU9suT/JwVb3yz/mH3f3BqvqVJIer6vYkzyW5JUm6+6mqOpzk40mOJ7mru1+ecT4AAAAANmG2kNTdv5HkG0+y/pkk159in3uT3DvXTAAAAACcvVk/IwkAAACAC4eQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIbOHpKq6uKr+VVX9zHT70qp6tKo+OV1esrDtPVV1tKqeqaob5p4NAAAAgHFb8Y6k70/y9MLtu5M81t37kjw23U5VXZ3kQJK3JLkxyX1VdfEWzAcAAADAgFlDUlXtTvJfJHnPwvJNSQ5N1w8luXlh/cHu/lx3P5vkaJJr55wPAAAAgHFzvyPph5L8j0m+sLB2eXc/nyTT5WXT+q4kawvbrU9rAAAAAKyA2UJSVf3JJC9294dHdznJWp/kce+oqiNVdeSll156TTMCAAAAMG7OdyS9Pcl3VdVvJnkwybdV1f+d5IWquiJJpssXp+3Xk+xZ2H93kmMnPmh3P9Dd+7t7/86dO2ccHwAAAIBFs4Wk7r6nu3d395XZ+BDtf9bd/3WSR5IcnDY7mOT90/VHkhyoqtdX1VVJ9iV5Yq75AAAAANicHUv4Z747yeGquj3Jc0luSZLufqqqDif5eJLjSe7q7peXMB8AAAAAJ7ElIam7fyHJL0zXP5Pk+lNsd2+Se7diJgAAAAA2Z+5vbQMAAADgAiEkAQAAADBkGZ+RBAAAAL9n1569Oba+tuwxgAFCEgAAAEt1bH0tt97/+LLH2BIP3XndskeA18SpbQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiA/bBgAAAOZx0Y5U1bKn2DJv3r0nn157btljzEpIAgAAAObxhePb5hv5ku3xrXxCEkuxa8/eHFtfW/YYAAAAwCYISSzFsfW1bVOlt0ORBgAAYHsY+rDtqnr7yBoAF7Dp/Pbt8rNrz95l/xcHAICVM/qOpL+b5JsG1gC4UDm/HQAAtr3ThqSq+uYk1yXZWVU/sHDX70ty8ZyDAQAAALBazvSOpNcleeO03VcsrH82yTvnGgoAAACA1XPakNTdv5jkF6vqR7v7U1s0EwAAAAAraPQzkl5fVQ8kuXJxn+7+tjmGAgAAAGD1jIakn0jy95O8J8nL840DAAAAwKoaDUnHu/uHZ50EAAAAgJV20eB2/6iq/kJVXVFVl77yM+tkAAAAAKyU0XckHZwuf3BhrZN8zbkdBwAAAIBVNRSSuvuquQcBAAAAYLUNhaSq+rMnW+/uHzu34wAAAACwqkZPbfsjC9e/NMn1ST6SREgCAAAA2CZGT237vsXbVfX7k/xfs0wEAAAAwEoa/da2E/1ukn3nchAAAAAAVtvoZyT9o2x8S1uSXJzk65McnmsoAAAAAFbP6Gck/e2F68eTfKq712eYBwAAAIAVNXRqW3f/YpJPJPmKJJck+fycQwEAAACweoZCUlX96SRPJLklyZ9O8qGqeuecgwEAAACwWkZPbfsrSf5Id7+YJFW1M8k/TfKTcw0GAAAAwGoZ/da2i16JSJPPbGJfAAAAAC4Ao+9I+mBV/WyS9023b03ygXlGAgAAAGAVnTYkVdXXJrm8u3+wqv5Ukj+apJL8yyQ/vgXzAQAAALAiznR62g8l+e0k6e6f7u4f6O6/mI13I/3QvKMBAAAAsErOFJKu7O5fO3Gxu48kuXKWiQAAAABYSWcKSV96mvu+7FwOAgAAAMBqO1NI+pWq+u9PXKyq25N8eJ6RAAAAAFhFZ/rWtnclebiq/ky+GI72J3ldku+ecS4AAAAAVsxpQ1J3v5Dkuqr61iTfMC3/4+7+Z7NPBgAAAMBKOdM7kpIk3f3zSX5+5lkAAABIsmvP3hxbX1v2GACvMhSSAAAA2DrH1tdy6/2PL3uMLfPQndctewRg0Jk+bBsAAAAAkghJAAAAAAwSkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCGzhaSq+tKqeqKqfrWqnqqq/3lav7SqHq2qT06Xlyzsc09VHa2qZ6rqhrlmAwAAAGDz5nxH0ueSfFt3f2OSa5LcWFVvS3J3kse6e1+Sx6bbqaqrkxxI8pYkNya5r6ounnE+AAAAADZhtpDUG35nuvkl008nuSnJoWn9UJKbp+s3JXmwuz/X3c8mOZrk2rnmAwAAAGBzZv2MpKq6uKqeTPJikke7+0NJLu/u55Nkurxs2nxXkrWF3denNQAAAABWwI45H7y7X05yTVV9ZZKHq+obTrN5newhXrVR1R1J7kiSvXv3nosxAeDVLtqRqpO9NF2Y3rx7Tz699tyyxwAAYMXNGpJe0d3/tqp+IRufffRCVV3R3c9X1RXZeLdSsvEOpD0Lu+1Ocuwkj/VAkgeSZP/+/a8KTQBwTnzheG69//FlT7FlHrrzumWPAADAeWDOb23bOb0TKVX1ZUm+PcknkjyS5OC02cEk75+uP5LkQFW9vqquSrIvyRNzzQcAAADA5sz5jqQrkhyavnntoiSHu/tnqupfJjlcVbcneS7JLUnS3U9V1eEkH09yPMld06lxAADANrdrz94cW18784YAzGq2kNTdv5bkrSdZ/0yS60+xz71J7p1rJgAA4Px0bH3NKccAK2DWb20DAAAA4MIhJAEAAAAwREgCAAAAYIiQBAAAAMCQOb+1DQBg5Wy3b3568+49+fTac8seAwC4QAhJAMC24pufAADOnlPbAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQH7YNACQX7UhVLXsKAABWnJAEACRfOL5tvsnMt5gBAJw9p7YBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAzZsewBAADgXNm1Z2+Ora8te4wt8+bde/LpteeWPQYA24iQBADABePY+lpuvf/xZY+xZR6687pljwDANuPUNgAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIhvbQMAgPPVRTtSVcueAoBtREgCAIDz1ReO59b7H1/2FFvioTuvW/YIAMSpbQAAAAAMEpIAAAAAGCIkAQAAADBESAIAAABgiA/bBgC4kPlWLwDgHBKSAAAuZNvoW70S3+wFAHNzahsAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ2YLSVW1p6p+vqqerqqnqur7p/VLq+rRqvrkdHnJwj73VNXRqnqmqm6YazYAAAAANm/OdyQdT/KXuvvrk7wtyV1VdXWSu5M81t37kjw23c5034Ekb0lyY5L7quriGecDAAAAYBNmC0nd/Xx3f2S6/ttJnk6yK8lNSQ5Nmx1KcvN0/aYkD3b357r72SRHk1w713wAAAAAbM6WfEZSVV2Z5K1JPpTk8u5+PtmITUkumzbblWRtYbf1aQ0AAACAFTB7SKqqNyb5qSTv6u7Pnm7Tk6z1SR7vjqo6UlVHXnrppXM1JgAAAABnMGtIqqovyUZE+vHu/ulp+YWqumK6/4okL07r60n2LOy+O8mxEx+zux/o7v3dvX/nzp3zDQ8AAADAf2bOb22rJD+S5Onu/jsLdz2S5OB0/WCS9y+sH6iq11fVVUn2JXlirvkAAAAA2JwdMz7225N8T5KPVtWT09pfTvLuJIer6vYkzyW5JUm6+6mqOpzk49n4xre7uvvlGecDAAAAYBNmC0nd/S9y8s89SpLrT7HPvUnunWsmAAAAAM7elnxrGwAAAADnPyEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCGzhaSqem9VvVhVH1tYu7SqHq2qT06Xlyzcd09VHa2qZ6rqhrnmAgAAAODszPmOpB9NcuMJa3cneay79yV5bLqdqro6yYEkb5n2ua+qLp5xNgAAAAA2abaQ1N2/lOS3Tli+Kcmh6fqhJDcvrD/Y3Z/r7meTHE1y7VyzAQAAALB5W/0ZSZd39/NJMl1eNq3vSrK2sN36tAYAAADAiliVD9uuk6z1STesuqOqjlTVkZdeemnmsQAAAAB4xVaHpBeq6ookmS5fnNbXk+xZ2G53kmMne4DufqC793f3/p07d846LAAAAABftNUh6ZEkB6frB5O8f2H9QFW9vqquSrIvyRNbPBsAAAAAp7Fjrgeuqvcl+ZYkb6qq9SR/Lcm7kxyuqtuTPJfkliTp7qeq6nCSjyc5nuSu7n55rtkAAAAA2LzZQlJ333aKu64/xfb3Jrl3rnkAAAAAeG1W5cO2AQAAAFhxQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGLJj2QOwYdeevTm2vrbsMQAAAABOSUhaEcfW13Lr/Y8ve4wt89Cd1y17BAAAAGCTnNoGAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIasXEiqqhur6pmqOlpVdy97HgAAAAA2rFRIqqqLk/y9JO9IcnWS26rq6uVOBQAAAECyYiEpybVJjnb3b3T355M8mOSmJc8EAAAAQFYvJO1KsrZwe31aAwAAAGDJqruXPcPvqapbktzQ3f/ddPt7klzb3d+3sM0dSe6Ybn5dkme2fNB5vCnJv1n2ECyFY799Ofbbl2O/PTnu25djv3059tuXY799XSjH/qu7e+fJ7tix1ZOcwXqSPQu3dyc5trhBdz+Q5IGtHGorVNWR7t6/7DnYeo799uXYb1+O/fbkuG9fjv325dhvX4799rUdjv2qndr2K0n2VdVVVfW6JAeSPLLkmQAAAADIir0jqbuPV9X3JvnZJBcneW93P7XksQAAAADIioWkJOnuDyT5wLLnWIIL7nQ9hjn225djv3059tuT4759Ofbbl2O/fTn229cFf+xX6sO2AQAAAFhdq/YZSQAAAACsKCFpC1XVLVX1VFV9oapO+SnuVXVjVT1TVUer6u6F9Uur6tGq+uR0ecnWTM5rNXLsqurrqurJhZ/PVtW7pvv+elV9euG+79zyfwk2bfQ5W1W/WVUfnY7tkc3uz+oZfM7vqaqfr6qnp9eG71+4z3P+PHOq1+6F+6uq/o/p/l+rqm8a3ZfVNnDs/8x0zH+tqh6vqm9cuO+kv/9ZfQPH/Vuq6t8t/B7/q6P7stoGjv0PLhz3j1XVy1V16XSf5/x5rKreW1UvVtXHTnH/tnmtF5K21seS/Kkkv3SqDarq4iR/L8k7klyd5Laqunq6++4kj3X3viSPTbc5P5zx2HX3M919TXdfk+QPJ/ndJA8vbPK/vXL/9FlirL7NPGe/dTq2i5HZc/78NXLsjif5S9399UneluSuhd/3ief8eeMMr92veEeSfdPPHUl+eBP7sqIGj9+zSf54d/+hJH8jr/7sjJP9/meFbeJ5+88Xfo//L5vclxU0cvy6+28t/D/9PUl+sbt/a2ETz/nz148mufE092+b13ohaQt199Pd/cwZNrs2ydHu/o3u/nySB5PcNN13U5JD0/VDSW6eZVDmsNljd32SX+/uT805FLN7rc9Zz/nz1xmPXXc/390fma7/dpKnk+zaqgE5p0732v2Km5L8WG/45SRfWVVXDO7L6jrj8evux7v7/59u/nKS3Vs8I+fea3nees6f3zZ7/G5L8r4tmYzZdfcvJfmt02yybV7rhaTVsyvJ2sLt9XzxDxaXd/fzycYfQJJctsWzcfY2e+wO5NUvOt87vUXyvU5xOm+MHvdO8nNV9eGquuMs9mf1bOrYVdWVSd6a5EMLy57z54/TvXafaZuRfVldmz1+tyf5Jwu3T/X7n9U2ety/uap+tar+SVW9ZZP7spqGj19VvSEb7175qYVlz/kL27Z5rd+x7AEuNFX1T5P8gZPc9Ve6+/0jD3GSNV+tdx443bHf5OO8Lsl3ZeOtsK/44Wy8Hb6ny/81yX97dpNyLp2j4/727j5WVZclebSqPjH9jQcr7Bw+59+Yjf/JfFd3f3Za9pw/v4y8dp9qG6/757fh41dV35qNkPRHF5b9/j8/jRz3jyT56u7+nelz7v6fbJzu4jl/ftvM8fsvk/y/J5zW5jl/Yds2r/VC0jnW3d/+Gh9iPcmehdu7kxybrr9QVVd09/PTW+RefI3/LM6h0x37qtrMsXtHko909wsLj/1716vq/0zyM+diZl67c3Hcu/vYdPliVT2cjbe//lI851fauTj2VfUl2YhIP97dP73w2J7z55fTvXafaZvXDezL6ho59qmqP5TkPUne0d2feWX9NL//WW1nPO4LfzGQ7v5AVd1XVW8a2ZeVtpnj96ozDDznL3jb5rXeqW2r51eS7Kuqq6Z3phxI8sh03yNJDk7XDyYZeYcTq2Ezx+5V51JPfxB9xXdn44PbWX1nPO5V9eVV9RWvXE/yHfni8fWcP3+NHPtK8iNJnu7uv3PCfZ7z55fTvXa/4pEkf3b6Rpe3Jfl302mPI/uyus54/Kpqb5KfTvI93f2vF9ZP9/uf1TZy3P/A9Hs+VXVtNv7c9ZmRfVlpQ8evqn5/kj+ehdd/z/ltYdu81ntH0haqqu9O8neT7Ezyj6vqye6+oarenOQ93f2d3X28qr43yc8muTjJe7v7qekh3p3kcFXdnuS5JLcs4V+Ds3PSY7d47Kfbb0jyJ5LcecL+f7OqrsnGWyB/8yT3s5pGjvvlSR6e/l9zR5J/2N0fPN3+nBdGjv3bk3xPko9W1ZPTfn95+oY2z/nzyKleu6vqz0/3//0kH0jynUmOZuNbOf/c6fZdwr8GZ2Hw2P/VJF+V5L7pd/3x6duaTvf7nxU2eNzfmeR/qKrjSf5DkgPd3Uk8589jg8c+2fhLoJ/r7n+/sLvn/Hmuqt6X5FuSvKmq1pP8tSRfkmy/1/ra+H0GAAAAAKfn1DYAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQA8BpU1XdXVVfVHzxh/a3T+g0nrL9cVU9W1ceq6ieq6g3T+u9s5dwAAGdDSAIAeG1uS/Ivkhw4xfptJ6z/h+6+pru/Icnnk/z5+UcEADg3hCQAgLNUVW9M8vYkt2chJFVVJXlnkv8myXdU1Zee4iH+eZKvnXlMAIBzRkgCADh7Nyf5YHf/6yS/VVXfNK2/Pcmz3f3rSX4hyXeeuGNV7UjyjiQf3ZpRAQBeOyEJAODs3Zbkwen6g/niaWynWk+SL6uqJ5McSfJckh+Zf0wAgHOjunvZMwAAnHeq6quSrCd5MUknuXi6vCrJp5P8xyQvJ6kkX5Xkiu7+7ar6ne5+40ke76TrAACrxDuSAADOzjuT/Fh3f3V3X9nde5I8m+R/SvKr3b1nWv/qJD+VjdPgAADOa0ISAMDZuS3Jwyes/VSSt51i/b86w+O9oarWF35+4BzNCQBwzji1DQAAAIAh3pEEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgyH8CWdVvpuhtLfYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(20,10))\n", "sns.histplot(cortable['AAPL'])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAJNCAYAAABqVV/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkvUlEQVR4nO3df7Dld13f8dc7WYg/QCFmE5P9YeJ0iwZHfrimEBwFYk2wrYEOMUstpjZtUhsdqY4adEZtO5lhWmttHcGkSImtkqQKJSoiMfJDGwUCRiCEyJZAdrMxCVBFtBPc5N0/7jdyGvbH5yb33HPuvY/HzM4953u+35P38plzT/Lk+z2nujsAAAAAcDwnLHoAAAAAADYGIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABiybdEDPB6nnHJKn3nmmYseAwAAAGDTeN/73vfJ7t5+pMc2dEg688wzc+utty56DAAAAIBNo6o+cbTHXNoGAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhcw1JVfWUqvrVqvpIVd1RVc+tqpOr6qaq+uj086kz+7+yqvZX1Z1Vdf48ZwMAAABgdeZ9RtJ/SvLW7v6aJM9IckeSK5Pc3N17ktw83U9VnZ1kX5KnJ7kgyaur6sQ5zwcAAADAoLmFpKr6siTfnOQXk6S7P9fdf5bkwiTXTrtdm+TF0+0Lk1zX3Q92911J9ic5Z17zAQAAALA68zwj6auTPJDkv1bVH1XVa6vqS5Oc1t33Jsn089Rp/x1JDswcf3DaBgAAAMASmGdI2pbk2Ule093PSvKXmS5jO4o6wrb+gp2qLquqW6vq1gceeGBtJgUAAADguOYZkg4mOdjd757u/2pWwtJ9VXV6kkw/75/Zf9fM8TuTHHr0k3b3Nd29t7v3bt++fW7DAwAAAPD/m1tI6u4/TXKgqp42bTovyYeT3JjkkmnbJUnePN2+Mcm+qjqpqs5KsifJe+Y1HwAAAACrs23Oz//9SX65qp6Y5GNJvicr8eqGqro0yd1JLkqS7r69qm7ISmw6nOSK7n5ozvMBAAAAMGiuIam7b0uy9wgPnXeU/a9KctU8ZwIAAADgsZnnZyQBAAAAsIkISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEbFo7du1OVW2qPzt27V70/6wAAMAWtm3RAwDMy6GDB3Lx1bcseow1df3l5y56BAAAYAtzRhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGLJt0QMAsAonbEtVLXqKNXXGzl2558Ddix4DAAAYICQBbCQPH87FV9+y6CnW1PWXn7voEQAAgEEubQMAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAM2bboAQDY4k7Ylqpa9BRr7oydu3LPgbsXPQYAAKwpIQmAxXr4cC6++pZFT7Hmrr/83EWPAAAAa86lbQAAAAAMcUYSkB27dufQwQOLHgMAAIAlJyQBOXTwgEuLAAAAOC6XtgEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADJlrSKqqj1fVB6vqtqq6ddp2clXdVFUfnX4+dWb/V1bV/qq6s6rOn+dsAAAAAKzOepyR9ILufmZ3753uX5nk5u7ek+Tm6X6q6uwk+5I8PckFSV5dVSeuw3wAAAAADFjEpW0XJrl2un1tkhfPbL+uux/s7ruS7E9yzvqPBwAAAMCRzDskdZK3VdX7quqyadtp3X1vkkw/T52270hyYObYg9M2AAAAAJbAtjk///O6+1BVnZrkpqr6yDH2rSNs6y/YaSVIXZYku3fvXpspAQAAADiuuZ6R1N2Hpp/3J3lTVi5Vu6+qTk+S6ef90+4Hk+yaOXxnkkNHeM5runtvd+/dvn37PMcHAAAAYMbcQlJVfWlVPfmR20m+LcmHktyY5JJpt0uSvHm6fWOSfVV1UlWdlWRPkvfMaz4AAAAAVmeel7adluRNVfXIP+dXuvutVfXeJDdU1aVJ7k5yUZJ09+1VdUOSDyc5nOSK7n5ojvMBAAAAsApzC0nd/bEkzzjC9k8lOe8ox1yV5Kp5zQQAAADAYzfvb20DAAAAYJMQkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAABYYjt27U5Vbao/O3btXvT/rDxG2xY9AAAAAHB0hw4eyMVX37LoMdbU9Zefu+gReIyckQQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYMveQVFUnVtUfVdVvTPdPrqqbquqj08+nzuz7yqraX1V3VtX5854NAACAzWPHrt2pqk33B5bJtnX4Z/xAkjuSfNl0/8okN3f3q6rqyun+j1bV2Un2JXl6kjOS/E5V/e3ufmgdZgQAAGCDO3TwQC6++pZFj7Hmrr/83EWPAH9jrmckVdXOJH8vyWtnNl+Y5Nrp9rVJXjyz/brufrC770qyP8k585wPAAAAgHHzvrTtZ5P8SJKHZ7ad1t33Jsn089Rp+44kB2b2OzhtAwAAAGAJzC0kVdXfT3J/d79v9JAjbOsjPO9lVXVrVd36wAMPPK4ZAQAAABg3zzOSnpfkO6rq40muS/LCqvrvSe6rqtOTZPp5/7T/wSS7Zo7fmeTQo5+0u6/p7r3dvXf79u1zHB8AAACAWXMLSd39yu7e2d1nZuVDtH+3u/9xkhuTXDLtdkmSN0+3b0yyr6pOqqqzkuxJ8p55zQcAAADA6qzHt7Y92quS3FBVlya5O8lFSdLdt1fVDUk+nORwkit8YxsAAADA8liXkNTd70jyjun2p5Kcd5T9rkpy1XrMBAAAAMDqzPtb2wAAAADYJIQkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBk26IHAIBN6YRtqapFT7Gmzti5K/ccuHvRYwAAsEBCEgDMw8OHc/HVtyx6ijV1/eXnLnoEAAAWzKVtAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhkJSVT1vZBsAAAAAm9foGUk/N7gNAAAAgE1q27EerKrnJjk3yfaq+sGZh74syYnzHAwAAACA5XLMkJTkiUmeNO335Jntn0ny0nkNBQAAsEx27NqdQwcPLHqMNXXGzl2558Ddix4D2GCOGZK6+51J3llVr+/uT6zTTAAAAEvl0MEDufjqWxY9xpq6/vJzFz0CsAEd74ykR5xUVdckOXP2mO5+4TyGAgAAYM5O2JaqWvQUwAYzGpL+R5JfSPLaJA/NbxwAAADWxcOHnWUFrNpoSDrc3a+Z6yQAAAAALLXRkPTrVfUvk7wpyYOPbOzuT89lKgBg+WzSSyBOfMJJeeivHzz+jhuID9AFAOZlNCRdMv384ZltneSr13YcAGBpbcJLIJKVyyA229/LpR0AwLwMhaTuPmvegwAAAACw3IZCUlV995G2d/cvre04AAAAACyr0UvbvnHm9hclOS/J+5MISQAAAABbxOilbd8/e7+qvjzJf5vLRAAAAAAspRMe43F/lWTPWg4CAAAAwHIb/YykX8/Kt7QlyYlJvjbJDfMaCgAAAIDlM/oZST89c/twkk9098E5zAMAAADAkhq6tK2735nkI0menOSpST53vGOq6ouq6j1V9cdVdXtV/etp+8lVdVNVfXT6+dSZY15ZVfur6s6qOv+x/ZUAAAAAmIehkFRV35nkPUkuSvKdSd5dVS89zmEPJnlhdz8jyTOTXFBVz0lyZZKbu3tPkpun+6mqs5PsS/L0JBckeXVVnbjqvxEAAAAAczF6aduPJ/nG7r4/Sapqe5LfSfKrRzuguzvJZ6e7T5j+dJILkzx/2n5tknck+dFp+3Xd/WCSu6pqf5JzkvzB+F8HAAAAgHkZ/da2Ex6JSJNPjRxbVSdW1W1J7k9yU3e/O8lp3X1vkkw/T51235HkwMzhB6dtAAAAACyB0TOS3lpVv53kDdP9i5O85XgHdfdDSZ5ZVU9J8qaq+rpj7F5Heoov2KnqsiSXJcnu3buPNwIAAAAAa+SYZxVV1d+qqud19w8nuTrJ1yd5RlYuN7tm9B/S3X+WlUvYLkhyX1WdPj3/6Vk5WylZOQNp18xhO5McOsJzXdPde7t77/bt20dHAAAAAOBxOt7laT+b5C+SpLvf2N0/2N3/KitnI/3ssQ6squ3TmUipqi9O8q1Z+ea3G5NcMu12SZI3T7dvTLKvqk6qqrOS7MnKB3wDAAAAsASOd2nbmd39gUdv7O5bq+rM4xx7epJrp29eOyHJDd39G1X1B0luqKpLk9ydlW+CS3ffXlU3JPlwksNJrpgujQMAAABgCRwvJH3RMR774mMdOAWoZx1h+6eSnHeUY65KctVxZgIAAABgAY53adt7q+qfP3rjdDbR++YzEgAAAADL6HhnJL0iK9+29l35fDjam+SJSV4yx7kAAAAAWDLHDEndfV+Sc6vqBUm+btr8m939u3OfDAAAAIClcrwzkpIk3f32JG+f8ywAAAAALLHjfUYSAAAAACQRkgAAAAAYJCQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgCABdmxa3eqalP92bFr96L/ZwVgjrYtegAAANiqDh08kIuvvmXRY6yp6y8/d9EjADBHzkgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADNm26AEAAFhjJ2xLVS16ijV1xs5duefA3YseAwC2PCEJAGCzefhwLr76lkVPsaau/95v3nRxDAA2IiEJAIDltwnjWJJcf/m5ix4BAFbFZyQBAAAAMMQZSbBKO3btzqGDBxY9BgAAAKw7IQlW6dDBA5vu1Hqn1QMAADDCpW0AAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIgP2wYAAADW1wnbUlWLnmLNnbFzV+45cPeix5grIQkAAABYXw8f3nTfhp1sjW/EFpIAAIC1s0nPMgBghZAEAACsHWcZAGxqPmwbAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAAAAAAwRkgAAAAAYIiQBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABD5haSqmpXVb29qu6oqtur6gem7SdX1U1V9dHp51NnjnllVe2vqjur6vx5zQYAAADA6s3zjKTDSX6ou782yXOSXFFVZye5MsnN3b0nyc3T/UyP7Uvy9CQXJHl1VZ04x/kAAAAAWIW5haTuvre73z/d/oskdyTZkeTCJNdOu12b5MXT7QuTXNfdD3b3XUn2JzlnXvMBAAAAsDrr8hlJVXVmkmcleXeS07r73mQlNiU5ddptR5IDM4cdnLYBAAAAsATmHpKq6klJfi3JK7r7M8fa9Qjb+gjPd1lV3VpVtz7wwANrNSYAAAAAxzHXkFRVT8hKRPrl7n7jtPm+qjp9evz0JPdP2w8m2TVz+M4khx79nN19TXfv7e6927dvn9/wAAAAAPx/5vmtbZXkF5Pc0d0/M/PQjUkumW5fkuTNM9v3VdVJVXVWkj1J3jOv+QAAAABYnW1zfO7nJXl5kg9W1W3Tth9L8qokN1TVpUnuTnJRknT37VV1Q5IPZ+Ub367o7ofmOB8AAAAAqzC3kNTdv58jf+5Rkpx3lGOuSnLVvGYCAAAA4LFbl29tAwAAAGDjE5IAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ4QkAAAAAIYISQAAAAAMEZIAAAAAGCIkAQAAADBESAIAAABgiJAEAAAAwBAhCQAAAIAhQhIAAAAAQ+YWkqrqdVV1f1V9aGbbyVV1U1V9dPr51JnHXllV+6vqzqo6f15zAQAAAPDYzPOMpNcnueBR265McnN370ly83Q/VXV2kn1Jnj4d8+qqOnGOswEAAACwSnMLSd39riSfftTmC5NcO92+NsmLZ7Zf190PdvddSfYnOWdeswEAAACweuv9GUmndfe9STL9PHXaviPJgZn9Dk7bAAAAAFgSy/Jh23WEbX3EHasuq6pbq+rWBx54YM5jAQAAAPCI9Q5J91XV6Uky/bx/2n4wya6Z/XYmOXSkJ+jua7p7b3fv3b59+1yHBQAAAODz1jsk3Zjkkun2JUnePLN9X1WdVFVnJdmT5D3rPBsAAAAAx7BtXk9cVW9I8vwkp1TVwSQ/meRVSW6oqkuT3J3koiTp7tur6oYkH05yOMkV3f3QvGYDAAAAYPXmFpK6+2VHeei8o+x/VZKr5jUPAAAAAI/PsnzYNgAAAABLTkgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEOEJAAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYMi2RQ/A5rVj1+4cOnhg0WMAAAAAa0RIYm4OHTyQi6++ZdFjrLnrLz930SMAAADAQri0DQAAAIAhQhIAAAAAQ4QkAAAAAIb4jKQl4YOpAQAAgGUnJC2JzfjB1D6UGgAAADYXl7YBAAAAMERIAgAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhixdSKqqC6rqzqraX1VXLnoeAAAAAFYsVUiqqhOT/HySFyU5O8nLqursxU4FAAAAQLJkISnJOUn2d/fHuvtzSa5LcuGCZwIAAAAgyxeSdiQ5MHP/4LQNAAAAgAWr7l70DH+jqi5Kcn53/7Pp/suTnNPd3z+zz2VJLpvuPi3Jnes+6HyckuSTix6ChbD2W5e137qs/dZk3bcua791Wfuty9pvXZtl7b+qu7cf6YFt6z3JcRxMsmvm/s4kh2Z36O5rklyznkOth6q6tbv3LnoO1p+137qs/dZl7bcm6751Wfuty9pvXdZ+69oKa79sl7a9N8meqjqrqp6YZF+SGxc8EwAAAABZsjOSuvtwVX1fkt9OcmKS13X37QseCwAAAIAsWUhKku5+S5K3LHqOBdh0l+sxzNpvXdZ+67L2W5N137qs/dZl7bcua791bfq1X6oP2wYAAABgeS3bZyQBAAAAsKSEpHVUVRdV1e1V9XBVHfVT3Kvqgqq6s6r2V9WVM9tPrqqbquqj08+nrs/kPF4ja1dVT6uq22b+fKaqXjE99lNVdc/MY9++7n8JVm30NVtVH6+qD05re+tqj2f5DL7md1XV26vqjum94QdmHvOa32CO9t4983hV1X+eHv9AVT179FiW28Daf9e05h+oqluq6hkzjx3x9z/Lb2Ddn19Vfz7ze/wnRo9luQ2s/Q/PrPuHquqhqjp5esxrfgOrqtdV1f1V9aGjPL5l3uuFpPX1oST/MMm7jrZDVZ2Y5OeTvCjJ2UleVlVnTw9fmeTm7t6T5ObpPhvDcdeuu+/s7md29zOTfEOSv0ryppld/uMjj0+fJcbyW81r9gXT2s5GZq/5jWtk7Q4n+aHu/tokz0lyxczv+8RrfsM4znv3I16UZM/057Ikr1nFsSypwfW7K8m3dPfXJ/m3+cLPzjjS73+W2Cpet78383v836zyWJbQyPp197+f+Xf6VyZ5Z3d/emYXr/mN6/VJLjjG41vmvV5IWkfdfUd333mc3c5Jsr+7P9bdn0tyXZILp8cuTHLtdPvaJC+ey6DMw2rX7rwk/7u7PzHPoZi7x/ua9ZrfuI67dt19b3e/f7r9F0nuSLJjvQZkTR3rvfsRFyb5pV7xh0meUlWnDx7L8jru+nX3Ld39f6a7f5hk5zrPyNp7PK9br/mNbbXr97Ikb1iXyZi77n5Xkk8fY5ct814vJC2fHUkOzNw/mM//h8Vp3X1vsvIfIElOXefZeOxWu3b78oVvOt83nSL5Opc4bRij695J3lZV76uqyx7D8SyfVa1dVZ2Z5FlJ3j2z2Wt+4zjWe/fx9hk5luW12vW7NMlvzdw/2u9/ltvouj+3qv64qn6rqp6+ymNZTsPrV1VfkpWzV35tZrPX/Oa2Zd7rty16gM2mqn4nyVce4aEf7+43jzzFEbb5ar0N4Fhrv8rneWKS78jKqbCPeE1WTofv6ed/SPJPH9ukrKU1Wvfndfehqjo1yU1V9ZHp//Fgia3ha/5JWfmXzFd092emzV7zG8vIe/fR9vG+v7ENr19VvSArIembZjb7/b8xjaz7+5N8VXd/dvqcu/+ZlctdvOY3ttWs3z9I8r8edVmb1/zmtmXe64WkNdbd3/o4n+Jgkl0z93cmOTTdvq+qTu/ue6dT5O5/nP8s1tCx1r6qVrN2L0ry/u6+b+a5/+Z2Vf2XJL+xFjPz+K3Funf3oenn/VX1pqyc/vqueM0vtbVY+6p6QlYi0i939xtnnttrfmM51nv38fZ54sCxLK+RtU9VfX2S1yZ5UXd/6pHtx/j9z3I77rrP/B8D6e63VNWrq+qUkWNZaqtZvy+4wsBrftPbMu/1Lm1bPu9NsqeqzprOTNmX5MbpsRuTXDLdviTJyBlOLIfVrN0XXEs9/YfoI16SlQ9uZ/kdd92r6kur6smP3E7ybfn8+nrNb1wja19JfjHJHd39M496zGt+YznWe/cjbkzy3dM3ujwnyZ9Plz2OHMvyOu76VdXuJG9M8vLu/pOZ7cf6/c9yG1n3r5x+z6eqzsnKf3d9auRYltrQ+lXVlyf5lsy8/3vNbwlb5r3eGUnrqKpekuTnkmxP8ptVdVt3n19VZyR5bXd/e3cfrqrvS/LbSU5M8rruvn16ilcluaGqLk1yd5KLFvDX4LE54trNrv10/0uS/N0klz/q+H9XVc/MyimQHz/C4yynkXU/Lcmbpn/X3JbkV7r7rcc6ng1hZO2fl+TlST5YVbdNx/3Y9A1tXvMbyNHeu6vqX0yP/0KStyT59iT7s/KtnN9zrGMX8NfgMRhc+59I8hVJXj39rj88fVvTsX7/s8QG1/2lSb63qg4n+b9J9nV3J/Ga38AG1z5Z+T+B3tbdfzlzuNf8BldVb0jy/CSnVNXBJD+Z5AnJ1nuvr5XfZwAAAABwbC5tAwAAAGCIkAQAAADAECEJAAAAgCFCEgAAAABDhCQAAAAAhghJAACPQVV9RVXdNv3506q6Z+b+T1bV7VX1gen+35mOeUdV7T3K872kqrqqvmZ9/yYAAOO2LXoAAICNqLs/leSZSVJVP5Xks93901X13CQ/k+TZ3f1gVZ2S5IkDT/myJL+fZF+Sn5rHzAAAj5czkgAA1tbpST7Z3Q8mSXd/srsPHeuAqnpSkucluTQrIQkAYCkJSQAAa+ttSXZV1Z9U1aur6lsGjnlxkrd2958k+XRVPXuuEwIAPEZCEgDAGuruzyb5hiSXJXkgyfVV9U+Oc9jLklw33b5uug8AsHR8RhIAwBrr7oeSvCPJO6rqg0kuSfL6I+1bVV+R5IVJvq6qOsmJSbqqfqS7e30mBgAY44wkAIA1VFVPq6o9M5uemeQTxzjkpUl+qbu/qrvP7O5dSe5K8k1zHBMA4DFxRhIAwNp6UpKfq6qnJDmcZH9WLnN7xG9W1V9Pt/8gyfYkr3rUc/xakn+U5PfmOyoAwOqUM6YBAAAAGOHSNgAAAACGCEkAAAAADBGSAAAAABgiJAEAAAAwREgCAAAAYIiQBAAAAMAQIQkAAACAIUISAAAAAEP+H+RlAAiTydFRAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(20,10))\n", "sns.histplot(cortable['TSLA'])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAJNCAYAAABqVV/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAndklEQVR4nO3df7Cl910f9vdndW1Dghvkeu1IV/dGChUMMhNkulHJmpkYDPGPmUQ2waxcxlFbt9q0dgZPKcEmMwGaakJbfk0zsbMCNFYYsFYpdiyI+SErxi5dsJA8QrYsq2yR0V6tRlJMiKFpnaz20z/uETqR7u5+r3afe87d+3rNPHPO+T7Pc76fM995ztl93+/zPNXdAQAAAIBz2bfoAgAAAADYHQRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADFlZdAHn4+Uvf3lfeeWViy4DAAAA4KJx3333/avu3r/Vul0dJF155ZW59957F10GAAAAwEWjqv7gTOuc2gYAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAC/A6tp6qmryZXVtfdEfFQD+1MqiCwAAgN3o5MaJHDpybPJ+jh4+OHkfADDKjCQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYMhkQVJVfUVV3VNVv1tVD1bVj8zaf7iqHquq+2fLm+b2eW9VHa+qh6vq9VPVBgAAAMD2rUz43l9O8m3d/SdV9aIkv1lVvzJb95Pd/WPzG1fVNUluSPKqJJcn+VhVfW13Pz1hjQAAAAAMmmxGUm/6k9nLF82WPssu1ye5vbu/3N2PJDme5Lqp6gMAAABgeya9RlJVXVJV9yd5Msld3f2p2ap3VdUDVXVrVV06a1tNcmJu941ZGwAAAABLYNIgqbuf7u5rk1yR5Lqq+oYk70/yNUmuTfJ4kh+fbV5bvcVzG6rqpqq6t6rufeqppyapGwAAAIDn25G7tnX3HyX5jSRv6O4nZgHT6SQ/nWdPX9tIsja32xVJTm7xXrd094HuPrB///5pCwcA4IJZXVtPVU2+rK6tL/qjAsBFa7KLbVfV/iT/vrv/qKq+Msm3J/mfq+qy7n58ttlbknx29vzOJL9QVT+RzYttX53knqnqAwBgZ53cOJFDR45N3s/Rwwcn7wMA9qop79p2WZLbquqSbM58uqO7f7mqfq6qrs3maWtfSHI4Sbr7waq6I8nnkpxK8k53bAMAAABYHpMFSd39QJJXb9H+9rPsc3OSm6eqCQCAPWDfSqq2uvwmAHC+ppyRBAAAO+/0KafQvQCra+s5uXHi3Buep8uvWMtjJx6dvB8ApiFIAgAAXMMKgCE7ctc2AAAAAHY/QRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAACwc/atpKomX1bX1hf9SQEuSiuLLgAAANhDTp/KoSPHJu/m6OGDk/cBsBeZkQQAsE2ra+tmVAAAe5IZSQAA23Ry44QZFQDAnmRGEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBACyrfSupqsmX1bX1RX9SAGCXWFl0AQAAnMHpUzl05Njk3Rw9fHDyPgCAi4MZSQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAxZWXQBAADAWexbSVUtugoASCJIAgCA5Xb6VA4dOTZ5N0cPH5y8DwB2P6e2AQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMMRd2wAA9jq3lwcABgmSAAD2OreXBwAGObUNAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhkwWJFXVV1TVPVX1u1X1YFX9yKz9ZVV1V1X93uzx0rl93ltVx6vq4ap6/VS1AQAAALB9U85I+nKSb+vub0xybZI3VNU3J3lPkru7++okd89ep6quSXJDklcleUOS91XVJRPWBwAAAMA2TBYk9aY/mb180WzpJNcnuW3WfluSN8+eX5/k9u7+cnc/kuR4kuumqg8AAACA7Zn0GklVdUlV3Z/kySR3dfenkryyux9PktnjK2abryY5Mbf7xqwNAAAAgCUwaZDU3U9397VJrkhyXVV9w1k2r63e4nkbVd1UVfdW1b1PPfXUBaoUAAAAgHPZkbu2dfcfJfmNbF776ImquixJZo9PzjbbSLI2t9sVSU5u8V63dPeB7j6wf//+KcsGAAAAYM6Ud23bX1VfPXv+lUm+Pcnnk9yZ5MbZZjcm+cjs+Z1Jbqiql1TVVUmuTnLPVPUBAAAAsD0rE773ZUlum915bV+SO7r7l6vqt5LcUVXvSPJokrcmSXc/WFV3JPlcklNJ3tndT09YHwAAAADbMFmQ1N0PJHn1Fu1fTPK6M+xzc5Kbp6oJAFiM1bX1nNw4ce4Nz9PlV6zlsROPTt4PAMBeNeWMJACAJMnJjRM5dOTY5P0cPXxw8j4AAPayHbnYNgAAAAC7nyAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIu7YBABePfSupqkVXASyDHfo+uPyKtTx24tHJ+wFYFoIkAODicfpUDh05Nnk3Rw8fnLwP4Dz5PgCYhFPbAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgBgD1tdW09VTb4AAHBxWFl0AQDA4pzcOJFDR45N3s/Rwwcn7wMAgOmZkQQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAHAElpdW09VTb4AAMB2rCy6AADg+U5unMihI8cm7+fo4YOT9wEAwMXDjCQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAADghdq3kqqafFldW1/0JwVIkqwsugAAAIBd6/SpHDpybPJujh4+OHkfACPMSAIAAABgiCAJAAAAgCGCJAAAAACGTBYkVdVaVX28qh6qqger6ntn7T9cVY9V1f2z5U1z+7y3qo5X1cNV9fqpagMAAABg+6a82PapJN/X3Z+uqpcmua+q7pqt+8nu/rH5javqmiQ3JHlVksuTfKyqvra7n56wRgAAAAAGTTYjqbsf7+5Pz57/cZKHkqyeZZfrk9ze3V/u7keSHE9y3VT1AQAAALA9O3KNpKq6Msmrk3xq1vSuqnqgqm6tqktnbatJTszttpGzB08AAAAA7KDJg6Sq+qokv5jk3d39pSTvT/I1Sa5N8niSH39m0y127y3e76aqureq7n3qqaemKRoAAACA55k0SKqqF2UzRPr57v5QknT3E939dHefTvLTefb0tY0ka3O7X5Hk5HPfs7tv6e4D3X1g//79U5YPAAAAwJwp79pWSX42yUPd/RNz7ZfNbfaWJJ+dPb8zyQ1V9ZKquirJ1Unumao+AAAAALZnyru2vSbJ25N8pqrun7X9YJK3VdW12Txt7QtJDidJdz9YVXck+Vw27/j2TndsAwAAAFgekwVJ3f2b2fq6Rx89yz43J7l5qpoAAAAAeOF25K5tAAAAAOx+giQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgyFCRV1WtG2gAAAAC4eI3OSPpHg20AAAAAXKRWzrayqv5KkoNJ9lfVfz+36j9KcsmUhQEAAACwXM4aJCV5cZKvmm330rn2LyX5rqmKAgAAAGD5nDVI6u5PJPlEVX2gu/9gh2oCAABg3r6VVNXk3Vx+xVoeO/Ho5P0Au9e5ZiQ94yVVdUuSK+f36e5vm6IoAAAA5pw+lUNHjk3ezdHDByfvA9jdRoOkf5bknyT5mSRPT1cOAAAAAMtqNEg61d3vn7QSAAAAAJbavsHtfqmq/ruquqyqXvbMcrYdqmqtqj5eVQ9V1YNV9b2z9pdV1V1V9Xuzx0vn9nlvVR2vqoer6vXn8bkAAAAAuMBGZyTdOHv8/rm2TvIXz7LPqSTf192frqqXJrmvqu5K8l8kubu7f7Sq3pPkPUl+oKquSXJDklcluTzJx6rqa7vbqXQAAAAAS2AoSOruq7b7xt39eJLHZ8//uKoeSrKa5Pokr51tdluS30jyA7P227v7y0keqarjSa5L8lvb7RsAAACAC28oSKqqv7VVe3f/08H9r0zy6iSfSvLKWciU7n68ql4x22w1yW/P7bYxawMAAABgCYye2vaX555/RZLXJfl0knMGSVX1VUl+Mcm7u/tLVXXGTbdo6y3e76YkNyXJ+vr6uboHAAAA4AIZPbXt78y/rqo/l+TnzrVfVb0omyHSz3f3h2bNT1TVZbPZSJcleXLWvpFkbW73K5Kc3KKWW5LckiQHDhx4XtAEAAAAwDRG79r2XP82ydVn26A2px79bJKHuvsn5lbdmWcv3n1jko/Mtd9QVS+pqqtm73/PC6wPAAAAgAts9BpJv5RnTzO7JMnXJ7njHLu9Jsnbk3ymqu6ftf1gkh9NckdVvSPJo0nemiTd/WBV3ZHkc9m849s73bENAAAAYHmMXiPpx+aen0ryB929cbYduvs3s/V1j5LNayxttc/NSW4erAkAAACAHTR0alt3fyLJ55O8NMmlSf7dlEUBAAAAsHyGgqSq+u5sXq/orUm+O8mnquq7piwMAAAAgOUyemrb30vyl7v7ySSpqv1JPpbkf5+qMAAAAACWy+hd2/Y9EyLNfHEb+wIAAABwERidkfSrVfVrST44e30oyUenKQkAAACAZXTWIKmq/pMkr+zu76+q70zyLdm8E9tvJfn5HagPAACAnbJvJVVnuvn2hXP5FWt57MSjk/cDXHjnmpH0U0l+MEm6+0NJPpQkVXVgtu6vT1gbAAAAO+n0qRw6cmzybo4ePjh5H8A0znWdoyu7+4HnNnb3vUmunKQiAAAAAJbSuYKkrzjLuq+8kIUAAAAAsNzOFST9TlX9N89trKp3JLlvmpIAAAAAWEbnukbSu5N8uKq+J88GRweSvDjJWyasCwAAAIAlc9YgqbufSHKwqr41yTfMmv9Fd//LySsDAAAAYKmca0ZSkqS7P57k4xPXAgAAAMASO9c1kgAAAAAgiSAJAAAAgEGCJAAAAACGCJIAAAAAGCJIAoBtWF1bT1VNvgAAwDIaumsbALDp5MaJHDpybPJ+jh4+OHkfAACwXWYkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMmSxIqqpbq+rJqvrsXNsPV9VjVXX/bHnT3Lr3VtXxqnq4ql4/VV0AAAAAvDBTzkj6QJI3bNH+k9197Wz5aJJU1TVJbkjyqtk+76uqSyasDQAAAIBtmixI6u5PJvnDwc2vT3J7d3+5ux9JcjzJdVPVBgAAAMD2LeIaSe+qqgdmp75dOmtbTXJibpuNWRsAAAAAS2Kng6T3J/maJNcmeTzJj8/aa4tte6s3qKqbqureqrr3qaeemqRIAAAAAJ5vR4Ok7n6iu5/u7tNJfjrPnr62kWRtbtMrkpw8w3vc0t0HuvvA/v37py0YAAAAgD+1o0FSVV029/ItSZ65o9udSW6oqpdU1VVJrk5yz07WBgAAAMDZrUz1xlX1wSSvTfLyqtpI8kNJXltV12bztLUvJDmcJN39YFXdkeRzSU4leWd3Pz1VbQAAAABs32RBUne/bYvmnz3L9jcnuXmqegAAAAA4P4u4axsAAAAAu5AgCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAuCisLq2nqqafAEAgL1sZdEFAMCFcHLjRA4dOTZ5P0cPH5y8DwAAWFZmJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAADsrH0rO3KTjKrK6tr6oj8tXFRcbBsAAICddfrUjtwkI3GjDLjQzEgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAC4eO1bSVVNvqyurS/6k8KOWFl0AQAAADCZ06dy6Mixybs5evjg5H3AMjAjCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYMhkQVJV3VpVT1bVZ+faXlZVd1XV780eL51b996qOl5VD1fV66eqCwAAAIAXZsoZSR9I8obntL0nyd3dfXWSu2evU1XXJLkhyatm+7yvqi6ZsDYAAAAAtmmyIKm7P5nkD5/TfH2S22bPb0vy5rn227v7y939SJLjSa6bqjYAAAAAtm+nr5H0yu5+PElmj6+Yta8mOTG33casDQAAAIAlsSwX264t2nrLDatuqqp7q+rep556auKyAAAAAHjGTgdJT1TVZUkye3xy1r6RZG1uuyuSnNzqDbr7lu4+0N0H9u/fP2mxAAAAADxrp4OkO5PcOHt+Y5KPzLXfUFUvqaqrklyd5J4drg2ACayuraeqJl8AAIDprUz1xlX1wSSvTfLyqtpI8kNJfjTJHVX1jiSPJnlrknT3g1V1R5LPJTmV5J3d/fRUtQGwc05unMihI8cm7+fo4YOT9wEAAHvdZEFSd7/tDKted4btb05y81T1AAAAAHB+luVi2wAAAAAsOUESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAHvU6tp6qmryBQAAuHisLLoAABbj5MaJHDpybPJ+jh4+OHkfAADAzjAjCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAOF/7VlJVky+ra+uL/qTscSuLLgAAAAB2vdOncujIscm7OXr44OR9wNmYkQQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMGQhF9uuqi8k+eMkTyc51d0HquplSY4muTLJF5J8d3f/60XUBwAAAMDzLXJG0rd297XdfWD2+j1J7u7uq5PcPXsNAAAAwJJYplPbrk9y2+z5bUnevLhSAAAAAHiuRQVJneTXq+q+qrpp1vbK7n48SWaPr1hQbQAAAABsYSHXSErymu4+WVWvSHJXVX1+dMdZ8HRTkqyvr09VHwAAAADPsZAZSd19cvb4ZJIPJ7kuyRNVdVmSzB6fPMO+t3T3ge4+sH///p0qGQAAAGDP2/Egqar+bFW99JnnSf5aks8muTPJjbPNbkzykZ2uDQAAAIAzW8Spba9M8uGqeqb/X+juX62q30lyR1W9I8mjSd66gNoAAAAAOIMdD5K6+/eTfOMW7V9M8rqdrgcAAACAMYu6axsAAAAAu4wgCQAAAHaLfSupqsmX1TV3SWdri7hGEgAAAPBCnD6VQ0eOTd7N0cMHJ++D3cmMJIAls7q2viN/ZQIAANguM5IAlszJjRP+ygQAACwlM5IAAAAAGCJIAgAAAGCIIAkAAACAIYIkAAAAAIYIkgAAAAAYIkgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABgiSAIAAABgiCAJAAAAgCGCJAAAAACGCJIAAAAAGCJIAhi0uraeqpp8AQAAWFYriy4AYLc4uXEih44cm7yfo4cPTt4HAADAC2FGEgAAAABDBEkAAAAADBEkAQAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJwK63uraeqpp8AQAA2OtWFl0AwPk6uXEih44cm7yfo4cPTt4HAADAMjMjCQAAAPgP7VvZkVn/q2vri/6kbJMZSQAAAMB/6PQps/7ZkhlJAAAAAAwRJAEAAAAwRJAEAAAAwBBBEgAAAABDBEnAZFbX1nfkTg8AAADsDHdtAyZzcuOEOz0AAABcRMxIAgAAAGCIIAkAAACAIYIkAAAAAIYIkmCJ7NTFqVfX1hf9UQEAANiFXGwbloiLUwMAALDMzEgCAAAAYIggCQAAAIAhgiQAAAAAhgiSAAAAABjiYtswYHVtPSc3Tiy6jAtn30qqatFVAAAAsMsIkmDARXc3tdOnLq7PAwAAwI5wahsAAAAAQwRJAAAAwGLMLrsx9bK6tr7oT3rRcGobAAAAsBguu7HrmJHEJFbX1qXKAAAAcJExI4lJXHQXpwYAAADMSAIAAABgjCBpSTgVDAAAACbiot4XjFPbloRTwV6g2ZcBAAAAnJGLel8wgiR2N18GAAAAsGOW7tS2qnpDVT1cVcer6j2LrgcAAACATUsVJFXVJUn+cZI3Jrkmyduq6prFVgUAAABAsnyntl2X5Hh3/36SVNXtSa5P8rmFVnUxcU0hAAAA4AVatiBpNcmJudcbSf6zBdVycXJNIQAAAOAFqu5edA1/qqremuT13f1fz16/Pcl13f135ra5KclNs5dfl+ThHS90Gi9P8q8WXQQLYez3LmO/dxn7vcm4713Gfu8y9nuXsd+7Lpax/wvdvX+rFcs2I2kjydrc6yuSnJzfoLtvSXLLTha1E6rq3u4+sOg62HnGfu8y9nuXsd+bjPveZez3LmO/dxn7vWsvjP1SXWw7ye8kubqqrqqqFye5IcmdC64JAAAAgCzZjKTuPlVV70rya0kuSXJrdz+44LIAAAAAyJIFSUnS3R9N8tFF17EAF93pegwz9nuXsd+7jP3eZNz3LmO/dxn7vcvY710X/dgv1cW2AQAAAFhey3aNJAAAAACWlCBpB1XVW6vqwao6XVVnvIp7Vb2hqh6uquNV9Z659pdV1V1V9Xuzx0t3pnLO18jYVdXXVdX9c8uXqurds3U/XFWPza17045/CLZt9Jitqi9U1WdmY3vvdvdn+Qwe82tV9fGqemj22/C9c+sc87vMmX6759ZXVf1vs/UPVNU3je7LchsY+++ZjfkDVXWsqr5xbt2W3/8sv4Fxf21V/Zu57/G/P7ovy21g7L9/btw/W1VPV9XLZusc87tYVd1aVU9W1WfPsH7P/NYLknbWZ5N8Z5JPnmmDqrokyT9O8sYk1yR5W1VdM1v9niR3d/fVSe6evWZ3OOfYdffD3X1td1+b5D9N8m+TfHhuk598Zv3sWmIsv+0cs986G9v5kNkxv3uNjN2pJN/X3V+f5JuTvHPu+z5xzO8a5/jtfsYbk1w9W25K8v5t7MuSGhy/R5L81e7+S0n+QZ5/7Yytvv9ZYts4bv+Pue/x/3Gb+7KERsavu//XuX/TvzfJJ7r7D+c2cczvXh9I8oazrN8zv/WCpB3U3Q9198Pn2Oy6JMe7+/e7+98luT3J9bN11ye5bfb8tiRvnqRQprDdsXtdkv+7u/9gyqKY3Pkes4753eucY9fdj3f3p2fP/zjJQ0lWd6pALqiz/XY/4/ok/7Q3/XaSr66qywb3ZXmdc/y6+1h3/+vZy99OcsUO18iFdz7HrWN+d9vu+L0tyQd3pDIm192fTPKHZ9lkz/zWC5KWz2qSE3OvN/Lsfyxe2d2PJ5v/AUnyih2ujRduu2N3Q57/o/Ou2RTJW53itGuMjnsn+fWquq+qbnoB+7N8tjV2VXVlklcn+dRcs2N+9zjbb/e5thnZl+W13fF7R5JfmXt9pu9/ltvouP+VqvrdqvqVqnrVNvdlOQ2PX1X9mWzOXvnFuWbH/MVtz/zWryy6gItNVX0syZ/fYtXf6+6PjLzFFm1urbcLnG3st/k+L07yN7I5FfYZ78/mdPiePf54kv/qhVXKhXSBxv013X2yql6R5K6q+vzsLx4ssQt4zH9VNv+R+e7u/tKs2TG/u4z8dp9pG7/7u9vw+FXVt2YzSPqWuWbf/7vTyLh/Oslf6O4/mV3n7p9n83QXx/zutp3x++tJ/s/nnNbmmL+47ZnfekHSBdbd336eb7GRZG3u9RVJTs6eP1FVl3X347Mpck+eZ19cQGcb+6razti9Mcmnu/uJuff+0+dV9dNJfvlC1Mz5uxDj3t0nZ49PVtWHszn99ZNxzC+1CzH2VfWibIZIP9/dH5p7b8f87nK23+5zbfPigX1ZXiNjn6r6S0l+Jskbu/uLz7Sf5fuf5XbOcZ/7w0C6+6NV9b6qevnIviy17Yzf884wcMxf9PbMb71T25bP7yS5uqqums1MuSHJnbN1dya5cfb8xiQjM5xYDtsZu+edSz37j+gz3pLNC7ez/M457lX1Z6vqpc88T/LX8uz4OuZ3r5GxryQ/m+Sh7v6J56xzzO8uZ/vtfsadSf7W7I4u35zk38xOexzZl+V1zvGrqvUkH0ry9u7+v+baz/b9z3IbGfc/P/ueT1Vdl83/d31xZF+W2tD4VdWfS/JXM/f775jfE/bMb70ZSTuoqt6S5B8l2Z/kX1TV/d39+qq6PMnPdPebuvtUVb0rya8luSTJrd394OwtfjTJHVX1jiSPJnnrAj4GL8yWYzc/9rPXfybJdyQ5/Jz9/5equjabUyC/sMV6ltPIuL8yyYdn/9ZcSfIL3f2rZ9ufXWFk7F+T5O1JPlNV98/2+8HZHdoc87vImX67q+pvz9b/kyQfTfKmJMezeVfO//Js+y7gY/ACDI7930/yHyd53+y7/tTsbk1n+/5niQ2O+3cl+W+r6lSS/zfJDd3dSRzzu9jg2CebfwT69e7+f+Z2d8zvclX1wSSvTfLyqtpI8kNJXpTsvd/62vw+AwAAAICzc2obAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAADnoareUlX3P2c5XVWPVNXXPWfbn6qqvzt7/uaqeqCqPl9Vn6mqNy/kAwAAbEN196JrAAC4aFTVTUm+J8mxJP9fd//IrH1fkkeTvCbJVyf5xSTf0d2PVNVVSe5K8p3d/cBCCgcAGCBIAgC4QKrqa5P8yyQHsxkWHe3ur5+te22S/6m7v6Wqfi7Jx7v71rl935Hktd399p2uGwBglFPbAAAugKp6UZJfSPI/dPejs5lFp6vqG2eb3JDkg7Pnr0py33Pe4t5ZOwDA0hIkAQBcGP8gyYPdfftc2weT3FBVK0muT/LPZu2V5LnTwrdqAwBYKiuLLgAAYLebnbb2N5N803NWfTDJryf5RJIHuvvJWfuDSQ4kmb8e0jcl+dykhQIAnCfXSAIAOA9VdWmSTyf5z7v7t7ZYf0+SFyf5qe7+wKzt2mzOTvqO7v5CVV2Z5GNJvqu779+ZygEAts+MJACA8/O3k7wiyfurar79H3b30WzOSvqHST78zIruvr+qfiDJL82urfTvk/xdIRIAsOzMSAIAAABgiIttAwAAADBEkAQAAADAEEESAAAAAEMESQAAAAAMESQBAAAAMESQBAAAAMAQQRIAAAAAQwRJAAAAAAz5/wGZSu79FWitsQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(20,10))\n", "sns.histplot(cortable['ZVO'])\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }