{ "cells": [ { "cell_type": "markdown", "id": "4b6a460b", "metadata": {}, "source": [ "# 공공데이터를 이용한 카페 상권분석(2021 Ver.)" ] }, { "cell_type": "code", "execution_count": 1, "id": "d97c93e3", "metadata": {}, "outputs": [], "source": [ "# 먼저 필요한 라이브러리를 불러옵니다.\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "markdown", "id": "c2f14724", "metadata": {}, "source": [ "## 1. 데이터 불러오기" ] }, { "cell_type": "code", "execution_count": 6, "id": "e75285ec", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상가업소번호상호명지점명상권업종대분류코드상권업종대분류명상권업종중분류코드상권업종중분류명상권업종소분류코드상권업종소분류명표준산업분류코드...건물관리번호건물명도로명주소구우편번호신우편번호동정보층정보호정보경도위도
023498449츄로하임NaNQ음식Q01한식Q01A01한식/백반/한정식I56111...2826010400109750004000001청라반도유보라인천광역시 서구 솔빛로 55404170.022765.0NaNNaN102126.62674037.525163
122882934간석미용실NaNF생활서비스F01이/미용/건강F01A01여성미용실S96112...2820010200101900026021270NaN인천광역시 남동구 석촌로14번길 5405230.021545.0NaNNaNNaN126.70934937.461969
\n", "

2 rows × 39 columns

\n", "
" ], "text/plain": [ " 상가업소번호 상호명 지점명 상권업종대분류코드 상권업종대분류명 상권업종중분류코드 상권업종중분류명 상권업종소분류코드 \\\n", "0 23498449 츄로하임 NaN Q 음식 Q01 한식 Q01A01 \n", "1 22882934 간석미용실 NaN F 생활서비스 F01 이/미용/건강 F01A01 \n", "\n", " 상권업종소분류명 표준산업분류코드 ... 건물관리번호 건물명 \\\n", "0 한식/백반/한정식 I56111 ... 2826010400109750004000001 청라반도유보라 \n", "1 여성미용실 S96112 ... 2820010200101900026021270 NaN \n", "\n", " 도로명주소 구우편번호 신우편번호 동정보 층정보 호정보 경도 \\\n", "0 인천광역시 서구 솔빛로 55 404170.0 22765.0 NaN NaN 102 126.626740 \n", "1 인천광역시 남동구 석촌로14번길 5 405230.0 21545.0 NaN NaN NaN 126.709349 \n", "\n", " 위도 \n", "0 37.525163 \n", "1 37.461969 \n", "\n", "[2 rows x 39 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 다운로드 받은 데이터중 일부를 열어봅니다.\n", "temp = pd.read_csv(\"../my room/data1/소상공인시장진흥공단_상가(상권)정보_인천_202103.csv\"\n", " ,sep=',',encoding = \"utf-8\")\n", "temp.head(2)" ] }, { "cell_type": "code", "execution_count": 26, "id": "a3e3257c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['상가업소번호', '상호명', '지점명', '상권업종대분류코드', '상권업종대분류명', '상권업종중분류코드',\n", " '상권업종중분류명', '상권업종소분류코드', '상권업종소분류명', '표준산업분류코드', '표준산업분류명', '시도코드',\n", " '시도명', '시군구코드', '시군구명', '행정동코드', '행정동명', '법정동코드', '법정동명', '지번코드',\n", " '대지구분코드', '대지구분명', '지번본번지', '지번부번지', '지번주소', '도로명코드', '도로명', '건물본번지',\n", " '건물부번지', '건물관리번호', '건물명', '도로명주소', '구우편번호', '신우편번호', '동정보', '층정보',\n", " '호정보', '경도', '위도'],\n", " dtype='object')" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 39개의 변수를 확인해 볼 필요가 있다.\n", "temp.columns\n", "# 변수가 너무 많다!! \n", "# 카페를 분석하는 데 필요한 변수만 추출할 것이다!!\n", "#temp.상권업종소분류명.unique()" ] }, { "cell_type": "markdown", "id": "1f0bb6d5", "metadata": {}, "source": [ "### (1) 일단 여러 csv 파일 한번에 불러오기" ] }, { "cell_type": "code", "execution_count": 13, "id": "b5bc16e5", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\work\\envs\\datascience\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3165: DtypeWarning: Columns (35) have mixed types.Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상가업소번호상호명지점명상권업종대분류코드상권업종대분류명상권업종중분류코드상권업종중분류명상권업종소분류코드상권업종소분류명표준산업분류코드...건물관리번호건물명도로명주소구우편번호신우편번호동정보층정보호정보경도위도
017174079평창라마다호텔NaNO숙박O01호텔/콘도O01A01호텔/콘도NaN...4276038024102450036000001NaN강원도 평창군 대관령면 오목길 107232954.025342.0NaNNaNNaN128.71797137.660051
117173904호텔탑스텐스카이라운지NaNO숙박O01호텔/콘도O01A01호텔/콘도NaN...4215035029100920001000002NaN강원도 강릉시 옥계면 헌화로 455-34210831.025633.0NaNNaNNaN129.05290237.654680
225033300동그라미중고타이어NaND소매D23자동차/자동차용품D23A04타이어판매G45211...4215011100110960006010791NaN강원도 강릉시 가작로 270210110.025488.01NaNNaN128.90447237.770252
317174549세인트존스호텔OhcrabNaNO숙박O01호텔/콘도O01A01호텔/콘도NaN...4215011300100010001017124세인트존스호텔강원도 강릉시 창해로 307210120.025467.0NaNNaNNaN128.92090837.791299
417175358국수나루NaNQ음식Q01한식Q01A01한식/백반/한정식I56111...4215010900101730002015569NaN강원도 강릉시 토성로 193210934.025531.0NaNNaNNaN128.89678337.757642
..................................................................
223399217433055더:예쁨NaNF생활서비스F01이/미용/건강F01A01여성미용실S96112...4313011800116250000000008연수세영리첼1단지아파트상가충청북도 충주시 연수동산로 35380100.027352.0상가NaN104127.94179736.985736
223399317451070우리집밥상NaNQ음식Q01한식Q01A01한식/백반/한정식I56111...4377025021103370004010973NaN충청북도 음성군 음성읍 시장로 68369807.027702.0NaNNaNNaN127.69393736.933781
223399417433002빅스타서충주점Q음식Q01한식Q01A01한식/백반/한정식I56111...4313033531110450000000001NaN충청북도 충주시 대소원면 첨단산업4로 13380871.027466.0NaN1.0104127.82992336.985799
223399517389939무한닭발NaNQ음식Q05닭/오리요리Q05A10닭내장/닭발요리I56111...4311311500104920003016198NaN충청북도 청주시 흥덕구 직지대로639번길 75361817.028475.0NaNNaN105127.46579936.646244
223399617433391모아모아플레이NaNQ음식Q01한식Q01A01한식/백반/한정식I56111...4311110800100190005048885NaN충청북도 청주시 상당구 탑동로1번길 25360050.028716.0NaN1.0101127.49482236.628995
\n", "

2233997 rows × 39 columns

\n", "
" ], "text/plain": [ " 상가업소번호 상호명 지점명 상권업종대분류코드 상권업종대분류명 상권업종중분류코드 \\\n", "0 17174079 평창라마다호텔 NaN O 숙박 O01 \n", "1 17173904 호텔탑스텐스카이라운지 NaN O 숙박 O01 \n", "2 25033300 동그라미중고타이어 NaN D 소매 D23 \n", "3 17174549 세인트존스호텔Ohcrab NaN O 숙박 O01 \n", "4 17175358 국수나루 NaN Q 음식 Q01 \n", "... ... ... ... ... ... ... \n", "2233992 17433055 더:예쁨 NaN F 생활서비스 F01 \n", "2233993 17451070 우리집밥상 NaN Q 음식 Q01 \n", "2233994 17433002 빅스타 서충주점 Q 음식 Q01 \n", "2233995 17389939 무한닭발 NaN Q 음식 Q05 \n", "2233996 17433391 모아모아플레이 NaN Q 음식 Q01 \n", "\n", " 상권업종중분류명 상권업종소분류코드 상권업종소분류명 표준산업분류코드 ... \\\n", "0 호텔/콘도 O01A01 호텔/콘도 NaN ... \n", "1 호텔/콘도 O01A01 호텔/콘도 NaN ... \n", "2 자동차/자동차용품 D23A04 타이어판매 G45211 ... \n", "3 호텔/콘도 O01A01 호텔/콘도 NaN ... \n", "4 한식 Q01A01 한식/백반/한정식 I56111 ... \n", "... ... ... ... ... ... \n", "2233992 이/미용/건강 F01A01 여성미용실 S96112 ... \n", "2233993 한식 Q01A01 한식/백반/한정식 I56111 ... \n", "2233994 한식 Q01A01 한식/백반/한정식 I56111 ... \n", "2233995 닭/오리요리 Q05A10 닭내장/닭발요리 I56111 ... \n", "2233996 한식 Q01A01 한식/백반/한정식 I56111 ... \n", "\n", " 건물관리번호 건물명 도로명주소 \\\n", "0 4276038024102450036000001 NaN 강원도 평창군 대관령면 오목길 107 \n", "1 4215035029100920001000002 NaN 강원도 강릉시 옥계면 헌화로 455-34 \n", "2 4215011100110960006010791 NaN 강원도 강릉시 가작로 270 \n", "3 4215011300100010001017124 세인트존스호텔 강원도 강릉시 창해로 307 \n", "4 4215010900101730002015569 NaN 강원도 강릉시 토성로 193 \n", "... ... ... ... \n", "2233992 4313011800116250000000008 연수세영리첼1단지아파트상가 충청북도 충주시 연수동산로 35 \n", "2233993 4377025021103370004010973 NaN 충청북도 음성군 음성읍 시장로 68 \n", "2233994 4313033531110450000000001 NaN 충청북도 충주시 대소원면 첨단산업4로 13 \n", "2233995 4311311500104920003016198 NaN 충청북도 청주시 흥덕구 직지대로639번길 75 \n", "2233996 4311110800100190005048885 NaN 충청북도 청주시 상당구 탑동로1번길 25 \n", "\n", " 구우편번호 신우편번호 동정보 층정보 호정보 경도 위도 \n", "0 232954.0 25342.0 NaN NaN NaN 128.717971 37.660051 \n", "1 210831.0 25633.0 NaN NaN NaN 129.052902 37.654680 \n", "2 210110.0 25488.0 1 NaN NaN 128.904472 37.770252 \n", "3 210120.0 25467.0 NaN NaN NaN 128.920908 37.791299 \n", "4 210934.0 25531.0 NaN NaN NaN 128.896783 37.757642 \n", "... ... ... ... ... ... ... ... \n", "2233992 380100.0 27352.0 상가 NaN 104 127.941797 36.985736 \n", "2233993 369807.0 27702.0 NaN NaN NaN 127.693937 36.933781 \n", "2233994 380871.0 27466.0 NaN 1.0 104 127.829923 36.985799 \n", "2233995 361817.0 28475.0 NaN NaN 105 127.465799 36.646244 \n", "2233996 360050.0 28716.0 NaN 1.0 101 127.494822 36.628995 \n", "\n", "[2233997 rows x 39 columns]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# data 폴더에 있는 모든 csv 파일을 읽어오기 위해 glob을 사용합니다.\n", "from glob import glob\n", "\n", "# csv 목록 불러오기\n", "file_names = glob(\"../my room/data1/*.csv\")\n", "total = pd.DataFrame()\n", "\n", "# 모든 csv 병합하기\n", "for file_name in file_names:\n", " temp = pd.read_csv(file_name,sep=',',encoding='utf-8')\n", " total = pd.concat([total,temp])\n", "# reset index로 인덱스를 새로 지정할 수 있다.\n", "total.reset_index(inplace=True, drop=True) #기존 index 제거하고 싶을땐 drop=True\n", "total" ] }, { "cell_type": "code", "execution_count": 30, "id": "91d1775a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상호명지점명상권업종대분류명상권업종중분류명시도명시군구명행정동명
0평창라마다호텔NaN숙박호텔/콘도강원도평창군대관령면
1호텔탑스텐스카이라운지NaN숙박호텔/콘도강원도강릉시옥계면
2동그라미중고타이어NaN소매자동차/자동차용품강원도강릉시포남1동
3세인트존스호텔OhcrabNaN숙박호텔/콘도강원도강릉시초당동
4국수나루NaN음식한식강원도강릉시옥천동
........................
2233992더:예쁨NaN생활서비스이/미용/건강충청북도충주시연수동
2233993우리집밥상NaN음식한식충청북도음성군음성읍
2233994빅스타서충주점음식한식충청북도충주시대소원면
2233995무한닭발NaN음식닭/오리요리충청북도청주시 흥덕구봉명2.송정동
2233996모아모아플레이NaN음식한식충청북도청주시 상당구성안동
\n", "

2233997 rows × 7 columns

\n", "
" ], "text/plain": [ " 상호명 지점명 상권업종대분류명 상권업종중분류명 시도명 시군구명 행정동명\n", "0 평창라마다호텔 NaN 숙박 호텔/콘도 강원도 평창군 대관령면\n", "1 호텔탑스텐스카이라운지 NaN 숙박 호텔/콘도 강원도 강릉시 옥계면\n", "2 동그라미중고타이어 NaN 소매 자동차/자동차용품 강원도 강릉시 포남1동\n", "3 세인트존스호텔Ohcrab NaN 숙박 호텔/콘도 강원도 강릉시 초당동\n", "4 국수나루 NaN 음식 한식 강원도 강릉시 옥천동\n", "... ... ... ... ... ... ... ...\n", "2233992 더:예쁨 NaN 생활서비스 이/미용/건강 충청북도 충주시 연수동\n", "2233993 우리집밥상 NaN 음식 한식 충청북도 음성군 음성읍\n", "2233994 빅스타 서충주점 음식 한식 충청북도 충주시 대소원면\n", "2233995 무한닭발 NaN 음식 닭/오리요리 충청북도 청주시 흥덕구 봉명2.송정동\n", "2233996 모아모아플레이 NaN 음식 한식 충청북도 청주시 상당구 성안동\n", "\n", "[2233997 rows x 7 columns]" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 분석에 필요한 column을 고릅니다. ## 자유롭게 하셔도 상관없습니다.\n", "data=total[['상호명','지점명','상권업종대분류명','상권업종중분류명','시도명','시군구명','행정동명']]\n", "data" ] }, { "cell_type": "markdown", "id": "859edbdf", "metadata": {}, "source": [ "## 2. 데이터 구경하기" ] }, { "cell_type": "code", "execution_count": 31, "id": "2b22400e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 2233997 entries, 0 to 2233996\n", "Data columns (total 7 columns):\n", " # Column Dtype \n", "--- ------ ----- \n", " 0 상호명 object\n", " 1 지점명 object\n", " 2 상권업종대분류명 object\n", " 3 상권업종중분류명 object\n", " 4 시도명 object\n", " 5 시군구명 object\n", " 6 행정동명 object\n", "dtypes: object(7)\n", "memory usage: 119.3+ MB\n" ] } ], "source": [ "data.info()" ] }, { "cell_type": "code", "execution_count": 32, "id": "a06a8c44", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상호명지점명상권업종대분류명상권업종중분류명시도명시군구명행정동명
count223399432756922339972233997223399722339972233997
unique1273411111919895172343221
topCU본점음식한식경기도서구중앙동
freq1120823718457823247465088456642840277
\n", "
" ], "text/plain": [ " 상호명 지점명 상권업종대분류명 상권업종중분류명 시도명 시군구명 행정동명\n", "count 2233994 327569 2233997 2233997 2233997 2233997 2233997\n", "unique 1273411 111919 8 95 17 234 3221\n", "top CU 본점 음식 한식 경기도 서구 중앙동\n", "freq 11208 2371 845782 324746 508845 66428 40277" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.describe()" ] }, { "cell_type": "code", "execution_count": 33, "id": "4ad893f0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'PC/오락/당구/볼링등',\n", " '가구소매',\n", " '가방/신발/액세서리',\n", " '가전제품소매',\n", " '가정/주방/인테리어',\n", " '개인/가정용품수리',\n", " '개인서비스',\n", " '건강/미용식품',\n", " '경마/경륜/성인오락',\n", " '광고/인쇄',\n", " '기타교육기관',\n", " '기타서비스업',\n", " '기타음식업',\n", " '기타판매업',\n", " '놀이/여가/취미',\n", " '닭/오리요리',\n", " '대중목욕탕/휴게',\n", " '대행업',\n", " '도서관/독서실',\n", " '모텔/여관/여인숙',\n", " '무도/유흥/가무',\n", " '물품기기대여',\n", " '민박/하숙',\n", " '법무세무회계',\n", " '별식/퓨전요리',\n", " '부동산관련서비스',\n", " '부동산임대',\n", " '부동산중개',\n", " '부페',\n", " '분식',\n", " '분양',\n", " '사무/문구/컴퓨터',\n", " '사진',\n", " '사진/광학/정밀기기소매',\n", " '선물/팬시/기념품',\n", " '세탁/가사서비스',\n", " '스포츠/운동',\n", " '시계/귀금속소매',\n", " '실내운동시설',\n", " '실외운동시설',\n", " '애견/애완/동물',\n", " '양식',\n", " '연구소',\n", " '연극/영화/극장',\n", " '예술품/골동품/수석/분재',\n", " '예식/의례/관혼상제',\n", " '요가/단전/마사지',\n", " '운동/경기용품소매',\n", " '운송/배달/택배',\n", " '운영관리시설',\n", " '유스호스텔',\n", " '유아교육',\n", " '유아용품',\n", " '유흥주점',\n", " '음/식료품소매',\n", " '음식배달서비스',\n", " '의복의류',\n", " '의약/의료품소매',\n", " '이/미용/건강',\n", " '인력/고용/용역알선',\n", " '일식/수산물',\n", " '자동차/이륜차',\n", " '자동차/자동차용품',\n", " '장례/묘지',\n", " '전시/관람',\n", " '제과제빵떡케익',\n", " '종교용품판매',\n", " '종합소매점',\n", " '주유소/충전소',\n", " '주택수리',\n", " '중고품소매/교환',\n", " '중식',\n", " '책/서적/도서',\n", " '철물/난방/건설자재소매',\n", " '취미/오락관련소매',\n", " '캠프/별장/펜션',\n", " '커피점/카페',\n", " '특수교육기관',\n", " '패스트푸드',\n", " '페인트/유리제품소매',\n", " '평가/개발/관리',\n", " '학교',\n", " '학문교육기타',\n", " '학원-보습교습입시',\n", " '학원-어학',\n", " '학원-예능취미체육',\n", " '학원-음악미술무용',\n", " '학원-자격/국가고시',\n", " '학원-창업취업취미',\n", " '학원-컴퓨터',\n", " '학원기타',\n", " '한식',\n", " '행사/이벤트',\n", " '호텔/콘도',\n", " '화장품소매'}" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set(data[\"상권업종중분류명\"])" ] }, { "cell_type": "code", "execution_count": 35, "id": "e2954378", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "전국 커피 전문점 점포 수 : 106710\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상호명지점명상권업종대분류명상권업종중분류명시도명시군구명행정동명
16키즈까페아이사랑NaN음식커피점/카페강원도강릉시성덕동
43카페마실NaN음식커피점/카페강원도원주시단계동
51힐링NaN음식커피점/카페강원도원주시단구동
67드롭탑속초엑스포점음식커피점/카페강원도속초시조양동
89상유재카페NaN음식커피점/카페강원도정선군정선읍
\n", "
" ], "text/plain": [ " 상호명 지점명 상권업종대분류명 상권업종중분류명 시도명 시군구명 행정동명\n", "16 키즈까페아이사랑 NaN 음식 커피점/카페 강원도 강릉시 성덕동\n", "43 카페마실 NaN 음식 커피점/카페 강원도 원주시 단계동\n", "51 힐링 NaN 음식 커피점/카페 강원도 원주시 단구동\n", "67 드롭탑 속초엑스포점 음식 커피점/카페 강원도 속초시 조양동\n", "89 상유재카페 NaN 음식 커피점/카페 강원도 정선군 정선읍" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 카페만 뽑아냅니다.\n", "df_coffee = data[data[\"상권업종중분류명\"]=='커피점/카페']\n", "print(\"전국 커피 전문점 점포 수 : \", len(df_coffee))\n", "df_coffee.head()" ] }, { "cell_type": "code", "execution_count": 36, "id": "d75bd118", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'강원도',\n", " '경기도',\n", " '경상남도',\n", " '경상북도',\n", " '광주광역시',\n", " '대구광역시',\n", " '대전광역시',\n", " '부산광역시',\n", " '서울특별시',\n", " '세종특별자치시',\n", " '울산광역시',\n", " '인천광역시',\n", " '전라남도',\n", " '전라북도',\n", " '제주특별자치도',\n", " '충청남도',\n", " '충청북도'}" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set(data['시도명'])" ] }, { "cell_type": "code", "execution_count": 69, "id": "8b3f338b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상호명지점명상권업종대분류명상권업종중분류명시도명시군구명행정동명
0커피빈코리아대학로대명거리점음식커피점/카페서울특별시종로구혜화동
1요거프레소쌍문점음식커피점/카페서울특별시도봉구쌍문2동
2메머드커피NaN음식커피점/카페서울특별시마포구서교동
3버블베어NaN음식커피점/카페서울특별시강서구방화3동
4우성커피숍NaN음식커피점/카페서울특별시양천구신월4동
\n", "
" ], "text/plain": [ " 상호명 지점명 상권업종대분류명 상권업종중분류명 시도명 시군구명 행정동명\n", "0 커피빈 코리아대학로대명거리점 음식 커피점/카페 서울특별시 종로구 혜화동\n", "1 요거프레소 쌍문점 음식 커피점/카페 서울특별시 도봉구 쌍문2동\n", "2 메머드커피 NaN 음식 커피점/카페 서울특별시 마포구 서교동\n", "3 버블베어 NaN 음식 커피점/카페 서울특별시 강서구 방화3동\n", "4 우성커피숍 NaN 음식 커피점/카페 서울특별시 양천구 신월4동" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 시도별로 구분하는 데이터 만들기\n", "df_coffee_seoul = df_coffee[df_coffee['시도명']=='서울특별시']\n", "df_coffee_seoul.index = range(len(df_coffee_seoul)) # index 재설정\n", "# df_coffee_seoul.reset_index(inplace=True, drop=True)\n", "df_coffee_seoul.head()" ] }, { "cell_type": "code", "execution_count": 89, "id": "abcfb9e3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상호명지점명상권업종대분류명상권업종중분류명시도명시군구명행정동명
0브라운NaN음식커피점/카페대구광역시수성구고산2동
1커피명가2호점음식커피점/카페대구광역시중구삼덕동
2대림다방NaN음식커피점/카페대구광역시수성구수성2.3가동
3카페머그NaN음식커피점/카페대구광역시중구성내2동
4샌디버블NaN음식커피점/카페대구광역시남구대명2동
........................
5108카페이루다스터디음식커피점/카페대구광역시달서구월성1동
5109커피지상주의NaN음식커피점/카페대구광역시달서구용산1동
5110그린바스켓NaN음식커피점/카페대구광역시수성구만촌3동
5111티앤오T.N.ONaN음식커피점/카페대구광역시북구침산2동
5112커피가득NaN음식커피점/카페대구광역시서구비산2.3동
\n", "

5113 rows × 7 columns

\n", "
" ], "text/plain": [ " 상호명 지점명 상권업종대분류명 상권업종중분류명 시도명 시군구명 행정동명\n", "0 브라운 NaN 음식 커피점/카페 대구광역시 수성구 고산2동\n", "1 커피명가 2호점 음식 커피점/카페 대구광역시 중구 삼덕동\n", "2 대림다방 NaN 음식 커피점/카페 대구광역시 수성구 수성2.3가동\n", "3 카페머그 NaN 음식 커피점/카페 대구광역시 중구 성내2동\n", "4 샌디버블 NaN 음식 커피점/카페 대구광역시 남구 대명2동\n", "... ... ... ... ... ... ... ...\n", "5108 카페 이루다스터디 음식 커피점/카페 대구광역시 달서구 월성1동\n", "5109 커피지상주의 NaN 음식 커피점/카페 대구광역시 달서구 용산1동\n", "5110 그린바스켓 NaN 음식 커피점/카페 대구광역시 수성구 만촌3동\n", "5111 티앤오T.N.O NaN 음식 커피점/카페 대구광역시 북구 침산2동\n", "5112 커피가득 NaN 음식 커피점/카페 대구광역시 서구 비산2.3동\n", "\n", "[5113 rows x 7 columns]" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# for문으로 전국 시도명별 데이터 만드는 법\n", "a=list(set(data['시도명']))\n", "import sys\n", "mod = sys.modules[__name__]\n", "for i in range(len(a)):\n", " setattr(mod, 'df_coffee_{}' .format(a[i]), df_coffee[df_coffee['시도명']==a[i]])\n", "# 이건 for문을 돌릴 방법을 못 찾겠네요...\n", "df_coffee_강원도.index = range(len(df_coffee_강원도))\n", "df_coffee_경기도.index = range(len(df_coffee_경기도))\n", "df_coffee_경상남도.index = range(len(df_coffee_경상남도))\n", "df_coffee_경상북도.index = range(len(df_coffee_경상북도))\n", "df_coffee_광주광역시.index = range(len(df_coffee_광주광역시))\n", "df_coffee_대구광역시.index = range(len(df_coffee_대구광역시))\n", "df_coffee_대전광역시.index = range(len(df_coffee_대전광역시))\n", "df_coffee_부산광역시.index = range(len(df_coffee_부산광역시))\n", "df_coffee_서울특별시.index = range(len(df_coffee_서울특별시))\n", "df_coffee_세종특별자치시.index = range(len(df_coffee_세종특별자치시))\n", "df_coffee_울산광역시.index = range(len(df_coffee_울산광역시))\n", "df_coffee_인천광역시.index = range(len(df_coffee_인천광역시))\n", "df_coffee_전라남도.index = range(len(df_coffee_전라남도))\n", "df_coffee_전라북도.index = range(len(df_coffee_전라북도))\n", "df_coffee_제주특별자치도.index = range(len(df_coffee_제주특별자치도))\n", "df_coffee_충청남도.index = range(len(df_coffee_충청남도))\n", "df_coffee_충청북도.index = range(len(df_coffee_충청북도))\n", "\n", "df_coffee_대구광역시" ] }, { "cell_type": "markdown", "id": "042b32db", "metadata": {}, "source": [ "#### 전국 스타벅스" ] }, { "cell_type": "code", "execution_count": 91, "id": "13dc9304", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "전국 스타벅스 점포 수 : 1563\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상호명지점명상권업종대분류명상권업종중분류명시도명시군구명행정동명
0스타벅스강릉안목항점강릉안목항점음식커피점/카페강원도강릉시송정동
1스타벅스대명델피노리조트점음식커피점/카페강원도고성군토성면
2스타벅스춘천후평DT점춘천후평DT점음식커피점/카페강원도춘천시후평3동
3스타벅스춘천명동점음식커피점/카페강원도춘천시약사명동
4스타벅스설악워터피아점설악워터피아점음식커피점/카페강원도속초시영랑동
\n", "
" ], "text/plain": [ " 상호명 지점명 상권업종대분류명 상권업종중분류명 시도명 시군구명 행정동명\n", "0 스타벅스강릉안목항점 강릉안목항점 음식 커피점/카페 강원도 강릉시 송정동\n", "1 스타벅스 대명델피노리조트점 음식 커피점/카페 강원도 고성군 토성면\n", "2 스타벅스춘천후평DT점 춘천후평DT점 음식 커피점/카페 강원도 춘천시 후평3동\n", "3 스타벅스 춘천명동점 음식 커피점/카페 강원도 춘천시 약사명동\n", "4 스타벅스설악워터피아점 설악워터피아점 음식 커피점/카페 강원도 속초시 영랑동" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_스타벅스 = df_coffee[df_coffee[\"상호명\"].str.contains(\"스타벅스\")]\n", "df_스타벅스.index = range(len(df_스타벅스))\n", "print('전국 스타벅스 점포 수 :', len(df_스타벅스))\n", "df_스타벅스.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "2e062bc0", "metadata": {}, "outputs": [], "source": [ "# 한글깨짐 해결을 위해 코드\n", "import matplotlib.font_manager as fm\n", "path = 'C:\\\\Users\\\\설위준\\\\Desktop\\\\my room\\\\NanumBarunGothic.ttf'\n", "fontprob=fm.FontProperties(fname=path,size=18)" ] }, { "cell_type": "code", "execution_count": 156, "id": "6f8eb074", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ],\n", " [Text(0, 0, '전라북도'),\n", " Text(1, 0, '부산광역시'),\n", " Text(2, 0, '강원도'),\n", " Text(3, 0, '경기도'),\n", " Text(4, 0, '인천광역시'),\n", " Text(5, 0, '충청북도'),\n", " Text(6, 0, '경상북도'),\n", " Text(7, 0, '전라남도'),\n", " Text(8, 0, '제주특별자치도'),\n", " Text(9, 0, '경상남도'),\n", " Text(10, 0, '울산광역시'),\n", " Text(11, 0, '세종특별자치시'),\n", " Text(12, 0, '광주광역시'),\n", " Text(13, 0, '서울특별시'),\n", " Text(14, 0, '대구광역시'),\n", " Text(15, 0, '대전광역시'),\n", " Text(16, 0, '충청남도')])" ] }, "execution_count": 156, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAFACAYAAABHvzzrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtPUlEQVR4nO3defxcVX3/8dc7CZsssiUY2YIWF3DBNsUdFUFQVKg/rVCtsaC44FJ3sFpqbRRrtVoFK1oVFcW4VdxFZLFWhaAoBEQQQoiJJEDYSggkfH5/nDN8byYz37kzc+a73Lyfj8c8ZubOvZ/vuXPv/XzvnHvOuYoIzMysWWZMdgHMzKw8J3czswZycjczayAndzOzBnJyNzNrICd3M7MGmjXZBQDYddddY968eZNdDDOzaeWSSy65KSJmd/qsVnKXtBS4A9gArI+I+ZJ2Br4CzAOWAn8dEWvy/CcBx+X53xARPxwv/rx581i8eHGtlTEzs0TS9d0+66da5hkRcUBEzM/vTwTOjYh9gXPzeyTtBxwN7A8cDpwmaeZAJTczs4EMU+d+JHBGfn0GcFRl+lkRsS4irgOuAQ4c4u+YmVmf6ib3AH4k6RJJx+dpu0XESoD8PCdP3x24obLs8jzNzMwmSN0Lqk+OiBWS5gDnSPrdOPOqw7RNBrDJ/ySOB9hrr71qFsPMzOqodeYeESvy8yrgm6RqlhslzQXIz6vy7MuBPSuL7wGs6BDz9IiYHxHzZ8/ueLHXzMwG1DO5S9pW0vat18CzgMuBs4EFebYFwLfy67OBoyVtJWkfYF/gotIFNzOz7upUy+wGfFNSa/4vRcQPJF0MLJJ0HLAMeBFARCyRtAi4AlgPnBARG0ZSejMz66hnco+Ia4HHdph+M/DMLsssBBYOXTozMxvIlOihamabh3knfnfgZZeeckTBkjSfx5YxM2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjcza6DayV3STEm/lvSd/H5nSedIujo/71SZ9yRJ10i6StJhoyi4mZl118+Z+xuBKyvvTwTOjYh9gXPzeyTtBxwN7A8cDpwmaWaZ4pqZWR21krukPYAjgE9XJh8JnJFfnwEcVZl+VkSsi4jrgGuAA4uU1szMaql75v4R4O3AfZVpu0XESoD8PCdP3x24oTLf8jxtI5KOl7RY0uLVq1f3W24zMxtHz+Qu6bnAqoi4pGZMdZgWm0yIOD0i5kfE/NmzZ9cMbWZmdcyqMc+TgedLeg6wNbCDpC8CN0qaGxErJc0FVuX5lwN7VpbfA1hRstBmZja+nmfuEXFSROwREfNIF0p/EhEvBc4GFuTZFgDfyq/PBo6WtJWkfYB9gYuKl9zMzLqqc+bezSnAIknHAcuAFwFExBJJi4ArgPXACRGxYeiSmplZbX0l94g4Hzg/v74ZeGaX+RYCC4csm5mZDcg9VM3MGsjJ3cysgZzczcwayMndzKyBnNzNzBrIyd3MrIGc3M3MGsjJ3cysgZzczcwayMndzKyBnNzNzBrIyd3MrIGGGRXSRmzeid8daLmlpxxRuCRmNt34zN3MrIGc3M3MGsjJ3cysgZzczcwayMndzKyBnNzNzBrIyd3MrIGc3M3MGsjJ3cysgZzczcwayMndzKyBnNzNzBrIyd3MrIGc3M3MGsjJ3cysgZzczcwayMndzKyBnNzNzBrIyd3MrIGc3M3MGqhncpe0taSLJP1G0hJJ78nTd5Z0jqSr8/NOlWVOknSNpKskHTbKFTAzs03VOXNfBxwcEY8FDgAOl/QE4ETg3IjYFzg3v0fSfsDRwP7A4cBpkmaOoOxmZtZFz+QeyZ357Rb5EcCRwBl5+hnAUfn1kcBZEbEuIq4DrgEOLFloMzMbX606d0kzJV0KrALOiYhfArtFxEqA/Dwnz747cENl8eV5mpmZTZBayT0iNkTEAcAewIGSHjXO7OoUYpOZpOMlLZa0ePXq1bUKa2Zm9fTVWiYibgXOJ9Wl3yhpLkB+XpVnWw7sWVlsD2BFh1inR8T8iJg/e/bs/ktuZmZd1WktM1vSjvn1NsAhwO+As4EFebYFwLfy67OBoyVtJWkfYF/gosLlNjOzccyqMc9c4Izc4mUGsCgiviPp58AiSccBy4AXAUTEEkmLgCuA9cAJEbFhNMU3M7NOeib3iPgt8LgO028GntllmYXAwqFLZ2ZmA3EPVTOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2ugnsld0p6SzpN0paQlkt6Yp+8s6RxJV+fnnSrLnCTpGklXSTpslCtgZmabqnPmvh54S0Q8EngCcIKk/YATgXMjYl/g3Pye/NnRwP7A4cBpkmaOovBmZtZZz+QeESsj4lf59R3AlcDuwJHAGXm2M4Cj8usjgbMiYl1EXAdcAxxYuNxmZjaOvurcJc0DHgf8EtgtIlZC+gcAzMmz7Q7cUFlseZ7WHut4SYslLV69evUARTczs25qJ3dJ2wFfB/4+Im4fb9YO02KTCRGnR8T8iJg/e/bsusUwM7MaaiV3SVuQEvuZEfGNPPlGSXPz53OBVXn6cmDPyuJ7ACvKFNfMzOqo01pGwH8BV0bEhysfnQ0syK8XAN+qTD9a0laS9gH2BS4qV2QzM+tlVo15ngz8LXCZpEvztHcCpwCLJB0HLANeBBARSyQtAq4gtbQ5ISI2lC64mZl11zO5R8T/0LkeHeCZXZZZCCwcolxmZjYE91A1M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNrICd3M7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNroFmTXYCpZN6J3x1ouaWnHFG4JGZmw/GZu5lZAzm5m5k1kJO7mVkD9Uzukj4jaZWkyyvTdpZ0jqSr8/NOlc9OknSNpKskHTaqgpuZWXd1ztw/BxzeNu1E4NyI2Bc4N79H0n7A0cD+eZnTJM0sVlozM6ulZ3KPiAuBW9omHwmckV+fARxVmX5WRKyLiOuAa4ADyxTVzMzqGrTOfbeIWAmQn+fk6bsDN1TmW56nmZnZBCp9QVUdpkXHGaXjJS2WtHj16tWFi2FmtnkbNLnfKGkuQH5elacvB/aszLcHsKJTgIg4PSLmR8T82bNnD1gMMzPrZNDkfjawIL9eAHyrMv1oSVtJ2gfYF7houCKamVm/eg4/IOnLwNOBXSUtB04GTgEWSToOWAa8CCAilkhaBFwBrAdOiIgNIyq7mZl10TO5R8QxXT56Zpf5FwILhymUmZkNxz1UzcwayMndzKyBnNzNzBrIyd3MrIGc3M3MGsjJ3cysgZzczcwayPdQNbNpZ9D7HcPmc89jn7mbmTWQz9w3Az7LMdv8+MzdzKyBfOZuVtCgv5L8C8lKc3I3s578T2v6cXK3CedrAGaj5zp3M7MGcnI3M2sgV8uY2WaryVWEPnM3M2sgJ3czswZycjczayDXuY+A2wSbbV6mYt29z9zNzBrIyd3MrIGc3M3MGsh17lbbVKxXNLPOnNzNpiBflLdhNSK5+0CwYfgXiTVRI5K7bZ6clM268wVVM7MGcnI3M2sgJ3czswZycjczayAndzOzBnJyNzNroJE1hZR0OPBRYCbw6Yg4ZVR/y8w6cx+QzddIztwlzQROBZ4N7AccI2m/UfwtMzPb1KiqZQ4EromIayPiHuAs4MgR/S0zM2ujiCgfVHohcHhEvCK//1vg8RHxuso8xwPH57cPB64qXpBkV+Amx9ns4pSM5TibZ5ySsUqWqWrviJjd6YNR1bmrw7SN/otExOnA6SP6+2MFkRZHxHzH2bziTMUyOc70ijNVy1TXqKpllgN7Vt7vAawY0d8yM7M2o0ruFwP7StpH0pbA0cDZI/pbZmbWZiTVMhGxXtLrgB+SmkJ+JiKWjOJv1VCq6sdxpleckrEcZ/OMUzLWyKug243kgqqZmU0u91A1M2sgJ3czswZycjcza6DNIrlLevhkl2FzUfK7LhGrVHkkbVMiTo7l/XEzNZHbfrO4oCrp9ojYYbLLUSXpvRHx7qkWa1glv+sSsUqVZ6qtVx9/6zraOhB2ExEPGXFZPttHWY4dZVkmy0Ru+0bcIFvSyyLi85X3746I91ZnqRlnIne+NwKlEnLPWKXWrdR3XSpWwW3/tIi4oFvcunFKlangvvjSOjEmqDzXlChLS8F9uthxX/L4GFYjztwl3RURDxjnfa3/lpL+oe7fjIiFPWKdExGHVt7/PiIeVnl/R0RsX+dvlYhVat1KfdelYhXc9lNtvYrti+P8jQMi4tKa8460PJK2joi7+1ym1D5d8rgvth8NqynJfW1EbDPO+xI/7/va+Tps1IHLVDJWl/i1163kd10iVqnyTLX16hG/70TYIcYrgLcBj4qIe4eMNVR5JP0l8MUSZSlVpkHjTEQuqqsR1TJ0+Ekl6dmM/QQa6qdQa+eTNMzOV/K/aLFYA6xbye+6RKxS5ekU55F9LD+KMm2ixL4o6e2kqrynFkjsQ5VH0pOArwPHFUzsJY7XQeOMNBf1oynJvZMPV14P3Cqo4M4nSYtKlKlUrILrVuS7LhirVHkuYexgvG+IOFCgTINsL0nHAGuB60gD+L0LWEkagnv5IOUYtDyS5gJrI+JWSbsA7wBeCBwbEd8fpiyDlmnUcbKSx0dtTU3uERGPbL2RdHudhSZg57uk9adId6masFgjXLeBvusRxipVnmivKx0wzkBlKri93kQ6zvcGdgJ+Bxzfb2IvVJ4/ApHXfytgKTA/Im7ppyyFyzTq477k8dGXxiT3vIGG/clTdOdrExHxgdYbSe+c4FjF1q3Qd10sVsnylFKgTEW2V0QcWCnTgcBfAz+T9B8R8a4JLs92pJwzj3RC8kLgUkmviIgf9RGnZJlKxgGmzv7YlAuq95HqulpfaETEzMrndS+qPYBNd77dgL53Pkn3AP/Uegv8Y0Rs1W+ZSsUqtW6lvutSsQpu+/uA9a23wIxJXq9i+2KH2I8kXcBcEhEvq7nMSMoj6eWkaouTIuKTfS5bap8uedwXOz6GFhHT/kEaVnijR9vntw8R++XALcCr+lzui8AXqo9By1Qy1rDrVvK7LhGrVHmAh7Y/JnO9Su6LXWLtDFwBPHGIGEXKAxwArAEOLLBepco06HE/slzU9zpM1B+azAdw+ZDLF9v5KjHvmAqxSq/bsN916VilylN4ew1cpsKJcNsCMYqUJ8eZOWx5RlCm0sd9seOj16MR1TKdSDorIo4uGO8A4LKI2FAo3kkR8f6pEGvYdSv5XQ8aS9L3I2LYi9RFjapM/WwvSQfVjRsRF46yPJL26vJ3l1U+2wAcFBFfHqQs/ZZpVHGmwv7Y5OS+UcefCf7bHXfiNrcDT46I7466PKNW8rseNJakeyJiywH/5kgS4DBlKkVpbJk6IkY/tkyrPrr13KqLngOsJl3zuAnYLqbYWFD9mgrbftq3lpF0MWMdByIiHt/2+eXAlvnDhzGOys7X7o/ArqQr6aLtIkkHS9n4okpVK/5/AK8Cxk1kks7rUqZNA0ccPE6codet8Hc9dCxtPCjWLEnX5tffBp5XmTUi4qHjFOeM8cpajQOMmwBLlanUvhgR+4zzN/rpmTx0eSJihqT3A38CLgC+HRF75vi3RcROklbWKU+pMhWOU2p/LGLaJ3fgo6SWJCcDn+rw+UOB59aMtRfwG+AxpI15ObA/6afidfnzniJik44Kkv6c1Mb4xsjjwEh6dY1wn65V8t5KrFvJ77pErJe3vd8iP68AXg88ndRp5AfjBSmVAEuWiUL7YjdKN66/QNI7IuL8GouULE9UHtVp/SpVplJxXt72ftBtX8ZEVe6P8gFclJ/vqEy7Kz+v7TPWqsrrW9rj9RFnB+DxwAPy+08Bf07lanm/MQt8T0OvW+HvulisvMzLgH/Pr+8b9nsm/XL4JfD0Ib7zgctUal/My3yGlHy2Ip3ULQLOJTX5nJD9h9TG/pvAZ0nj2twEvKAaj9R7tp+WSaWO12Lf9aj2x34fTThz72YLSaczVq9X1wxJXyL91x20m/gTgO+R6hbXSzoEuJnUdvbHA8R7JvDbiFg9SHkqhl63Lgb9rkvHugxYMOgflvQZ4ELgy6Szti8Cd+ZpgxqmTCX2xVURMYfUdnse8C/ADcAdwJER0c+wCsOW5zX5+QjgZ6Tv5gvANwaIVapMpeNUDbU/Dqvpd2K6rZ+ZJS0gXdRZAvwcuFHSya2P+wj1AVL72F2B9wMLgVuBnSPiBf2UKfshcIOkn0t60QDLl1y3bvr6rkcU60+kbvZ9kbQqv3wh6WzrD8BPgR3pPwGWKlOp7bVjfr4v0jWZl5OuG5wXEXdOZHki4hkR8Qzg/yqvhxlErch3NMJjY6BtX8xE/DwY9YNCP++Ba0kDKrXeP4h0hrMT/VVdrKi83p50pvR6UouAa0lNq2qXjdTWdgfgJcDvScl+5z6/o1LrNpWrZbZh7Od97Z/BwD35+db8fAhwI6nX5LD75qBlKrW9WutW/Y73JF30f9lE7z952U2qPYA1+Xldq8wTVaaS61Zi25d6TPtqGUnvAB4k6Q10vkDcz4WaXUgXVtKCEX+SdBMwm/7+g6+T9MCIuI00Et+twN3AV/PjIZLGbU3SZkZE3A6cKemrwCnAeUp3D7q1Zoyh163kd114u6UFItZKqg7L8BPSutVtkjYzx/mxpPnATyX9MTa+I9NElanUvrhJlVJE3CDpecA5ki6IiOtrxClVnm5em5+P72OZUmUayboV2B+HMu2TO+ks6ypSU6P/6fD5uj5i/Rx4NfARAEnPAbYGrga+1EecrwNnSzoLeAVwFqn+fSlpNMfv5fnqJrD7d7CIuAd4s6SPAJ8DjqoZo8S6lfyuh47VpX1667v6u8q0z/UIVSoBlixTkX0xIg7JL69qm35Z3ocWUu9WfEOXR9K9pH1+ltJ4SQLuzeX5cn6u2yy1SJlKxim47Ytociemje6AUnOZfUlVHnfnx97AMdH/4EFbAP8APAH4CfBvpI27S0T8az+xcrxNbqMnaSZwMfAvEdHzglSpdesSu+/vukSsLm2i745xmjb2iLc4Iua3TTuRdIegWvciLVWmUW0vSdtExNr8ektg74i4eiLKI6lT/XNExLK6MUqXqXCcovvjsBqX3CU9KyJ+JOn0iOjnJ15r+W2AJ5P+c/8iIm4asjwnRsQpko4CdoyIzw0Qo/1mza3pzyCND/KdmnGKrlsl7kDfdWX5uRGxcthYkg6LiB8OWo5KnIESYIc4D46IFcOUg8LbS8P15B3V/nNmRLxkMss0qnWbTE1M7hti/N6jdeN8OyKe13vOnnGG6oas8Ycy+CPpZ+7DgKuj5vgXpdatlGG/o0qcUtu+VHlKxSm2vSTdGxFb9J5zYsqT45W4x3Gp43VKHRvDmPZ17h3quSTpqXS4EBL9DYx0WJe/t2Wu9x6vTJ9lrD59Zm4/3SrDsZJeBzwDODciTutRjj8wNg7HfaTmq63u0ocCp5GS+3WSDoqIP/VcswHXTRt3r253Immdnk/qgfeqiFjfZd727TajbZtdQmodNB/4ZUSsal++Q4w8qci2H6Z53tDr1cEw+2J713pJaj8JqDOkxtDlkfSViHixpA9GxNskXQAcWfn8B+ThOCKi9ng/w5SpZJySx0cJ0/7MXQUHRmo7EMTGG+rNpIH8DyGNi/FXuQVLpzgnd5qe/YHUkeTTwCuBt0fEV3oVXtItEbGzpDURsVOe9mFgW+B1wMeB9RFxwqjWTdLTKsufk+dveT7pZ+3JwLuB70XE+8ZZn27bLfLyHyONp70raYC1JX3E2CTmeNu+UwJk04O0VgIssV4dyjTMvjheO+sHkdpipwKOc9G40P5ze0TsIGlFRDxY0tWk61LX5el3kC5sEhFnjlPuYmUqHKfY8VFETEB7y8l6AI8AHtLH/Lu3PfYhNdHandQZ6buks+SvAgsHLNOFwMH59XOAc2ou97v8vKYy7RfAw/LrhwG/nqh1A+7Nz8eQRvW7kHzjB+CJwP8Osd3OIv3Tg3Q/yzNGue1JF9C6PR5ffT/k/lh7vUa9LwKPJXX/nzNRxwZ5WAFyPxBSn41dKtP7GjO/1Hc0iu96lMdH7e9n1H9gMh+kM+NP9jH/bsDWlfczSE3y5pKaSz02T98PuHScOP9KGkdjuw6frQC2yK8fCCztUaZFwEmtRMXGnS2WV2JtSaXz1AjX7VGkhPcw0j0xV5EGXFpKvvkD6dfE9X1uq5mkJqJzgWuAB+XpDyL/Yxvltu8So68EWHK9Sm2vPM+pwLHA9vn9/sAy0m3kJuzYoHxyL7VPl/yuR3J8DLTvjfoPTMQD+Hzl8YbK9L8ALugjzn2kMUVuI9WP7pw3yuNJvUy3yvNtSRrdsVucu0mJ9xbgzW2f3cRYddg2wMoeZfo/0k+8taT69W0qn/2O3FM1HyRXjXLdSD9RX5bjfIjULvg/82dLGRskbVtgWZ/b8GPAd/LrW4FZ+fUsYPUEbPuhE2Dh9SqyL+Z51gKL8/54at43X9jnepTYf0on91LHa6k4Izs+Bnk0ZWyZF5PqsteShtVsuQ54cB9xbiNd0DkAeFeOt4bUU+1uUjMpSCPrjTcM7LqI2IM0VslrJH01t0uHdOb+yPx6P9LOM54NEXEoqZrhMaRONa124FeSLqqSn68c8bq9lTQGx/uBp5LqEd+YP7uedKZLLue46yVpZ0kzJO0o6UxS3euC/PHNpDpp8vMt44Qqte2PJf0Uv17SqaR2z2+OiL6GXC64XqX2RUhjucwHDgIeTjrBOL/+WhUvTymlylQqTrHjo4SmJPd7IuI9wOlt028jjQ9RV0TEOtJ/2atIP8vWk1o4XEs6UAH+Ms/Tzawc7CekYX73IQ0mBqn36ockPZ60E/TqgNSKdT0peQlo3SX+48DHJX2CdPOPj4943VqtPq4HnkUaMfFJedoi4COSDgM+CPS6SHwT6VfJ9aQzpIMj4ub82cXA3+bXL8nvuym17UskQCi3XqX2RcjHeURcHqnH6pnA/0qaV3elCpVnC0kvA7bJz9t3mW8iy1QyTsnjY3ij/mkwEQ/Gftb9BfCNts9u6yNOa5CfXUg/1Vo/144jXRhZSvrv/HvGGXSJtoGBSKPwrSH9x96GlODXkIaW3apHmda2vd+TtNM8Ob8/FPgw8KxRrxtprO2/AY7P7+fn5bYi1S2fSjpj/k963OyYdFb0cNLZ8qXAb8kXLElnOLeQfomsBvafqG1fef+2/F3M63NfLLVeRfbFHGNNh2mvAq6g5k2yC+0/PyZVMbYePyIl+NY2HLeKcoTHa6k4xY6PEo+RBp+oB7muLh/g15NuTNB69DPw/5oO074PvDK/fj3wHSp1u13ibFKXSkrAnx9g3b7bYdp/Ap/uM87Q60Y6A3xJa+fN074EvHbI7TeLdD3hMvKFLVJLhSOBuZO47ftKgIXXq8i+mOf9UZfpX6XmyJcly9NtGw6wXJEyFYwzkuNj0Me078SUfTQ/ryBdWKvqZyyX87tMF0BEfIx0gWxcETG7w+SPkH7u9SUijugw+T2ks/d+nN9leu11i4j7JJ3NxtV5HyVVPQ0sUmeO10r6BimhfjQi/kjqgdtLqW2/SRVJRHxS6UYrbyBVofVlyPU6v8v0vvbFPO+zunz0WtIZah3FyrPRwtJ2pJuiDKJUmYrEGdXxMagmdGLqdX/DeyNipaSXRx/jukjaKyKWSTqONP76RUMVdArK63Z5RPxywOXnA78ijYPeV/fxLtttB9LFrKXUGFZhVNu+7W/MJl3UHu/iZ68y9bVenWIOui92+45yvNZnG4CDIo/M2EfsoY8Njd0pqohSx+uwx0aOMfDxUUITkntrGFGR/mNuYOPu41dGxGP6Heej1Dgl040kxTg7haSZraQk6UrSBcLzImJ7STuSqiFuIrU0GW/4gdZ26zmsAinxbDKsQqltXzIBllivDjEH3hcrvS9bz604c0j1/utJ22u7fhKQpJ0j4hZJyyKi1z/Z6nL7kDqEXRARIWl1RMyW1LrwuA54bqSL5AORdG306I0+YNxxj408T5Hjo0h5p3tyr9I4gyKN91llnup4FucDT2PjZPHHiPiDpJOH2fkmg6Tz6DF+fEQcXCMRXk6qg/wdqS55DvnMRNJppAuKuwFfi4j/qFGuoYZVqMQZeNuPIgEWGC6i2L4o6f2kYQYuAL4dEXvm6WsiYieloWq37WPdHg18MSIeq/6GaH4i6aLqeuBzEfHG1pm7pPWklilbk65P9Dybl3QoqWniraRmpjdGxAZ1GCK7R5xex8ayiHh5nRPE0sfHMJpS574RSQuB70dE9SYQdf6L/Vfl9R9IF+WqPg+8lzRW+7RK7qSxbFqU3x/XYb6ug2YpDYC2Pemmxl8jtU65T7p/keeQeug9gnQTiDo7b6fBs55EapVwr6QP0UezsUG2fUTMGCcB3lZJgP0Ydr1K74tReVSn1SLpg8A/RhoK+VDSPWb79S5SR5+vAZdr4zGY7oiIh0nqp/33D0hNF7cl9RvYStKN9H8Xr9axIeCzpPvMVt1W+byrER0fg6t75XWqPoC3A0/Ir3cADiedbe3cNl+t+zLW/Jv3TvZ6F1iHtfn57+p+T6T7Si4lnZlsYKxb9lpSk7Gr8vutyPeJHSfW0MMqlNz2pAumbyA1V1xWmd5qJreSGq1vSqxXyX2RNAzGN0lJ622kXyAv6Hfd8va+nNR78zekKiXo716l1zPWauhrwFOAVW1luaE1re4+XHm/PSl51m4l1e37JHVCmt3PflTy+CjxaEInpvcBP5b0K9KIcl8hDadZ6wLYeCTtIOlcSe3f07Sty5J0cF6f50l6AmM96OqaAXyK9BO6dX/ILUhDmt6b39/DWK++bo4ADgaW5J+rv618didjHVy2Jx00nRTZ9pL+mnQ29ThS55MHSHpBPzEqSqxXpzIOui++BtiR1ETvOaSqgi/U/bsVtwL/TRprZW2MDaEsSdvn8u0gabyqna0jotXDczWpk9muku4aoDzQtu4RcUdEXJ7LNFvSnNZjvCBtn79Z0s6kjl4PHaBMpY6PoTUhua8ldTP/Ouln6tKocdu5XpSGC/giafS2+4aNN9kkvTW/PIfUiWYdqVfnPwwQbgOpadhr8vu7IuKxpLNnSHWKvRJsiWEVSm37UgkQyg0Xcb9h9sWIeEZEPIPUA7f1epDx6rcmDVW7hpTkq27N01vP3dxb+ee0PXB7nv+JA5RnPNuSqthWVp47Uqoz+ZOkqyS9kdT2/3vADyLiFwP+/RLHx/BG/dNg1A/STtt6/QTSDvO2/P4djPU221Aj1h6k/7YPJvWe+wowo8N8xap4JvB7av38XU7qRLOGVDdde91IQygsI1UpPJh0MM9grIfhT4Fnkqo3PtajPHdVXs8Cfkbu5JVjrAY+Qaq7PmTU2z4vs6a9fPRfLTP0eo1iX6TSA7eybmvy87pecSrLPJHUCqk1fS2pZ+f9j3FinEMaG30L0pntXIarlulYJUT6RbRt9dEjzp3A8aRfWfeSqp+26Pe7Lnl8lHiMNPhEPNo3MOnM607SBZYd6GMs7pwM7gHuIv38nFn57OGkcUcOYhrWuVcOotbzfFL9697AnzHWq3N9jzg3AFvm10tIZ6etnfe5+eC4jTzO/Dhxhh5WoeS2z8sPlQBLrdco9sUu63ZMfl4ALOixfPWf1i+Awzutb48YR5HOWH8NfLNtf2x9z3fVjdm+/SvT+6pzJ58kkP7pfCxv6/mVfarWsREFj48Sj5EGn4gHHcbEBj7HYDcw2A7Yi/Rf/DfA/zA2pO6HSW2TryPdOWbS173PdVtdfc6v30xqdbEH6Q4xJwMn94iza+X1P5GGxr29Mu0htF2I6hJn6GEVSm77vOxQCbDUepXcF3MyuYexfxb3dkuKPeKsrbx+NfCp9uk14xxO6hnbGv62ldxfkZ9PAE7ot0xt0/tN7u0nCaeTmjKKsbsn9Tw28rJFjo8Sj0a1c2+RNBfYK4brXbYlafTF3YHDYpp/UZIeEBF3tTqN5GmzSE3J5kfEmiFiXx4RjypQxrnAnRFR+0Jjlxh9bftKx6NZpDbYIp0RP2DQcnQo08DrNcy+qM632YuIWNZnGQ6PiB/k1w8ldULaQ9Jdw3xP1f1xgGVPiIhTO0zv64bb7W318zWOS4H3RZ+9drvEL3J89P13p3nOGql88ecnwD+T6uB+OMlFGpqkB0WlV6Sko0gDSw3aYmHaK5UARyknnBuAl0YaSnrYeGdGxEsGXPatpH3mt/10YuoS60kR8b+DLt8lZr+dmJ4aET9tm3Yo8LiI6Gd8oinFyb2HyhnvUGcok029x2G5PSJu1RDjsDTNMAlwFCTdHBG7FIrV19lt27L399RUHvem5nK1hymoE1NpTPhO9ia1qa/Gax9Urk6cTuXqGmeqcXKvkPRlNm07+zf5s6HOUCabNh6HpV0Ap0bEm+p0sd5cDJMAC/39k0gXT0+OiOsrXfVbNya5BTgyIh45ToyvRMSLJX0wIt4m6QJSa6llkbrE/4B0FyIi4qBx4pzH2LHxdDYeSfGDpM5fzyM1IXxvlxjt+2Br3J12UWcflHRO26SnkXoYd4rXbWTMYnGmGif3itzOFVKb6ZOAD0TEdvmzaX3mXpdqjMHTNKUSYOEyvYV0MXUxqWXFX1aS+12k7uuvJt3spWsnndY/KEkrIuLBkq4mNRu9Lk+/I8chIs4cJ077Lxgx1lb9kcCLSPcNfT3w8Yj4JD2U3tf6rY4ZdZzJ5uTeQeUgWhNjgz5tLsl9sztzL5UAC5fpYuA1EbFYaTCqo0idmOZobFCy1s2b+0nuvye1Vb9/3QZJZJK2It1OcBdSJ7JTIuLHkp6SXz+lRoz7k7uk5+X1u7nHYtXl28fbeSldxoaPiGNHHWeqaeTAYSMyS9I7W28i4n2TWZhBSDqeNATpDNKofp+Y5CJNVZuc8UxUUq/YPSIW59eLgXnAlkpDJUw4peFrbwNuBK4mNQ1cTWratw/QGj/916Sy1nFmjv1sUjvyp5NGd6zrqrb37+5j2VHEmVKc3OubATw6v552P3dyldNrSQNkBXBivlj8ocktmXVRHb/9blJv1W1J1YWTYXfgTcCDSNUwW5A6wc0h5ZF78nzr2bjs43mlpHeR1unFEbGknwJFxAckbRER97Z/JulYYL+IeGuHRUcSZ6pxcq/vnog4ZrILMYTXkkYDXAIg6SLSfSGd3KemOyXtGBG3kjqZrSb14nycpNGPS7Kp9a127i2SbgceSLpt4P7AJaQbkazoFEDSqaR/VMtIY9W8ilS185SI+PWA5bqZsTFbqi4DXjkJcaYMJ/cKSa17Hc6UtB+DDbA0Vc0m9WhsuZ40fCuSPknqFi/qn3XZaJ0LvFPSV0n34PxNh3nq7J9b5KZ+2+TnoS4UKt1N6DLSr7/ZpF8T3wI+IOlEUq/M/+6y+DrS/nUQaUjdXUn9SO7uMn+tInWZfgP1q4dKxpkynNw31uqkdB+pKdQmP9OmsfOB90h6e37/j6Qu7ZBuGvClySjUFFE0ARbyPuBC4O+BN0TEOo3d9KH14sH0riL8Gek6y+L8fBljVSjQ/43W7yRdcBRpoKxZpP3nQOA80iBn/9ZpwYh48/0rkDoIPgV4J3CxpGMi4tt9lgW6r/8q+tuOpeJMGW4tU1MD2rnvRRrKdC/SjrwCeE5EXDfugpsBST9m0zsU/T/Srex2kLQyIuZOQrlmkEY0vCO/b7XianWs2xYgIv5vgNj99uLcZJgASd8nDQB2epfF6sZ+JfDvwLPbe4rWWLZ1a8RNPgLurtvCrVScqcRn7vVd2HuWqSvSzZ4fR/qJL+BXEXFPj8U2CxFxSKfpyqfKk5HY89+9j41v6HFDnn5Xfu47qcP9Y9Us6rMsncZ/+T2dbyfYl4j4lKQNpOqafm/ft894oSchzpThM3ezLiR9IiJe03vO6UHSLhFxc+4gtSYi2tt3W4P4zN2sjaSdI92q74jJLkthb5e00Zgtkh5Fal9+Xr9NEW1qa8Jt9syKkfRo0oVBSK1BpjVJX5DUqlt/HmPr1lrXXwAvBn4u6YCJL6GNipO7bfYkfVBj9zk9lP7rfaeyvwHOzd3710TEFXm6SH0f3hURTyW1WnnTJJXRRsDJ3SzdkepipbveL2DsYmMTLkj9iXTf3K+SmsLOYayzziPIQwAAZzHWA9sawMndLN3I+L9J9ypdGxGtllGStL2kHVqPySrgEGYBf0cavfEa4JfAu/Jnu5KGEIDUQ3PaV0PZGCd3s9QV/t3AGjbtXXlrnt56nm4UEbeROhy9HtiPseR+C7mXMrAj/Q3aZVOck7tZSoBBqnNe0PbZnPyYnZ+nq88Cx5CGAGj1b1hC6qwF8Fd0HuLApik3hTTLIuLnkm5T5WbQ/YwvPkW1OmLdImkx8Bd5egCfAC5Uuo/u44GOnblsevKZu9nGg0Z9jrGz2SZ4R+X1z0hjwAAQEZcBzwYuBY4YYmRGm4LcQ9U2e9UzdUkPBS6IiD2m+3hC7STtQrpu8CbcQ7XxnNzN2kh6TET8tgnJPY9y2W5P0k01VlYnRsTnJ6RQNiGc3G2z1yUBQhrHe2l1wnRLgJLOqTlrRMSzRloYm1BO7rbZk3Re77mAlAAPHmlhzApxcjdrMEn3UrOnbURsOeLi2ARyU0jb7Em6g/oJcLr1Uv2zymsBV1em7Q6sJXVmsobxmbtt9iTtXX0LXE664TOk9t+/bH0YEddPYNGKa91RSdJTSLdW/OeI+PRkl8vKczt32+zlhP2niLg+IpYC38vTngJ8EtiQP5vWiT17sqTPkO51eqoTe3O5WsYsuVPS9aTxzj8v6QxScj8sIpZPbtEGJ2k5aciB1aQxdB5Nqpp5VERcO5lls9FytYwZIOkW4PnAE4FjgYcAh/R7w+apRtKBwBbAtsBjST1UjwCuBN4aEXVbCtk04+RuBki6LSIeWHn/MuBDwDua1pNT0mzgLcDfA2+JiFMnt0Q2Ck7uZqQWMxGxfdu0RwA/Ad4WEWd2XnL6knQE8IqI+KvJLouV5+RuRrpRdERc3mH6nwN7R8Q3J6FYZgNzcjczayA3hTQzayAndzOzBnJyNzNrICd3M7MGcnI3M2ug/w8HH1dqSzGn7QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 시도별 스타벅스 분포\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "a = list(set(data['시도명']))\n", "v1 = [len(df_스타벅스[df_스타벅스[\"시도명\"]==a[i]]) for i in range(len(a))]\n", "index = np.arange(len(a))\n", "plt.bar(a, v1)\n", "plt.xticks(index, a, fontsize=13,fontproperties=fontprob, rotation=90)" ] }, { "cell_type": "code", "execution_count": 151, "id": "d3890258", "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAD4CAYAAABv7qjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2EUlEQVR4nO3de7xVVb338c/XjUJCiAolirLNS2new45lGibeu3ke66RRcngUPU9q5SkjtdQ6pXT0UdM8Hq3Ex3umWV5CxSRPXkrQTE0tKswbCio3ARP8Pn+MsXAyWWtfYG3WWnv/3q/XfLHXnGOOOeZ8vfLXmHOM35BtQgghhN5knUY3IIQQQqi3CG4hhBB6nQhuIYQQep0IbiGEEHqdCG4hhBB6nX6NbkBfN3ToULe3tze6GSGE0DJmzJgx1/awjspEcGuw9vZ2pk+f3uhmhBBCy5D0dGdl4rVkCCGEXieCWwghhF4nglsIIYReJ4JbCCGEXieCWwghhF4nglsIIYReJ4JbCCGEXieCWwghhF4nJnE32KPPzad94q1r5VqzzjpkrVwnhBAaLXpuIYQQep2WDG6SJklaVNgmVynTJml2YftK4dhoSbMKv2dLGl3jWiuVDSGE0Pxa6rWkpGHAw/nnvPzvm8BHJP0R2Nn2G5IGAx8HvlI4vU3STrb/UId29APeAF6vUeRY25PX9DohhBBWT0sFN9tzJG1d+UnqeR4NTAROsP1GPrYOMKhQbgvgZOCDdW7S1rafrXOdIYQQ1lBLBTcA20slbQocBpwAbAVcAPyxUGYecDGApA2BO4DzgFckLQMEPNONy47M591l+4A1vQdJE4AJAG2DO1y1IYQQwmpoqW9uks7Irx+fBN4HfA7YDVgfeEzSU5LeXyg/CrgHGAa0Ac/b7gfs28E11pe0qaTdJB0JrAs8bbtfPQIbgO1LbI+yPapt/Q3qUWUIIYSCVuu5XQ/cCDxme3lh/1GSjiEFuock7QF8EdgTGA/cS+q5/U3SF4HnSvUuBaZIMuk72ivA08AfgOc7aM9MSdX2n2n7jG7eWwghhDppmeAm6XFgZOE3wNtIAzuWlYp/jRTQxttekvcdI+kiYDawXbGw7fYOrrs9cHOpfOXVZqXMk8BXbN/SrZsKIYTQI1omuNl+b/G3UnR7BJhk+6pq50jqJ+kLwL+QAqOAvwO/Iw1CKZYdB1xW4/JPA8evSftDCCGsPS0T3CokfZQUmEYCC4HTJX0XuA042farheLnA+8Hvgz8nhTcdgLOBQYC15aq/7Xt0aXrjQYm1/cu3rLjZhswPTKHhBBCXbXagJKtgJuAb9ne3Pb2trcBdiQNGvmv0imHAN+0/Rvbi2wvtH0v8E3SPLjVacPjpQnki0iB9rryfknbdVZfCCGE+mu1nttCYAmwvaRHgReB9YBtgXeSBoAU3QF8Q9L8wrEdgW8At1epf29JS0v71qEwqKT8enRNrc3ckrVEzskQQm/TUsHN9kuSdgeOA34ObEwa6fg8cANwUemUL+TtbNJEbpNGSt4KTCrVPZkefP0YQghh7WnK4CZpIvAe2+MkTQWuBP5K6olBClJvkua3Dbc9W9LYfHx0ruOmyt8FG5C+wbWRhvwXRzxuS5oM/gHSVIDTKym0JI0AnrG90rh/SQOBRcAI288V9p9Kyl4ybg0eQwghhNXU0G9uktolufSdqn+1srbvsT0gb28DTgRm2p5do/wnbQ+pbMAm+dD8Ku1Yn/Sa8o5c7nBgkqSXJc1l1dedFZX/c7CkxvEQQggN0BQDSmwPKmy1khGvIGk90qvJ8gCSamWHSloHGA4ssr24SrE9gddtn2N7se37Sb24O20PJY2wrKYdWGD7lc7aEUIIYe1piuC2Gs4BtgeulXRCzvt4eY2yc4B3kSZuzywekLRM0q3AAFbtfS2h89e2BwL982oFXSZpgqTpkqYvX7xKRzKEEMIaaubg9tk8zH50ZUeelH0JcCzwFPAz4OqcL/LITuqbBoyR1EbKF0nOF3kI8ADQLumQfJ1NgGOA/SXNAx6vUeengFnASd25scgtGUIIPauZg9tVtgeRghKS9idNxB4NfAjYlfQt7PeSPlw8UdJRkqZImpJ3XQfcBzxEGl15cLG87Tmk72w/lvQ08BfSBO8N8ve6VYb/54wmm+S2HCZpzzW94RBCCPXRlKMla9gNOBO4tpA0+WhJHyQFo80LZR8j3ZtJUwSWkAaSzCWl3xJwYbFy21PyUjpbA3Ntv1w4vIxCsmVJu5CynBxhe25O8XWjpI/b/m2d7jeEEMJqaorgll8VvoMUoHasVsb2WbnshyRtYPvWvP++vL9Y9gHSq0YkHQGMI637NgB4FribNNqy7FLgiHJ9pbbums8/2fYv8/VukzQeuFLSzl2/80i/FUIIPaHRryUrS8wsJL1yvIAqrwBLxpC+dZXNJ/XKVpB0PHAWabmbUaRe2bGk0Y8HrdIYe3xhusGKLZ9XmaLwKHCg7YtK594K7FBjNGYIIYS1qKE9N9tPk3pTK8mTuLtb182UlqYhjWa80PZthX0PS/oy8ISkAbbL6bY6u84ycq+wyrFOpzGEEELoeU3xWnI1fD5nJKmmf+Gb3B3A8ZJmAA+SeolbAd8C7uluYOsJzZBbcnVEPsoQQjNr9GvJbpF0HGm5m3+QBnkUt3WAQyqBLaffOgPYlJR9ZB5ppORPSQuWlkdYbivpdkkLJM3KoyE7a8/AnGFls7rcYAghhLpomfRbALYvrPZNLH8X+xMpeFXKVtJvrZ/nwa2fD40ifYcrtiPSb4UQQi/SFD237qbfqmF9Uu9sJZF+K4QQ+p6mCG51MhR4ucr+SL8VQgh9TDMHt1XSb9UiaTApQL3YQbFpRPqtEELoE5o5uK2UfqsTWwAv2n4DIv1WCCH0da0yFWCL3IsrGwgsJk0GJ5eZC3yGSL8VQgh9VlMEty6k3/p77sUVzxlEymyyVY0FS1si/VYIIYT6a3RwK6bfWkj6fnUv8FI9Ks/pt75KSrl1P+mV5HuA75Du/dyVGmOPB8ZXqWcE8Ez+WUm/9UDp3FslTbX9eq3AWE3klgwhhPrrNem3aoj0WyGE0Ac184CSergDmCBpX0mDJfWXtD2p59YU6bdCCCHUX6NfSwIg6VxggO1/g5WWt1kGbG17VqHsJ4HjSPPW5gIPSnoM+HZl+ZuCjwEjSUFOeXsTWA7cVqizHZiZM5lU9k0DLrZ9re1nJSGpvdSWgcAiYITtFQNOuqNVc0uGEMLqWhu5aZsiuJF6kJ32oiQdCFwGfA6YYntZTp31eWCqpB1t/6V02tG2J69muw7PIyNrifRbIYTQhJrlteTmlNZiq2GrXO6O/O2LnE7relJvbGSVc86XNLvKdk6pXJukeZWNNH9tHinJ8mxSj6+snUi/FUIITafhPbc8DWAv0pI0nbkc2B/4k6T7gAXAMFIguhz4dZVzvtjFntvyPGG70q5pwB95axK5q5yzIv1WnggeQgihCTQ8uJGSFg8Fjsm9qUuBz+ZjbcWCthcBn8iTrbcFBgOvkl491uo9TZJ0apX9L9jeq5O2nQQcX60tWTH91lc7qWsFSROACQBtg7uVljKEEEIXNENwO4U0KfqdwNdsHwkcCSsGlJBTW/28dF4bMIScLLk0t+xdthcA/wysV+O6ywt/G1gmqfzd73O2r8/1r9RzK6Tf2oU0qOUm2/d2fKv5YvYlwCUA/YdvU61HGEIIYQ00NLhJOpr0SvL9pCB0r6QZpXlp5KAxtHTuLsADeUmacr0Xd7BSd7EcwM22D6fKfLuSYcArhWtH+q0QQmhSDQtuOV3V+aQA8Vje92ngCknjbZd7apVg+J+FXUvz4A+AtwMftv0b28eSspJ0t01HABfVOLwBsKWkDYn0WyGE0NQa2XPbDDjY9rTKDts3SxpNGp24CtuXkr7JrULSzCr7ZgODqhQHuM/2/qX6rwaurlH/svxnXdNvhRBCqL+GBTfb366x/9Fa50g6Dvge+fVgFSulv7K9SY16xlKlZ5e/o/03aZBK2VzSiMq6pt+K3JIhhFB/zTLPrTvaSN/Hqm0frVP9g2pse9eh/hBCCD1MdgzWa6T+w7fx8CPPa3QzqlobKXJCCKG78sDDUR2VacWeW1WKD10hhBCyhgc3SXOLaa8kLZT0VD42NmcKqZQ9SNLSwrZE0iuS3gTOLtV7U6neeZIsabikEVXmrW0r6XZJCyTNyt/fKsdWKZ/3D8x1blbaf6qkyfV4PiGEELqv4cHN9lDbQyob8Glgfo2yv7Q9oLIBA4H/Ap4CTiuV/WSp3srgklXqzsmXbyetHrAJcDgps8nLkuYCf6jR/EicHEIITajhwQ1A0rp5/hik4PJiF875AGl17U8De+XUXNXKDZW0DjAcWJQTLZftCbxu+xzbi23fD1wA3Jknie9UoxntROLkEEJoOk0R3EjBpTIFYDugOGftw5KWSTpJ0taS/k3Sb4HJpJRcrwK/kvTvknaq8u1tDvCuKvWS672VNNKy3PtaQudTJVYkTu7SXb513QmSpkuavnxx1U5qCCGENdAswa3oTOAbkgaQFhf9dV5E9HbgHmAU8C1gO9vftf1+4ATScjhXARvXqHcaMCavQrAugO1+tg8hzVtrl3QIgKRNgGOA/XMGlMdr1FlMnNxlti+xPcr2qLb1N+jOqSGEELqg0bklv0/K7r8RMEzS/aQ0WkOBd/BWRn5sPwJsWq2enOVkWqHeo4DDCkWuI81f2zDX8aXS+XMkHQ5cnpMnDwXOAU6zbUkjgGdKbR/HaiZODiGE0LMavSrANNKaaQaWAa+RFgidA/wVqPSkRpIGjXTFXFJg65frvYH0inF+PvZ3Uo/wwuJJtqfkpXS2BubafrlweBnwXOVHJE4OIYTm1tDgZvtGWDFa8QTgKGAEKZj8lfS68D9tP00pa7+koaQguKHteVWqfyCXOwIYR3ptOQB4lpT4+MQq51wKHJHPq9pmSbsSiZNDCKGpNbrnVnEF6ZXhCaTvW+uRlsH5Aak3d+vqVCrpeNIioseSRlYuBd4DfId07+cWy9seD4yvUk/xtWRdEydHbskQQqi/ZhlQcgAw0faDeSj+PNt3kCZmf2wN6j0QuND2bbZftb3E9sPAl0mDSzpbw20VtpeVA1vhWLcTJ4cQQqi/Zum53QmcLmki8CdSu3YhDSj56RrUewdwvKQZwIOkVQO2Io22vMd2eeXtte7R5+bTPnHljmnkdAwhhDWzVoObJLl6puaxwFdIc9c2A5aThthfRMpAsgrbc0kDQ2qyfb6k+aTsJVuSvrm9QHrNeVRX22372c6uVSr/H10tG0IIof66/FpS0j9JKo4YbK8s4ClpaiUXo6T/nfNFVrY5kp7P+R+vrFLvVOBl0rexbUkptQaTsoLsUwmGxesVzp0m6TOF35bUXixje7LtvW1vDrzD9k7UWLNN0l15YveynHareGyW0kKq5XMelPTZ0r4PSZpVLhtCCGHt6E7PbV3gH50Vsv0j4EeV35KGAJcBWwBfqHHasbYnd6MtRYfnofkrkXQnsHv+uZwUNC8D/q1WRbb3XY3r9yNyS4YQQlPpzoCSgaSh910iaSNJ/w78mTRf7Vs1huwDnC9pdpXtnFK5tmKWf+BDpHlxs/P2ZqWg7f0KiZM3Jo3CnNFBe2dIWpS3+UqrE0zu5B4FjAT+1lG5EEIIa1d3em47U5prVpbnnk0g5YrcHbgG+ABpYvQ3JU0Cbga+Z7sYKL/YxZ7b8pzhv3K9aaRJ4NPyrqorr0ragTSQ5PpaFdt+X+mcu0npvjryftIUhhHAw52ULdY9gfScaBvcrbSUIYQQuqA7wW13YEdJ7wbuBYZUKfMqsIA0GnEGab7aH4E9bH9Q0nuBj5C+sRVNknRqlfpesL1XJ+06ibfSdLXVKHM+cI3tlbIUF77hbWD7tcL+McC7ScG5I58iZU45VdKttt/spDyQcksCl0Baibsr54QQQui6LgU3Se8APkp6xTjR9tA8cKOYZX9z0vwxgL3yth7ptd0X8qjFihMlXZDnhf1zLlfN8sLfBpbl3I9Fn7N9fW5ntQVFvwoMA7aT9APbj62oMCVkLpffHLia9Kpxefl4odx2pMnhewJnkAbETKpVPoQQwtrT1Z7bicCTpJ7Ko5IuI+VoLFpG+v5VdnSNOv9L0qc7u3DO9nGz7cPp5LUoKYitWFtN0jGk7P57AnsDv5T0sRrtRNKOwC2knt4+wFWSxpYnZ0vaiLQCwQW2H8mZUH4n6dXcKwshhNBAnQa3vAzMicDBtmdKOoPUs/mXUtEXKt/NJO1EGpW4Aynj/1xScPyB7cqq1j+kSqqrLrTnCNL8t2o2ALaUtDiX2QE4wPaLwPV55OavgINLdfYn9TpPBL5m+7K8YsHPgd9I2rtQdhDptexDwCkAtp+R9CFgiqTp3bmfSL8VQgj115We29HAV2xPBbB9lqRXqDH8XdIewBTg68A3ST2poaSExPdL+kAhwCFpNjCoxrXvs71/cYftq0nBtdq1K9/QlpMGePyr7YWFcy+VdDOr9gBHkubV7WH7r7nsQkn7A3vbXlLJF2l7kdKSOvcVJ6Tb/oukHXJuyQ/VuJ8QQghrQafBzfYnq+y7pDxZuuATwAO2i5lFXgTOlfS/gNHAiuBme5NqlUgaS/qmVd4/jhqTsEk9xOV5uZrvVKvX9uwqE73/RF4NoLR/GamnV95fdd22yC0ZQgjNoSfSb/0CODb3bm4kfd/amPQacxc6mETdDW3U7u3tTfoe1hKq5ZZcXZGTMoQQktVeFcD2rMpoQ9tjKt/bbN8PjCEFmbtJS8XcCfwT6RXfo+W6JG0p6VJJf83pumaTvoHdJK2yfswNpOC2ve1BlY00ifujtq/Kdd5UnPCdN0saThr8Um7DtpJul7Qgp9oaVzg2AhiZV/wunjMw17lZqbrRFFYGDyGEsHb1SOJk2zOAz3elrKQ20mTpnwC72345B7TdSbko+7PyK8aNSN/UOsyWUn6dqrS8TWVF7o1Kx9YHbietzn0oacL6TTlDiqn9fwIqzy/Sb4UQQhNphvXcBgLDgZ/kb2U4+R0wnTSZuugAUs9r465ULmmopHXyNRbZXlyl2J7A67bPyevJ3Q9cANxpeyhpsEk17cAC26/UOB5CCKEBGr6em+0Fkk4Afi7pIeBZUm9tFGn9tcMqZfOQ/eOAR4DJkg7Mgz4q7s5vMbe0PSvvmwNsQ1pxoDjpvDK68nbgYlbtfS2h8+dzINBf0rBSOrEQQggN1Aw9N2xfROoFnUEakHIlcKjt3SpD8/Pry4uB10gJk18hvTocUqhqH9sqBLaiaaTVt9tIKxxgu5/tQ4AHgPY8pw9Jm5Amf++fEzQ/XqPpnyKtO3dSd+5X0gRJ0yVNX754fucnhBBC6JaG9txyT22L0u4hwGLgH4WxJG3AUlKQ+ZjtN/Jk7tOBn5GyiRTrPYpCjw+4LtexIbAp8KViedtzJB0OXJ7Tew0FzgFOs+08oOSZ0jXGAZuQRoA+KOmmWlMEyiK3ZAgh9KyGBjfbu5X3Sfo9cJbta0v7xwB3216ez11GSlhc7R4eI92bSaMrKwNJ5pLShok0eKTYlimSNiWtYDC38v0vWwYUF2rdBTgXOML2XElfAG6U9HHbv+36EwghhNATGv7NTdJACoEju1jSxaRvb1fZPqqSIUXSucAltp+AFUFuJbYfIL1qrKTrGkda8mYA6Zve3aRUW2WXkidzrzoDYUV7d83nn2z7l/l6t0kaD1wpaecu33wIIYQe0fDglpeaGVLtmNIyOO2l3YeScj4+Udp/BaUgmRMaf5WU6eR+0qvN95CmFvQj9b6KbRlPlXyXpdeSjwIH5gBaPPdWSVNz+q1qt1NV5JYMIYT6a3hwy4mIFwLPU32x0ap5JMtsn1Fl94HAhbZvK+x7WNKXgSckDbBdXkKns+ssI/cKqxyL9FshhNAEmmK0ZNaf9NqwvH2iStm7JC2rspUD3B3ABEn7Shosqb+k7Uk9t3u6G9hCCCG0BhUS2/dKeVTjeGBLUrB8AbgVmGR7XuNalvQfvo2HH3leo5tRU+SrDCE0G0kzbI/qqEwz9dy6RNJtkpbmbZGkxZJ+Wji+rJT1/zbSquC72h5meyfbXwd+L2l04bzZxd+la46WNKv+dxNCCKEntFxws32w7QF5GwTcR1q7rZaNgH9QY/Xt1SWpX06avLTGNq6e1wshhNB1DR9QsiYkjST1yo6V9BTwTtJk7aKPkILbYFJWk3rb2vazPVBvCCGE1dRyPbcKSeuSRlJOtj3T9rttDyGtGFAscwwpv+SFVaqpDEwpL1lTzchc9vY6tD3Sb4UQQg9qyeAmaXNSrsh1gBMl7VFZs42Ve27nk3qnuwLbSrqwlNFk35xfsjw/bn1Jm0raTdKRpFyUT+eyB6xp+21fYnuU7VFt62+wptWFEEIoaanglgPOxcCTpITFY2y/ZvsB20MKPbfBkn4GfJiUi3I+cBDwLuCWGtUvBaZIWkKac/cbUn7JVVKElcys8c3ttDW83RBCCKup1b65LQLWAw6yfU8H5ZaQFkD9bGX9trwkzcG1XkHabq9VWZ4bd3Op/DJSjspKmSeBr9iuFTxDCCGsJS0V3GwvIKfHkrQvcDywHfB2Us7Ie4H9gFm2z83ldgZOJq3svTHwsqQHgW8AM4r15xGOl9W4/NP5eiGEEJpcSwW3Ckn7AdcAJ5CykCwkTdI+EfgBeeXsnBNyGjAJ+DJpVYChwOeA7wO/yucW/dr26NL1RgOT638nkVsyhBB6QksGN+Bg4AbbxbyTT0o6jrQW3LbAH0mreb9k+6xCueeBSZIm5OPlFQk6JelxYGRpdxtwnaRyypfdKysYhBBCWDvWWnCTJNcv19cU4CpJ04A7Sb2vdlLPbRbw51zud8BQSV8lre5d6bl9HhgGVFt7be+8YGnROqSgCIDt99bpPnj0ufm0T7x1jeqIFFkhhLCybo2WVF7LRVK7pEX572mVbBySDiqNGFwi6RVJbwJnV6lvaiGNVnm7vlCuXdKKddts307qcf07KUPJ06QRlAOBvW2/kcs9D4wmrZb9a2A26bvcWcCetmcXrnEX8EPgTWBRIQvKAFJgG9edZxVCCKFxOuy5SdqRtA6aSatRD85L1FSVF+8cUDh/HeDbwD8DtYbGH2t7cveaDcCrpNW1p+bfXwNOtf28pDtJA0ggTQ0YCFxm+99y3sm/2X601PZ9u3phSVuTeoe1lrg5yPbdXb6TEEIIddVhcMsBYBCApL2Ay20v6cpinJI+AJxHyu34AduLahQ9X9JZVfZfZfvfC7/b8iTtikHAVaTeGKQeV6Xd+5XaMoPSyMgqx9+dfy4n9WhvsD2u1jnA8tyrCyGE0GS6883tA0CHvZHco9mP9ApvCHA58EngV5IuJ30fe7T07e2LXey5Lc+TtCvXmkYaNDIt76r6PU/SDsBWwPXVjgPYfl/pnLtJ8+RCCCG0oC59c8vf2sYDP8/fwh6vUmZnUkAYBXwL2M72d22/nzRkfytST2vj0qmTJM2ssv1PF5p2EinjyC2smjC54nzgmpylpNjeygKnA0v7x5B6cdd04fqrJXJLhhBCz+pqz+1zpOD0Kdufyt+tHisWsP0IsGm1k21P460eVtE/kzKOVLO88LeBZVVGMX7O9vUAVYbgk0dJDgO2k/QD2yvabHuVe885K68G/la6fjVtVdpT0eF3RNuXAJdAWqy0k+uEEELopk6Dm6T3AOcCY4DJksaS8i4WjezgP/Rlc0k9rbFduDbAzbYPpzBQpYZhFJa0kXQMaUWAPYG9gV9K+hg11nXLg2duIfX09iFNNRhre5VBI7ZnsnLqraXAqGLwDCGE0DidjZZ8H+k/+BNt/1rSZ0gZQSaUij5dHlwhaShpqZkNbc+rUv2x3W2spCOAi2oc3gDYUtLiXGYH4ADbLwLXSxpCykhycKnO/qTsJScCX7N9maTvAz8HfiNp7+62M4QQQmN11nMbCZxk+woA27/NPZy6rCYgaTZ5NGYV99nev7gjZyS5ulrhwjy45aSVuf/V9sLCuZdKuplVe4AjSem69rD911x2oaT9SXPmujQ6NIQQQvPobCrAjVX2/T1/c1tjtjeptj+/+lylZ5cni/83aY5b2VzSiMqXge/UuN7scttt/wk4okrZZaSeXrkN1aY0GHigShB8p+3XqrWlInJLhhBC/bVibsk2avf29iaNyOwxtmtOYg8hhNAcVL90j2tfJR1YHXNWrnX9h2/j4Ueet1rnRk7JEEJfJGmG7VEdlWm1lbifKuSsXERKCfa1wvFlXXllKmlWXsam8nt28Xep7GhJs9as5SGEENamlgputt+dkxm/DdiMlNtxlcnekr5TSsL8D0lX1qsdkvpJcilJdHEbV69rhRBC6L6WCm4lxwF/Iq0KsBLbp9geVNmA7/ZQG7Yurh5Q2Cb30PVCCCF0QSsOKEHSHqRVBr5JWqng5XyoLR/flJWzpVTNnNINI/NUg7tsH7CGdYUQQuhhLRfcJB0MXAc8BZwCPFJJpVWY6/Z/SAuSPlQ4dVqpqrvzeJSDSvWvT0r6vAmwI2ktt6dtt9fxHiaQJ8K3DR5Wr2pDCCFkLRPccm/su8CnSYmZvwccClwh6VLbXy+d8qtOlqzZJ+e8rKTPmpLzU75OSuP1NPAHCitwVzGzxgTvM22fUeukyC0ZQgg9q2WCG7AF8AKwZU6pBXCDpF8D269JxR31yiRtD9xcKr+MlXNLPgl8xfYta9KOEEII9dEyA0psP5B7Z0slTSzsn2u75tpreWTjxpJG5aVmtqtRblweAbnSRlre52N1v6EQQgg9pmWCW8GGwJk1jj0JvEF6tXiYpIXAS8DvSCsb7A78o4O6f21bxY20QkAIIYQW0kqvJTtle4f857fzVtWaJEKW9Dgp2XJRG3BdlTXldrf9REf1RW7JEEKov5YNboWRkWUTbP94Navdu8q6dOtQGFRi+72rWXcIIYS1pKVzS/YGa5JbsidF3soQQrPqdbklASTdVkhztUjSYkk/LRxfKb+kpHfkwSFDS/WslF8y75taHKxS2D9W0vS630wIIYQe0XKvJW2XV9KeSlqctJaNSINI5nXxEsdJOqxKHa+UrtuPtwavVHNspOEKIYTGaLngViRpJLAXcKykp4B3klNwFXyEFNwGUwpQNZxt+7zSdcYCX6pRfmvbz3aj2SGEEHpYy72WrJC0LnA1MNn2zLxiwBBgeanMMcAc4MIq1dyVX2NuVtg3qbSiwCLghz13JyGEEOqtJYObpM1JuSLXAU6UtIekeZLmsXLP7XxS73RXYFtJF+bXiRX72u5n+zkA22Ns9y+uKJC3AZ19vOxm+ydImi5p+vLF8+tVbQghhKylgpukTSVdTJqsPQsYY/u1nL1kSKHnNljSz4APAx+zPZ+UIPldQL1TZM2ssabbabVOsH2J7VG2R7Wtv0GdmxNCCKHVvrktAtYDDuoo5RawBLgH+KztxQC25wAHl15BAiDpUuBzpd2VZ1OeT/cL25+O/JIhhNC8Wiq42V4AjAeQtC9wPLAd8HbgWeBeYD9glu1zc7mdgZNJqbc2Bl6W9CDwDWBGrvdo4OjitSSdDQyxfVTP31kIIYR6aqngViFpP+Aa4ATgDmAhsCVwIvADYKdcbgTp29wk4MvAXGAoqZf2feBX+dxKvfOAAflnZY24sfn3X3oiO0mk3wohhPprqW9uBQcDN9i+Oq8K8LrtJ4HjgG3zBjAKeMn2Wbaft/2P/O8k0rSAlQaJ5O92A/LWL28DgI8C/SvlJD1eZUTlSFJ+yUWlreoqBCGEEHpOS/bcgCnAVZKmAXeSel/tpJ7bLODPudzvgKGSvgpcyVs9t88Dw4Dfrs7FI79kCCE0t5bNLSlpf+ALpG9ug4EXgfuAb9t+vlBuR2AihW9upKD2PduPru12l9U7t2TkhAwh9HZdyS3Zkj03SZNIga3ip7bHlcq0Ac8Vdp1t++x8bDRpde32QvmpwFTbZ5XqGQt8qZ7z3EIIIfSslgpukobxVh7JefnfN4GPSPojsLPtNyQNBj4OfKVwepuknWz/oYNLRF7JEELoBVoquNmeI2nryk/SgJijSa8dT7D9Rj62DjCoUG4L0nSAD3ZyicgrGUIIvUBLBTcA20slbQocRpoKsBVwAfDHQpl5wMUAkjYkTRc4D3glL3Iq4Jkq1U+S9B+lff2Ax+p5D5ImABMA2gYPq2fVIYQQaLGpAJLOyK8fnwTeR5qvthuwPvCYpKckvb9QfhQpU8kwUs7J5233A/Yt17228krma0X6rRBC6EEtFdyA64HDgQ1tH2n7ftsP5ywiw4CxwIycSPka4EbS5O3tSPPU/ibps3VsT7fzSoYQQuh5LfNaUtLjpInSld8AbyMN7Cjnf/waKRXXeNtL8r5jJF0EzCYFu0o9kVcyhBB6mZYJbuWJ00rR7RFgku2rqp0jqZ+kLwD/QgqMAv5Omtw9MdcbeSVDCKGXaZngViHpo6TANJKUmeR0Sd8FbgNOtv1qofj5wPtJryZ/TwpuOwHnAgOBawv1zmMt55WEyC0ZQgg9oaW+uUnaCrgJ+JbtzW1vb3sbYEfSN7f/Kp1yCPBN27+xvcj2Qtv3At8kzYNbIfJKhhBC79FqPbeFpLXatpf0KCnl1nqkRMnvBMoTtO8AviFpfuHYjqTlbm5fnQbUuwf36HPzaZ94az2r7FGR3iuE0ApaKrjZfknS7qTs/z8n5YpcCjwP3ABcVDrlC3k7mzSR26SUXLeSlsHpyjWnAlt3WjCEEELTaPhrSUkjJf1M0quS/izpS6XjyyS1578HAr8BPgO8C/hv2++1vR8p4/8dhfNuAuYApwPbkzKWjAAOBS6jlDpL0raSbpe0QNIsSeMKx0ZIWiXDtKSBklxe3VvSqZImr87zCCGEsOYa2nOTtB5pIMjtpGVoRgI3Slpq++JyeduvkZasKdYhV1nawPYnS+UGkF5pzifliyweWz+34UJS8NsZuEnSObyV5quayvNbUuN4CCGEBmh0z203UkA7KQ/2eAw4k1XnnSFpuKS5eZsj6TlJb1Il20jpvKGS1gGGA4tsL65SbE/gddvn2F5s+35SSq87bQ8lr+xdRTuwwPYrNY6HEEJogEYHN5F6RsWe15tUaZftF2wPzdsw0re0vwDTOrnGHNIrzO2AmStdPL3yvJU0BaDc+1pC5z3bA4H+ebWCLpM0QdJ0SdOXL57fnVNDCCF0QaOD20OkwSBn5u9X2wFfB6pOyq7IOSMnA0cB+0haCvy4k2tNA8bkdd7WBcjD/Q8BHgDaJR2S698EOAbYP89/e7xGnZ8irfx9UifXXknklgwhhJ7V0OBm+3XgYNKAj+dJ399+DPygWnlJ60o6kTRw5Le53Gt5Ptr4QrmjJE2RNCXvuo60SvdDpNGVB5faMYeUs/LHkp4m9QivBTawPQRYZfh/HnCyCfAh4DBJe67GIwghhNADGj4VwPZfSBOlOyTpUOAcUpAaZfuvOVvJxZLOZ+XRj4+R7s2kKQKVgSRzSem3RBo8UmzHlLyUztbAXNsvFw4vo7Cqt6RdSFlOjrA9N6f4ulHSx23/tjv3H0IIof4aHtwAJO1AWmx0QgfF7gR2J6XN6g9g+5b8zQxgRbZ/2w+QXjUi6QhgHGndtwHAs8DdwIlVrnEpcEQ+r1Zbd83nn2z7l/l6t0kaD1wpaefO7ziEEEJPaorgRhrev3+NYz8gjUhcBCySdDxplOI4gMo0gGrBKJf9KnAscD/pleR7gO+Q7v3cYnnb4ym83izUM4K3Fjd9FDgwB9DiubdKmmr79VqBsZrILRlCCPXXLMGtJttf7GK5K4ErS7sPBC60fVth38OSvgw8IWmA7aXdbM8ycq+wyrHXq+0PIYSwdjVTcBspqbx+WsUE28XRkJ8vZOwv6297ef77DuB4STOAB0nf5bYCvgXc093A1hNaLbdkCH1R5FRtPU0R3GxPo7D4ZydlTyel1OpK2fNz0uTTgC1J39xeIOWW7PJabbaf7Wr7cvn/6GrZEEII9dfoeW49StJtwMWkNd02JA1G+ZPtr9ueV8xbWeN85X/HSpq2FpocQgihDnp1cLN9cGGNtkGkaQQPl8tJOrKwBttCSfMkLQfG1Kpb0pWS3pC0tMp2Vw/eVgghhE706uBWJGkksBdpUdGncuaRNgDbl9selLe3k/JdLmfV9eHKzigEz+LWYb7LEEIIPaspvrn1NEnrAlcDk23PBN6d99cawPJR4GHbL/ZQeyYAEwDaBncrLWUIIYQu6PU9N0mbk/JKrgOcKGmP/NpxHrnnVirfnzRg5dzysXqJ3JIhhNCzem1wk7SppIuBJ0nJjcfYfs32A7aH5JyRy6uceiYwy/a1XbjMaTW+uc3s/NQQQgg9pdcGN2ARsB5wkO3P5oVOa5LUT9J5wH6kJModsj3W9ro5afPpwC2Fb25br3nzQwghrK5e+83N9gJyKi1J+wLHk9Z0ezspv+S9pED2nKSPkJIyPwN8OBYfDSGE1tZrg1uFpP2Aa4ATSBlLFpImdJ9Iylu5E2n+23ds/3Rtty9yS4YQQv31+uBGWrvtBttXF/Y9Kek4YDGwre2bu1qZpJOBk8u70yEtKu0/3/Ypq9PoEEIIq68vBLcpwFU5w8idpJ5bO6nnNgv4c3cqs/1d4Lv1atzazC0Z+fFCCH1Frw5ukuYCg0g9q/9HGvq/BJgJ/AOYYfuNXHY9UtA6jJSD8s/ASbbvt32lpCsktduetfbvJIQQQnf05tGS2B6aRy/2J42cfAE4yvbOpOTJSwrFTwb+CdjN9ibABcBtkoZUqzvSb4UQQvPq1cGtZB/SwJFa7wA/AFxbGSlp+yfAm6QRlrVE+q0QQmhCfSK4SXo7cAlpROSCwqHP55UBTgbuBo6StL2kwZK+SJrk/VgDmhxCCGEN9OpvbgCS3gVcT0qCfE7p8P+zPS6XayM9j58AQ0irB4yxvbAH2hS5JUMIoQf12p6bpJGS/i/wEHAP8C+236xR9lDgX4HZpG9t/wncD3xW0o8kva/GZVYr/VbklgwhhJ7Vm3tuw4F3APvYXmUNt5IhwND890jgU8CXgd8DLwFPlE+wPRYYCyBpIjDK9mH1aHgIIYQ102uDm+0HgAckrS/pNNIQ/02BN0hTAS6xfXouexmApA2A95HyUV4h6WekFF0hhBBaSK8NbgVXkOa6HQH8kXTPewE/kjTE9vcLZV8k5aB8DcD2oZUDktwTjYv0WyGEUH+99ptbwb7A6bYftb3c9uu2pwI/JE0PKPsf2++tsv98YIGkkyUtKm7AN4CDy/slfafnbiuEEEItfaHndjvw7fxd7I+kydwfBI4mDRwpe6SDXtpd9U6/FUIIof5k98jbtqYh6W2kwSGHAlsAr5NSa/2olEy5IfoP38bDjzyv0c1oKZEjM4S+TdIM26M6KtMUryUlzZW0SkMlfUnStaV9b5dkSVuU9s+UNLrw+yZJ80gpt04CtiGNnvwn4EjgqtL520q6XdICSbMkjSscG1GtNydpYG7LZqX9p0qa3LW7DyGEUG9NEdy6aSNS5pA5HRWy/UnbQyobsEk+NL9cVtL6pNeXd+RyhwOTJL2cky//ocZlKq91l9Q4HkIIoQGa6ZvbnZKWl/YNAG4p7TsAWAZsTFpRu0OShgKvkOa9LbK9WNJGpWJ7Aq/brmQwuV/SBcAOtj8jaQRple6ydmBBrNwdQgjNpZl6bnvlLP4rNmBisYCk/sBxwCPAZEnl4Hx3fk3YXtg3B3gXKQHySplDcl7JW0lBtNz7WkLnwf9AoL+kbuXQkjRB0nRJ05cvXqUjGUIIYQ01U3C7T9K84gZ8r3Iw5368mDQH7UOk3thNpSVp9rGtGmuuTQPG5HrWBbDdz/YhwANAu6RD8rU2AY4B9s/teLxGmz9FWvD0pO7caKTfCiGEntUUryVzL60mSQOB20jZRT5m+w1JRwCnAz+jNF9N0lGkjCQV15EWKt2QlKXkS6Xrz5F0OHC5pKWkVFznAKfZdrXXknnAySbALsCDkm6yfW/X7zqEEEJPaYrg1hnbr0n6NnC37eV53zLg1CqvJiEtU9MPMHAD6RXjfGAu8HfSytwXlq4xRdKmwNbAXNsvFw4vA56r/JC0C3AucITtuZK+ANwo6eO2f1uPew4hhLD6GhrcJN0B7F3avS5pkdDy4JJDbS+XdC4pL+QTsCLIraSSVzJf4whgHLAV6dvas6S1206s0qRLSWm6kFSrzbvm80+2/ct8vdskjQeulLRzx3cdQgihpzXdJO48r+0x2/9R4/gsYJztaaX9pwFX2/5zYd/xwFeBY0lL2CwF3gN8B+hne/8utmkE8Ex6Q6l+pBUAHqhSrr/t1yWdCmxdWSuuI6NGjfL06dO70owQQgh0bRJ3S7yW7ArbZ1TZfSBwoe3bCvselvRl4AlJA2wv7eZ1lpF7hVWOvd6dukIIIfSMZhot2R135WH85a0c4O4AJkjaV9JgSf0lbU/qud3T3cAWQgihNTTda8mOSHqKtJioSd/k3gacYvusfHwZ6XXgrMI544DxwJakb24vkHJMjrV9S6HcVGBqpa7C/rHAlzrrAq+ueuSWjFyLIYS+pNe9lrT97srfeWHRF4D/KZfLS818sbBrPeAnefXsyne7RVUucZyk8mraG5Hm1BXr70eallDrNeSxtid3dC8hhBB6TksFt5LjgD8B95UP2D4FOKXyW9LppCH+nTnb9nnFHZWeW43yW9vuNAVYCCGEtaslg5ukPYDTgG8CgyVV5qS15eObkiZrV2xK10ySVB6l2Y80by6EEEKLaLngJulgUsaRp0i9s0ds98vHKnPe/g/weeChwqnTSlXdneeyHWR7iu0xPdnuIkkTgAkAbYO7lZYyhBBCF7TMaElJm+Y10n5KGu24M2ly9hWSzqxyyq/ysjeV7bzS8Uoeyilr0KyZkpZW2U7r6KTILRlCCD2rlXpuW5AGkGxp+8W87wZJvwa2X91KJV0KfK60u/JcytlPfmH703mu24oUJpKeBL5SHH0ZQgihcVomuFVSaknaQNLEypB923OBe2qdl0c2bkCaCrAbpdGVto8Gji6dczYwxPZR9b2LEEIIa0PLBLeCDYEzgbOqHHuSt4boHybpf+XfrwLP5+N3Vas0L20zIP+sfMMbm3//xfZ769T+EEIIPaylJnED5IVI/2a7embjrtUxiyr5KWuUHQNcbHvr/Ptx0kTyojZSsufyw9y9kuC5lsgtGUII3dPrJnEXFUZGlk2w/eOeum704EIIofm1XHDLqbVWu9eW62jvRtmpdG0CeAghhCbRMlMBQgghhK6K4BZCCKHXieAWQgih14ngFkIIodeJ4BZCCKHXieAWQgih14ngFkIIoddpuQwlvY2khaTle/qyocDcRjeiCcRziGcA8QwqOnoOI213uF5Yy03i7oWe6iyNTG8naXpffwYQzwHiGUA8g4o1fQ7xWjKEEEKvE8EthBBCrxPBrfEuaXQDmkA8gySeQzwDiGdQsUbPIQaUhBBC6HWi5xZCCKHXieAWQgih14ng1iCSDpT0lKSZkiY2uj09SdKPJb0k6bHCvo0k3Snpz/nfDQvHvp6fy1OSDmhMq+tL0uaS7pb0hKTHJX0x7+8zz0HSAEm/k/RIfgZn5P195hlUSGqT9LCkW/LvvvgMZkl6VNLvJU3P++r3HGzHtpY3oA34C/AuYD3gEWD7RrerB+93b2A34LHCvu8BE/PfE4FJ+e/t8/PoD2yZn1Nbo++hDs9gOLBb/vvtwJ/yvfaZ50BaZHhQ/ntd4LfAHn3pGRSexYnA1cAt+XdffAazgKGlfXV7DtFza4z3AzNt/9X2P4BrgU80uE09xvY9wCul3Z8ALs9/Xw58srD/Wtuv2/4bMJP0vFqa7RdsP5T/Xgg8AWxGH3oOThbln+vmzfShZwAgaQRwCPDDwu4+9Qw6ULfnEMGtMTYDnin8fjbv60veafsFSP/hB96R9/f6ZyOpHdiV1HPpU88hv477PfAScKftPvcMgPOAk4A3C/v62jOA9H9s7pA0Q9KEvK9uzyHSbzWGquyLORlJr342kgYBNwBfsr1Aqna7qWiVfS3/HGwvB3aRNAT4maQdOije656BpI8CL9meIWl0V06psq+ln0HBnrafl/QO4E5JT3ZQttvPIXpujfEssHnh9wjg+Qa1pVFelDQcIP/7Ut7fa5+NpHVJge0q2zfm3X3uOQDYngdMAw6kbz2DPYGPS5pF+hzxEUlX0reeAQC2n8//vgT8jPSasW7PIYJbYzwIbCNpS0nrAZ8BftHgNq1tvwCOzH8fCfy8sP8zkvpL2hLYBvhdA9pXV0pdtB8BT9j+v4VDfeY5SBqWe2xIehswBniSPvQMbH/d9gjb7aT/3f/K9lj60DMAkDRQ0tsrfwP7A49Rz+fQ6BEzfXUDDiaNmPsLcEqj29PD93oN8ALwBun/gf1vYGPgLuDP+d+NCuVPyc/lKeCgRre/Ts/gQ6TXKH8Afp+3g/vScwB2Ah7Oz+Ax4Jt5f595BqXnMZq3Rkv2qWdAGin+SN4er/w3sJ7PIdJvhRBC6HXitWQIIYReJ4JbCCGEXieCWwghhF4nglsIIYReJ4JbCCGEXieCWwghhF4nglsIIYRe5/8DQsT75Kom/BQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 시도별 스타벅스 분포\n", "plt.barh(index, v1)\n", "plt.yticks(index, a, fontsize=13,fontproperties=fontprob, rotation=0)\n", "plt.show()\n", "#plt.savefig('savefig_200dpi.png', dpi=200)\n", "# 대부분의 스타벅스가 서울과 경기도 지역에 분포하는 것을 확인할 수 있다." ] }, { "cell_type": "code", "execution_count": 169, "id": "74fa2916", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "스타벅스의 전국 대비 전라북도에서의 비율 : 1.663%\n", "스타벅스의 전국 대비 부산광역시에서의 비율 : 7.550%\n", "스타벅스의 전국 대비 강원도에서의 비율 : 2.687%\n", "스타벅스의 전국 대비 경기도에서의 비율 : 22.905%\n", "스타벅스의 전국 대비 인천광역시에서의 비율 : 4.351%\n", "스타벅스의 전국 대비 충청북도에서의 비율 : 1.983%\n", "스타벅스의 전국 대비 경상북도에서의 비율 : 3.711%\n", "스타벅스의 전국 대비 전라남도에서의 비율 : 1.536%\n", "스타벅스의 전국 대비 제주특별자치도에서의 비율 : 1.727%\n", "스타벅스의 전국 대비 경상남도에서의 비율 : 3.967%\n", "스타벅스의 전국 대비 울산광역시에서의 비율 : 1.855%\n", "스타벅스의 전국 대비 세종특별자치시에서의 비율 : 0.576%\n", "스타벅스의 전국 대비 광주광역시에서의 비율 : 3.839%\n", "스타벅스의 전국 대비 서울특별시에서의 비율 : 31.158%\n", "스타벅스의 전국 대비 대구광역시에서의 비율 : 4.543%\n", "스타벅스의 전국 대비 대전광역시에서의 비율 : 3.263%\n", "스타벅스의 전국 대비 충청남도에서의 비율 : 2.687%\n" ] } ], "source": [ "# 지역별 스타벅스 비율 \n", "sum_star = sum(v1)\n", "for i in range(len(a)):\n", " print('스타벅스의 전국 대비 {}에서의 비율 : {:.3f}%' .format(a[i],v1[i]/sum_star*100))" ] }, { "cell_type": "markdown", "id": "8da5121d", "metadata": {}, "source": [ "#### 전국 투썸" ] }, { "cell_type": "code", "execution_count": 164, "id": "bcf1f867", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "전국 투썸 점포 수 : 1108\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상호명지점명상권업종대분류명상권업종중분류명시도명시군구명행정동명
0투썸플레이스춘천명동점음식커피점/카페강원도춘천시조운동
1투썸플레이스강릉포남점음식커피점/카페강원도강릉시포남1동
2투썸플레이스춘천퇴계점음식커피점/카페강원도춘천시퇴계동
3투썸플레이스소양강댐점음식커피점/카페강원도춘천시신북읍
4투썸플레이스용평리조트점음식커피점/카페강원도평창군대관령면
\n", "
" ], "text/plain": [ " 상호명 지점명 상권업종대분류명 상권업종중분류명 시도명 시군구명 행정동명\n", "0 투썸플레이스 춘천명동점 음식 커피점/카페 강원도 춘천시 조운동\n", "1 투썸플레이스 강릉포남점 음식 커피점/카페 강원도 강릉시 포남1동\n", "2 투썸플레이스 춘천퇴계점 음식 커피점/카페 강원도 춘천시 퇴계동\n", "3 투썸플레이스 소양강댐점 음식 커피점/카페 강원도 춘천시 신북읍\n", "4 투썸플레이스 용평리조트점 음식 커피점/카페 강원도 평창군 대관령면" ] }, "execution_count": 164, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_투썸 = df_coffee[df_coffee[\"상호명\"].str.contains(\"투썸\")]\n", "df_투썸.index = range(len(df_투썸))\n", "print('전국 투썸 점포 수 :', len(df_투썸))\n", "df_투썸.head()" ] }, { "cell_type": "code", "execution_count": 165, "id": "e9976984", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['전라북도',\n", " '부산광역시',\n", " '강원도',\n", " '경기도',\n", " '인천광역시',\n", " '충청북도',\n", " '경상북도',\n", " '전라남도',\n", " '제주특별자치도',\n", " '경상남도',\n", " '울산광역시',\n", " '세종특별자치시',\n", " '광주광역시',\n", " '서울특별시',\n", " '대구광역시',\n", " '대전광역시',\n", " '충청남도']" ] }, "execution_count": 165, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = list(set(data['시도명']))\n", "a # 이것을 계속 활용한다." ] }, { "cell_type": "code", "execution_count": 167, "id": "366d12f6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ],\n", " [Text(0, 0, '전라북도'),\n", " Text(1, 0, '부산광역시'),\n", " Text(2, 0, '강원도'),\n", " Text(3, 0, '경기도'),\n", " Text(4, 0, '인천광역시'),\n", " Text(5, 0, '충청북도'),\n", " Text(6, 0, '경상북도'),\n", " Text(7, 0, '전라남도'),\n", " Text(8, 0, '제주특별자치도'),\n", " Text(9, 0, '경상남도'),\n", " Text(10, 0, '울산광역시'),\n", " Text(11, 0, '세종특별자치시'),\n", " Text(12, 0, '광주광역시'),\n", " Text(13, 0, '서울특별시'),\n", " Text(14, 0, '대구광역시'),\n", " Text(15, 0, '대전광역시'),\n", " Text(16, 0, '충청남도')])" ] }, "execution_count": 167, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAFACAYAAABHvzzrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAssElEQVR4nO3dedgkVXn+8e89zIDIItugwyKDBFRwwWSCO64ISgzoTyPEKAYVF9xXMBpMDIoxblE04gYqirhFjCsighoXBkWZERGEAYYZYYBhC8Myw/P745zmrenpfruq+/S71Nyf6+qru6u7nj7VVfV09alzTikiMDOzdpkz3QUwM7PynNzNzFrIyd3MrIWc3M3MWsjJ3cyshZzczcxaaO50FwBghx12iIULF053MczMZpXzzz//uoiY3+u1GZHcFy5cyOLFi6e7GGZms4qkK/q95moZM7MWcnI3M2shJ3czsxZycjczayEndzOzFnJyNzNrISd3M7MWcnI3M2uhGdGJycw2DguP+fbQ8y474eCCJWk/H7mbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbXQwOQuaVdJZ0u6SNJSSa/N098p6WpJF+TbMyrzHCvpUkkXSzpwnAtgZmYbqjPk71rgjRHxa0lbAedLOjO/9sGI+I/qmyXtDRwG7APsBPxQ0l4Rsa5kwc3MrL+BR+4RsTIifp0f3wJcBOw8ySyHAKdFxB0RcTlwKbBficKamVk9jercJS0EHgH8Mk96laTfSfqMpG3ztJ2BqyqzLWfyHwMzMyusdnKXtCXwNeB1EXEz8HFgD2BfYCXw/s5be8wePeIdJWmxpMWrVq1qWm4zM5tEreQuaR4psZ8aEV8HiIhrImJdRNwNfJKJqpflwK6V2XcBVnTHjIiTImJRRCyaP3/+KMtgZmZd6rSWEfBp4KKI+EBl+oLK254FLMmPzwAOk7SZpN2BPYFflSuymZkNUqe1zGOBFwAXSrogT3sbcLikfUlVLsuAlwFExFJJpwO/J7W0OdotZczMptbA5B4RP6V3Pfp3JpnneOD4EcplZmYjcA9VM7MWcnI3M2shJ3czsxZycjczayEndzOzFnJyNzNroTrt3G2aLDzm20PNt+yEgwuXxMxmGx+5m5m1kJO7mVkLObmbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbWQk7uZWQsNTO6SdpV0tqSLJC2V9No8fTtJZ0q6JN9vW5nnWEmXSrpY0oHjXAAzM9tQnSP3tcAbI+LBwKOAoyXtDRwDnBURewJn5efk1w4D9gEOAj4maZNxFN7MzHobmNwjYmVE/Do/vgW4CNgZOAQ4Jb/tFODQ/PgQ4LSIuCMiLgcuBfYrXG4zM5tEozp3SQuBRwC/BO4bESsh/QAAO+a37QxcVZlteZ5mZmZTpHZyl7Ql8DXgdRFx82Rv7TEtesQ7StJiSYtXrVpVtxhmZlZDreQuaR4psZ8aEV/Pk6+RtCC/vgC4Nk9fDuxamX0XYEV3zIg4KSIWRcSi+fPnD1t+MzProU5rGQGfBi6KiA9UXjoDOCI/PgL4ZmX6YZI2k7Q7sCfwq3JFNjOzQebWeM9jgRcAF0q6IE97G3ACcLqkFwNXAs8FiIilkk4Hfk9qaXN0RKwrXXAzM+tvYHKPiJ/Sux4d4Cl95jkeOH6EcpmZ2QjcQ9XMrIWc3M3MWsjJ3cyshZzczcxayMndzKyFnNzNzFrIyd3MrIWc3M3MWsjJ3cyshZzczcxayMndzKyFnNzNzFrIyd3MrIWc3M3MWsjJ3cyshZzczcxayMndzKyFnNzNzFrIyd3MrIWc3M3MWsjJ3cyshZzczcxayMndzKyFnNzNzFrIyd3MrIWc3M3MWsjJ3cyshZzczcxayMndzKyFBiZ3SZ+RdK2kJZVp75R0taQL8u0ZldeOlXSppIslHTiugpuZWX91jtxPBg7qMf2DEbFvvn0HQNLewGHAPnmej0napFRhzcysnoHJPSLOBW6oGe8Q4LSIuCMiLgcuBfYboXxmZjaEUercXyXpd7naZts8bWfgqsp7ludpZmY2hYZN7h8H9gD2BVYC78/T1eO90SuApKMkLZa0eNWqVUMWw8zMehkquUfENRGxLiLuBj7JRNXLcmDXylt3AVb0iXFSRCyKiEXz588fphhmZtbHUMld0oLK02cBnZY0ZwCHSdpM0u7AnsCvRiuimZk1NXfQGyR9CXgisIOk5cBxwBMl7UuqclkGvAwgIpZKOh34PbAWODoi1o2l5GZm1tfA5B4Rh/eY/OlJ3n88cPwohTIzs9G4h6qZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLObmbmbWQk7uZWQs5uZuZtZCTu5lZCzm5m5m1kJO7mVkLDUzukj4j6VpJSyrTtpN0pqRL8v22ldeOlXSppIslHTiugpuZWX91jtxPBg7qmnYMcFZE7AmclZ8jaW/gMGCfPM/HJG1SrLRmZlbLwOQeEecCN3RNPgQ4JT8+BTi0Mv20iLgjIi4HLgX2K1NUMzOra9g69/tGxEqAfL9jnr4zcFXlfcvzNDMzm0KlT6iqx7To+UbpKEmLJS1etWpV4WKYmW3chk3u10haAJDvr83TlwO7Vt63C7CiV4CIOCkiFkXEovnz5w9ZDDMz62XY5H4GcER+fATwzcr0wyRtJml3YE/gV6MV0czMmpo76A2SvgQ8EdhB0nLgOOAE4HRJLwauBJ4LEBFLJZ0O/B5YCxwdEevGVHYzM+tjYHKPiMP7vPSUPu8/Hjh+lEKZmdlo3EPVzKyFnNzNzFrIyd3MrIWc3M3MWsjJ3cyshZzczcxayMndzKyFnNzNzFrIyd3MrIWc3M3MWsjJ3cyshZzczcxayMndzKyFnNzNzFrIyd3MrIWc3M3MWsjJ3cyshZzczcxayMndzKyFBl5D1cxspll4zLeHnnfZCQcXLMnM5SN3M7MWcnI3M2shJ3czsxZynftGwPWTZhsfJ/eKYZOgE6CZzTSuljEzayEndzOzFnJyNzNrISd3M7MWGumEqqRlwC3AOmBtRCyStB3wZWAhsAz4u4hYPVoxzcysiRJH7k+KiH0jYlF+fgxwVkTsCZyVn5uZ2RQaR7XMIcAp+fEpwKFj+AwzM5vEqMk9gB9IOl/SUXnafSNiJUC+37HXjJKOkrRY0uJVq1aNWAwzM6satRPTYyNihaQdgTMl/aHujBFxEnASwKJFi2LEctgs4h6zZuM30pF7RKzI99cC3wD2A66RtAAg3187aiHNzKyZoY/cJW0BzImIW/LjpwH/CpwBHAGckO+/WaKgZrOBh7DYOM3Ef6OjVMvcF/iGpE6cL0bE9ySdB5wu6cXAlcBzRy+mmZk1MXRyj4jLgIf3mH498JRRCmVmZqPxqJBmttGaidUppXj4ATOzFnJyNzNrIVfLWG1t/gtr1jY+cjczayEndzOzFmpFtcxM6zgy08pjZhsfH7mbmbWQk7uZWQs5uZuZtVAr6tzN2sbnbWxUTu5mNpB/bGYfV8uYmbWQj9xt1nKPWbP+fORuZtZCTu5mZi3kahnb6Ll6x9rIR+5mZi3k5G5m1kJO7mZmLeTkbmbWQk7uZmYt5ORuZtZCTu5mZi3k5G5m1kJO7mZmLeQeqmYt5qF6N14+cjczayEndzOzFhpbcpd0kKSLJV0q6ZhxfY6ZmW1oLMld0ibAicDTgb2BwyXtPY7PMjOzDY3ryH0/4NKIuCwi7gROAw4Z02eZmVkXRUT5oNJzgIMi4iX5+QuAR0bEqyrvOQo4Kj99IHBx8YIkOwDXOc5GF6dkLMfZOOOUjFWyTFW7RcT8Xi+Mqymkekxb71ckIk4CThrT508URFocEYscZ+OKMxPL5DizK85MLVNd46qWWQ7sWnm+C7BiTJ9lZmZdxpXczwP2lLS7pE2Bw4AzxvRZZmbWZSzVMhGxVtKrgO8DmwCfiYil4/isGkpV/TjO7IpTMpbjbJxxSsYaexV0t7GcUDUzs+nlHqpmZi3k5G5m1kJO7mZmLbRRJHdJD5zuMmwsSn7XJWKVKo+kzUvEybG8PW6kpnLdbxQnVCXdHBFbT3c5qiS9KyLeMdNijarkd10iVqnyzLTlavBZl9PVgbCfiHjAmMvy2QZlOXKcZZkuU7nuW3GxDkkvjIjPVZ6/IyLeVX1LzThTufG9FiiVkAfGKrVspb7rUrEKrvsnRMQ5/eLWjVOqTAW3xX+oE2OKynNpibJ0FNymi+33JfePUbXiyF3SbRFx70me1/q1lPRPdT8zIo4fEOvMiDig8vyPEbFX5fktEbFVnc8qEavUspX6rkvFKrjuZ9pyFdsWJ/mMfSPigprvHWt5JN0rIm5vOE+pbbrkfl9sOxpVW5L7mojYfJLnJf7eN9r4eqzUoctUMlaf+LWXreR3XSJWqfLMtOUaEL9xIuwR4yXAm4GHRMRdI8YaqTyS/hr4QomylCrTsHGmIhfV1YpqGXr8pZL0dCb+Ao30V6iz8UkaZeMr+StaLNYQy1byuy4Rq1R5esV5cIP5x1GmDZTYFiW9hVSV9/gCiX2k8kh6DPA14MUFE3uJ/XXYOGPNRU20Jbn38oHK46FbBRXc+CTp9BJlKhWr4LIV+a4LxipVnvOZ2BnvHiEOFCjTMOtL0uHAGuBy0gB+bwdWkobgXj5MOYYtj6QFwJqIuFHS9sBbgecAR0bEd0cpy7BlGnecrOT+UVtbk3tExIM7TyTdXGemKdj4zu98FOkqVVMWa4zLNtR3PcZYpcoT3XWlQ8YZqkwF19frSfv5bsC2wB+Ao5om9kLluRqIvPybAcuARRFxQ5OyFC7TuPf7kvtHI61J7nkFjfqXp+jG1yUi4r2dJ5LeNsWxii1boe+6WKyS5SmlQJmKrK+I2K9Spv2AvwN+Juk/I+LtU1yeLUk5ZyHpgOQ5wAWSXhIRP2gQp2SZSsYBZs722JYTqneT6ro6X2hExCaV1+ueVLs3G2589wUab3yS7gTe2XkK/HNEbNa0TKVilVq2Ut91qVgF1/3dwNrOU2DONC9XsW2xR+wHk05gLo2IF9acZyzlkfQiUrXFsRHxiYbzltqmS+73xfaPkUXErL+RhhVe79b1+s0jxH4RcAPwsobzfQH4fPU2bJlKxhp12Up+1yVilSoPsEf3bTqXq+S22CfWdsDvgUePEKNIeYB9gdXAfgWWq1SZht3vx5aLGi/DVH3QdN6AJSPOX2zjq8S8ZSbEKr1so37XpWOVKk/h9TV0mQonwi0KxChSnhxnk1HLM4Yyld7vi+0fg26tqJbpRdJpEXFYwXj7AhdGxLpC8Y6NiPfMhFijLlvJ73rYWJK+GxGjnqQualxlarK+JO1fN25EnDvO8ki6f5/PvbLy2jpg/4j40jBlaVqmccWZCdtjm5P7eh1/pvize27EXW4GHhsR3x53ecat5Hc9bCxJd0bEpkN+5lgS4ChlKkVpbJk6IsY/tkynPrpz36mL3hFYRTrncR2wZcywsaCamgnrfta3lpF0HhMdByIiHtn1+hJg0/ziXkyisvF1uxrYgXQmXXSdJOlhGeufVKnqxP9P4GXApIlM0tl9yrRh4IgnTxJn5GUr/F2PHEvrD4o1V9Jl+fG3gGdW3hoRscckxTllsrJW4wCTJsBSZSq1LUbE7pN8RpOeySOXJyLmSHoP8GfgHOBbEbFrjn9TRGwraWWd8pQqU+E4pbbHImZ9cgc+TGpJchzwyR6v7wH8Tc1Y9wd+CzyMtDKXAPuQ/ipenl8fKCI26Kgg6S9JbYyviTwOjKSX1wj3qVolH6zEspX8rkvEelHX83n5fgXwauCJpE4j35ssSKkEWLJMFNoW+1G6cP05kt4aET+uMUvJ8kTlVp3WVKkylYrzoq7nw677Mqaqcn+cN+BX+f6WyrTb8v2ahrGurTy+oTtegzhbA48E7p2ffxL4Sypny5vGLPA9jbxshb/rYrHyPC8EPpgf3z3q90z65/BL4IkjfOdDl6nUtpjn+Qwp+WxGOqg7HTiL1ORzSrYfUhv7bwCfJY1rcx3w7Go8Uu/ZJi2TSu2vxb7rcW2PTW9tOHLvZ56kk5io16trjqQvkn51h+0m/ijgO6S6xbWSngpcT2o7+8Mh4j0F+F1ErBqmPBUjL1sfw37XpWNdCBwx7AdL+gxwLvAl0lHbF4Bb87RhjVKmEtvitRGxI6nt9kLg34CrgFuAQyKiybAKo5bnFfn+YOBnpO/m88DXh4hVqkyl41SNtD2Oqu1XYrqpyZslHUE6qbMU+DlwjaTjOi83CPVeUvvYHYD3AMcDNwLbRcSzm5Qp+z5wlaSfS3ruEPOXXLZ+Gn3XY4r1Z1I3+0YkXZsfPod0tPUn4CfANjRPgKXKVGp9bZPv7450TuZFpPMGZ0fErVNZnoh4UkQ8Cfi/yuNRBlEr8h2Ncd8Yat0XMxV/D8Z9o9Dfe+Ay0oBKnef3Ix3hbEuzqosVlcdbkY6UXk1qEXAZqWlV7bKR2tpuDTwf+CMp2W/X8DsqtWwzuVpmcyb+3tf+Gwzcme9vzPdPBa4h9Zocddsctkyl1ldn2arf8a6kk/4vnOrtJ8+7QbUHsDrf39Ep81SVqeSylVj3pW6zvlpG0luB+0l6Db1PEDc5UbM96cRKmjHiz5KuA+bT7Bf8Dkn3iYibSCPx3QjcDnwl3x4gadLWJF3mRMTNwKmSvgKcAJytdPWgG2vGGHnZSn7XhddbmiFijaTqsAw/Ii1b3SZpm+Q4P5S0CPiJpKtj/SsyTVWZSm2LG1QpRcRVkp4JnCnpnIi4okacUuXp55X5/qgG85Qq01iWrcD2OJJZn9xJR1kXk5oa/bTH63c0iPVz4OXAhwAkPQO4F3AJ8MUGcb4GnCHpNOAlwGmk+vdlpNEcv5PfVzeB3bOBRcSdwBskfQg4GTi0ZowSy1byux45Vp/26Z3v6h8r004eEKpUAixZpiLbYkQ8NT+8uGv6hXkbOp56l+IbuTyS7iJt83OVxksScFcuz5fyfd1mqUXKVDJOwXVfRJs7Ma13BZSa8+xJqvK4Pd92Aw6P5oMHzQP+CXgU8CPgP0grd/uI+PcmsXK8DS6jJ2kT4Dzg3yJi4AmpUsvWJ3bj77pErD5tom+PSZo2Doi3OCIWdU07hnSFoFrXIi1VpnGtL0mbR8Sa/HhTYLeIuGQqyiOpV/1zRMSVdWOULlPhOEW3x1G1LrlLelpE/EDSSRHR5C9eZ/7NgceSfrl/ERHXjVieYyLiBEmHAttExMlDxOi+WHNn+pNI44P8T804RZetEneo77oy/4KIWDlqLEkHRsT3hy1HJc5QCbBHnJ0iYsUo5aDw+tJoPXnHtf2cGhHPn84yjWvZplMbk/u6mLz3aN0434qIZw5+58A4I3VD1uRDGVxN+pu7F3BJ1Bz/otSylTLqd1SJU2rdlypPqTjF1pekuyJi3uB3Tk15crwS1zgutb/OqH1jFLO+zr1HPZckPZ4eJ0Ki2cBIB/b5vE1zvfdkZfosE/Xpm+T2050yHCnpVcCTgLMi4mMDyvEnJsbhuJvUfLXTXfoA4GOk5H65pP0j4s8Dl2zIZdP63au7HUNapr8l9cB7WUSs7fPe7vU2p2udnU9qHbQI+GVEXNs9f48YeVKRdT9K87yRl6uHUbbF7q71ktR9EFBnSI2RyyPpyxHxPEnvi4g3SzoHOKTy+vfIw3FERO3xfkYpU8k4JfePEmb9kbsKDozUtSOI9VfUG0gD+T+VNC7Gs3ILll5xjus1PfsTqSPJp4CXAm+JiC8PKrykGyJiO0mrI2LbPO0DwBbAq4CPAmsj4uhxLZukJ1TmPzO/v+NvSX9rjwPeAXwnIt49yfL0W2+R5/8IaTztHUgDrC1tEGODmJOt+14JkA130loJsMRy9SjTKNviZO2s70dqi50KOMlJ40Lbz80RsbWkFRGxk6RLSOelLs/TbyGd2CQiTp2k3MXKVDhOsf2jiJiC9pbTdQMeBDygwft37rrtTmqitTOpM9K3SUfJXwGOH7JM5wJPzo+fAZxZc74/5PvVlWm/APbKj/cCfjNVywbcle8PJ43qdy75wg/Ao4H/HWG9nUb60YN0PctTxrnuSSfQ+t0eWX0+4vZYe7nGvS0CDyd1/99xqvYN8rAC5H4gpD4b21emNxozv9R3NI7vepz7R+3vZ9wfMJ030pHxJxq8/77AvSrP55Ca5C0gNZd6eJ6+N3DBJHH+nTSOxpY9XlsBzMuP7wMsG1Cm04FjO4mK9TtbLK/E2pRK56kxLttDSAlvL9I1Ma8lDbi0jHzxB9K/iSsarqtNSE1EFwCXAvfL0+9H/mEb57rvE6NRAiy5XKXWV37PicCRwFb5+T7AlaTLyE3ZvkH55F5qmy75XY9l/xhq2xv3B0zFDfhc5faayvS/As5pEOdu0pgiN5HqR7fLK+WRpF6mm+X3bUoa3bFfnNtJifcG4A1dr13HRHXY5sDKAWX6P9JfvDWk+vXNK6/9gdxTNe8kF49z2Uh/UV+Y47yf1C74v/Jry5gYJG0L4MqG6/AjwP/kxzcCc/PjucCqKVj3IyfAwstVZFvM71kDLM7b44l523xOw+Uosf2UTu6l9tdScca2fwxza8vYMs8j1WWvIQ2r2XE5sFODODeRTujsC7w9x1tN6ql2O6mZFKSR9SYbBvaOiNiFNFbJKyR9JbdLh3Tk/uD8eG/SxjOZdRFxAKma4WGkTjWdduAXkU6qku8vGvOyvYk0Bsd7gMeT6hFfm1+7gnSkSy7npMslaTtJcyRtI+lUUt3rEfnl60l10uT7GyYJVWrdH0n6K36FpBNJ7Z7fEBGNhlwuuFyltkVIY7ksAvYHHkg6wPhx/aUqXp5SSpWpVJxi+0cJbUnud0bEvwAndU2/iTQ+RF0REXeQfmUvJv0tW0tq4XAZaUcF+Ov8nn7m5mA/Ig3zuztpMDFIvVffL+mRpI1gUAekTqwrSMlLQOcq8R8FPirp46SLf3x0zMvWafVxBfA00oiJj8nTTgc+JOlA4H3AoJPE15H+lVxBOkJ6ckRcn187D3hBfvz8/LyfUuu+RAKEcstValuEvJ9HxJJIPVZPBf5X0sK6C1WoPPMkvRDYPN9v1ed9U1mmknFK7h+jG/dfg6m4MfG37q+Ar3e9dlODOJ1BfrYn/VXr/F17MenEyDLSr/MfmWTQJboGBiKNwrea9Iu9OSnBryYNLbvZgDKt6Xq+K2mjeWx+fgDwAeBp41420ljbfw8clZ8vyvNtRqpbPpF0xPxfDLjYMemo6IGko+ULgN+RT1iSjnBuIP0TWQXsM1XrvvL8zfm7WNhwWyy1XEW2xRxjdY9pLwN+T82LZBfafn5IqmLs3H5ASvCddThpFeUY99dScYrtHyVuYw0+VTdyXV3ewa8gXZigc2sy8P/qHtO+C7w0P3418D9U6nb7xNmgLpWUgD83xLJ9u8e0/wI+1TDOyMtGOgJ8fmfjzdO+CLxyxPU3l3Q+4ULyiS1SS4VDgAXTuO4bJcDCy1VkW8zv/UGf6V+h5siXJcvTbx0OMV+RMhWMM5b9Y9jbrO/ElH04368gnVirajKWy4/7TBdARHyEdIJsUhExv8fkD5H+7jUSEQf3mPwvpKP3Jn7cZ3rtZYuIuyWdwfrVeR8mVT0NLVJnjldK+jopoX44Iq4m9cAdpNS636CKJCI+oXShldeQqtAaGXG5ftxneqNtMb/3aX1eeiXpCLWOYuVZb2ZpS9JFUYZRqkxF4oxr/xhWGzoxDbq+4V0RsVLSi6LBuC6S7h8RV0p6MWn89V+NVNAZKC/bkoj45ZDzLwJ+TRoHvVH38T7rbWvSyaxl1BhWYVzrvusz5pNOak928nNQmRotV6+Yw26L/b6jHK/z2jpg/8gjMzaIPfK+oYkrRRVRan8ddd/IMYbeP0poQ3LvDCMq0i/mOtbvPn5RRDys6TgfpcYpmW0kKSbZKCRt0klKki4inSA8OyK2krQNqRriOlJLk8mGH+ist4HDKpASzwbDKpRa9yUTYInl6hFz6G2x0vuyc9+JsyOp3n8taX1t2SQBSdouIm6QdGVEDPqRrc63O6lD2DkREZJWRcR8SZ0Tj3cAfxPpJPlQJF0WA3qjDxl30n0jv6fI/lGkvLM9uVdpkkGRJnut8p7qeBY/Bp7A+sni6oj4k6TjRtn4poOksxkwfnxEPLlGIlxCqoP8A6kueUfykYmkj5FOKN4X+GpE/GeNco00rEIlztDrfhwJsMBwEcW2RUnvIQ0zcA7wrYjYNU9fHRHbKg1Vu0WDZXso8IWIeLiaDdH8aNJJ1bXAyRHx2s6Ru6S1pJYp9yKdnxh4NC/pAFLTxBtJzUyviYh16jFE9oA4g/aNKyPiRXUOEEvvH6NoS537eiQdD3w3IqoXgajzK/bpyuM/kU7KVX0OeBdprPZZldxJY9l0KD9/cY/39R00S2kAtK1IFzX+Kql1yt3SPbM8g9RD70Gki0DU2Xh7DZ71GFKrhLskvZ8GzcaGWfcRMWeSBHhTJQE2Mepyld4Wo3KrTqtF0vuAf440FPIBpGvMNvV2UkefrwJLtP4YTLdExF6SmrT//h6p6eIWpH4Dm0m6huZX8ersGwI+S7rObNVNldf7GtP+Mby6Z15n6g14C/Co/Hhr4CDS0dZ2Xe+rdV3Gmp9513Qvd4FlWJPv/7Hu90S6ruQy0pHJOia6Za8hNRm7OD/fjHyd2ElijTysQsl1Tzph+hpSc8UrK9M7zeRWUqP1TYnlKrktkobB+AYpab2Z9A/k2U2XLa/vJaTem78lVSlBs2uVXsFEq6GvAo8Dru0qy1WdaXW34crzrUjJs3YrqX7fJ6kT0vwm21HJ/aPErQ2dmN4N/FDSr0kjyn2ZNJxmrRNgk5G0taSzJHV/T7O2LkvSk/PyPFPSo5joQVfXHOCTpL/QnetDziMNaXpXfn4nE736+jkYeDKwNP9d/V3ltVuZ6OCyFWmn6aXIupf0d6SjqUeQOp/cW9Kzm8SoKLFcvco47Lb4CmAbUhO9Z5CqCj5f93MrbgT+mzTWypqYGEJZkrbK5dta0mRVO/eKiE4Pz1WkTmY7SLptiPJA17JHxC0RsSSXab6kHTu3yYJ0vf4GSduROnrtMUSZSu0fI2tDcl9D6mb+NdLf1GVR47JzgygNF/AF0uhtd48ab7pJelN+eCapE80dpF6d/zREuHWkpmGvyM9vi4iHk46eIdUpDkqwJYZVKLXuSyVAKDdcxD1G2RYj4kkR8SRSD9zO42HGq78Xaaja1aQkX3Vjnt657+euyo/TVsDN+f2PHqI8k9mCVMW2snLfk1KdyZ8lXSzptaS2/98BvhcRvxjy80vsH6Mb91+Dcd9IG23n8aNIG8yb8/O3MtHbbF2NWLuQfm13IvWe+zIwp8f7ilXxTOH31Pn7u5zUiWY1qW669rKRhlC4klSlsBNpZ57DRA/DnwBPIVVvfGRAeW6rPJ4L/IzcySvHWAV8nFR3/dRxr/s8z+ru8tG8Wmbk5RrHtkilB25l2Vbn+zsGxanM82hSK6TO9DWknp333CaJcSZpbPR5pCPbBYxWLdOzSoj0j2iL6m1AnFuBo0j/su4iVT/Na/pdl9w/StzGGnwqbt0rmHTkdSvpBMvWNBiLOyeDO4HbSH8/N6m89kDSuCP7Mwvr3Cs7Ued+Ean+dTfgL5jo1bl2QJyrgE3z46Wko9POxvs3eee4iTzO/CRxRh5WoeS6z/OPlABLLdc4tsU+y3Z4vj8COGLA/NUfrV8AB/Va3gExDiUdsf4G+EbX9tj5nm+rG7N7/VemN6pzJx8kkH50PpLX9aLKNlVr34iC+0eJ21iDT8WNHmNiAycz3AUMtgTuT/oV/y3wUyaG1P0AqW3y5aQrx0z7sjdctlXV+/z4DaRWF7uQrhBzHHDcgDg7VB6/kzQ07s2VaQ+g60RUnzgjD6tQct3neUdKgKWWq+S2mJPJnUz8WNzVLykOiLOm8vjlwCe7p9eMcxCpZ2xn+NtOcn9Jvj8aOLppmbqmN03u3QcJJ5GaMoqJqycN3DfyvEX2jxK3VrVz75C0ALh/jNa7bFPS6Is7AwfGLP+iJN07Im7rdBrJ0+aSmpItiojVI8ReEhEPKVDGBcCtEVH7RGOfGI3WfaXj0VxSG2yRjojvPWw5epRp6OUaZVtU78vsRURc2bAMB0XE9/LjPUidkHaRdNso31N1exxi3qMj4sQe0xtdcLu7rX4+x3EB8O5o2Gu3T/wi+0fjz53lOWus8smfHwH/SqqD+/40F2lkku4XlV6Rkg4lDSw1bIuFWa9UAhynnHCuAv4h0lDSo8Y7NSKeP+S8byJtM79r0ompT6zHRMT/Djt/n5hNOzE9PiJ+0jXtAOAREdFkfKIZxcl9gMoR70hHKNNNg8dhuTkibtQI47C0zSgJcBwkXR8R2xeK1ejotmvee3pqKo97U3O+2sMU1ImpNCZ8L7uR2tRX43UPKlcnTq9y9Y0z0zi5V0j6Ehu2nf37/NpIRyjTTeuPw9ItgBMj4vV1ulhvLEZJgIU+/1jSydPjIuKKSlf9zoVJbgAOiYgHTxLjyxHxPEnvi4g3SzqH1Frqykhd4r9HugoREbH/JHHOZmLfeCLrj6T4PlLnr2eSmhC+q0+M7m2wM+5Ot6izDUo6s2vSE0g9jHvF6zcyZrE4M42Te0Vu5wqpzfSxwHsjYsv82qw+cq9LNcbgaZtSCbBwmd5IOpm6mNSy4q8ryf02Uvf1l5Mu9tK3k07nB0rSiojYSdIlpGajl+fpt+Q4RMSpk8Tp/gcjJtqqPxh4Lum6oa8GPhoRn2CA0tta0+qYcceZbk7uPVR2otUxMejTxpLcN7oj91IJsHCZzgNeERGLlQajOpTUiWlHTQxK1rl4c5Pk/kdSW/V7lm2YRCZpM9LlBLcndSI7ISJ+KOlx+fHjasS4J7lLemZevusHzFadv3u8nX+gz9jwEXHkuOPMNK0cOGxM5kp6W+dJRLx7OgszDElHkYYgnUMa1e/j01ykmWqDI56pSuoVO0fE4vx4MbAQ2FRpqIQppzR87U3ANcAlpKaBq0hN+3YHOuOn/4ZU1jpOzbGfTmpH/kTS6I51Xdz1/B0N5h1HnBnFyb2+OcBD8+NZ93cnVzm9kjRAVgDH5JPF75/eklkf1fHbbyf1Vt2CVF04HXYGXg/cj1QNM4/UCW5HUh65M79vLeuXfTIvlfR20jI9LyKWNilQRLxX0ryIuKv7NUlHAntHxJt6zDqWODONk3t9d0bE4dNdiBG8kjQa4FIASb8iXRfSyX1mulXSNhFxI6mT2SpSL85HSBr/uCQbWttp594h6WbgPqTLBu4DnE+6EMmKXgEknUj6obqSNFbNy0hVO4+LiN8MWa7rmRizpepC4KXTEGfGcHKvkNS51uEmkvZmuAGWZqr5pB6NHVeQhm9F0idI3eJF/aMuG6+zgLdJ+grpGpy/7fGeOtvnvNzUb/N8P9KJQqWrCV1I+vc3n/Rv4pvAeyUdQ+qV+d99Zr+DtH3tTxpSdwdSP5Lb+7y/VpH6TL+K+tVDJePMGE7u6+t0Urqb1BRqg79ps9iPgX+R9Jb8/J9JXdohXTTgi9NRqBmiaAIs5N3AucDrgNdExB2auOhD58FODK4i/BnpPMvifH8hE1Uo0PxC67eSTjiKNFDWXNL2sx9wNmmQs//oNWNEvOGeBUgdBB8HvA04T9LhEfGthmWB/st/Lc3WY6k4M4Zby9TUgnbu9ycNZXp/0oa8AnhGRFw+6YwbAUk/ZMMrFP0/0qXstpa0MiIWTEO55pBGNLwlP++04up0rNsCICL+b4jYTXtxbjBMgKTvkgYAO6nPbHVjvxT4IPD07p6iNebtXBpxg5eA2+u2cCsVZybxkXt95w5+y8wV6WLPjyD9xRfw64i4c8BsG4WIeGqv6cqHytOR2PPn3s36F/S4Kk+/Ld83Tupwz1g1pzcsS6/xX/5I78sJNhIRn5S0jlRd0/TyfbtPFnoa4swYPnI360PSxyPiFYPfOTtI2j4irs8dpFZHRHf7bmsRH7mbdZG0XaRL9R083WUp7C2S1huzRdJDSO3Lz27aFNFmtjZcZs+sGEkPJZ0YhNQaZFaT9HlJnbr1ZzKxbJ1l/QXwPODnkvad+hLauDi520ZP0vs0cZ3TA2he7zuT/T1wVu7evzoifp+ni9T34e0R8XhSq5XXT1MZbQyc3M3SFanOU7rq/RFMnGxswwmpP5Oum/sVUlPYHZnorPMg8hAAwGlM9MC2FnByN0sXMv5v0rVK10REp2WUJG0laevObboKOIK5wD+SRm+8FPgl8Pb82g6kIQQg9dCc9dVQNsHJ3Sx1hX8HsJoNe1femKd37mcbRcRNpA5Hrwb2ZiK530DupQxsQ7NBu2yGc3I3SwkwSHXOR3S9tmO+zc/3s9VngcNJQwB0+jcsJXXWAngWvYc4sFnKTSHNsoj4uaSbVLkYdJPxxWeoTkesGyQtBv4qTw/g48C5StfRfSTQszOXzU4+cjdbf9Cok5k4mm2Dt1Ye/4w0BgwAEXEh8HTgAuDgEUZmtBnIPVRto1c9Upe0B3BOROwy28cT6iZpe9J5g9fjHqqt5+Ru1kXSwyLid21I7nmUy267ki6qsbI6MSI+NyWFsinh5G4bvT4JENI43suqE2ZbApR0Zs23RkQ8bayFsSnl5G4bPUlnD34XkBLgk8daGLNCnNzNWkzSXdTsaRsRm465ODaF3BTSNnqSbqF+ApxtvVT/ovJYwCWVaTsDa0idmaxlfORuGz1Ju1WfAktIF3yG1P77l50XI+KKKSxacZ0rKkl6HOnSiv8aEZ+a7nJZeW7nbhu9nLD/HBFXRMQy4Dt52uOATwDr8muzOrFnj5X0GdK1Tk90Ym8vV8uYJbdKuoI03vnnJJ1CSu4HRsTy6S3a8CQtJw05sIo0hs5DSVUzD4mIy6azbDZerpYxAyTdAPwt8GjgSOABwFObXrB5ppG0HzAP2AJ4OKmH6sHARcCbIqJuSyGbZZzczQBJN0XEfSrPXwi8H3hr23pySpoPvBF4HfDGiDhxektk4+DkbkZqMRMRW3VNexDwI+DNEXFq7zlnL0kHAy+JiGdNd1msPCd3M9KFoiNiSY/pfwnsFhHfmIZimQ3Nyd3MrIXcFNLMrIWc3M3MWsjJ3cyshZzczcxayMndzKyF/j95NiTsNQKWPwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "v2 = [len(df_투썸[df_투썸[\"시도명\"]==a[i]]) for i in range(len(a))]\n", "index = np.arange(len(a))\n", "plt.bar(a, v2)\n", "plt.xticks(index, a, fontsize=13,fontproperties=fontprob, rotation=90)" ] }, { "cell_type": "code", "execution_count": 168, "id": "77cc5665", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAD4CAYAAABrG3jbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA11klEQVR4nO3debgdVZnv8e+PE0gkGAIkSphykEFBZoONIhhlkMGJvmgLBknnQqAvg0ojRkQBbYXYcAFFpaGVcAVEEUQZDJNEWgYlAZFZowaZAgmQiSRIwu/+sdYOlUrtMyT7ZJ+9836ep55zdtWqVavOlryuqrXeJduEEEII7WCtZjcghBBCaJQIaiGEENpGBLUQQghtI4JaCCGEthFBLYQQQtsY0OwGrOmGDRvmzs7OZjcjhBBaxrRp02bbHl51LIJak3V2djJ16tRmNyOEEFqGpCfrHYvHjyGEENpGBLUQQghtI4JaCCGEthFBLYQQQtuIoBZCCKFtRFALIYTQNiKohRBCaBsR1EIIIbSNmHzdZA89M5fOCTc2uxkNN+Psg5vdhBDCGih6aiGEENpGSwY1SRMlLShskyrKdEiaWdhOLhwbLWlG4fNMSaPrXGu5siGEEPqvlnr8KGk48ED+OCf/fB34oKRHgZ1tvyZpCPBR4OTC6R2SdrL9xwa0YwDwGvBqnSLH2p60qtcJIYTQOy0V1GzPkrR17SOpp3k0MAE40fZr+dhawHqFclsApwLvbXCTtrb9dIPrDCGEsJJaKqgB2F4saRPgUOBEYCvgO8CjhTJzgIsAJG0A3AKcD7wkaQkg4KleXHZkPu922x9a1XuQNB4YD9AxpHL1hBBCCCuhpd6pSTozP2Z8HHgXcASwG7Au8LCkJyS9u1B+FHAnMBzoAJ61PQDYp4trrCtpE0m7SToSWBt40vaARgQ0ANsX2x5le1THuus3osoQQgi0Xk/tauBa4GHbSwv7j5J0DCnA3S9pD+CzwJ7AOOAuUk/tb5I+CzxTqncxMFmSSe/JXgKeBP4IPNtFe6ZLqtp/lu0ze3lvIYQQVlHLBDVJjwAjC58B3kQasLGkVPyLpEA2zvaivO8YSd8DZgLbFQvb7uziutsD15fK1x5h1so8Dpxs+4Ze3VQIIYSGapmgZvudxc9KUe1BYKLtK6rOkTRA0nHAv5ACooC/A78nDS4plh0LXFrn8k8CJ6xK+0MIIfS9lglqNZI+TApII4H5wBmSvgncBJxq++VC8QuAdwOfB/5ACmo7AecBg4GrStX/xvbo0vVGA5Maexdv2HHT9Zka2TdCCKEhWm2gyFbAdcDXbG9ue3vb2wA7kgaDfL90ysHAV23/1vYC2/Nt3wV8lTSPbWXa8Ehp4vcCUoD9SXm/pO26qy+EEELjtFpPbT6wCNhe0kPA88A6wLbAW0kDO4puAb4iaW7h2I7AV4CbK+rfW9Li0r61KAwWKT8GXVXtkvsxcj2GEPqDlgpqtl+QtDtwPPALYCPSyMVngWuA75VOOS5v55AmYJs08vFGYGKp7kn04WPGEEIIfa9fBjVJE4B32B4r6TbgcuCvpJ4XpOD0Oml+2gjbMyWNycdH5zquq/1esD7pHVsHaeh+cQTjtqRJ3O8hDek/o5bqStJmwFO2lxu/L2kwsADYzPYzhf2nkbKNjF2FP0MIIYReauo7NUmdklx6DzWwqqztO20PytubgJOA6bZn1in/cdtDaxuwcT40t6Id65IeR96Syx0GTJT0oqTZrPhYs6b2fwoW1TkeQghhNeoXA0Vsr1fY6iUJXkbSOqRHkOWBIVVlh0laCxgBLLC9sKLYnsCrts+1vdD2PaRe2622h5FGTFbpBObZfqm7doQQQuh7/SKorYRzge2BqySdmPMyXlan7CzgbaQJ19OLByQtkXQjMIgVe1uL6P7x7AHAwLx6QI9JGi9pqqSpSxeu0HEMIYSwkvpzUPt0Hi4/urYjT6a+GDgWeAL4OXBlzud4ZDf1TQH2ldRByudIzud4MHAv0Cnp4HydjYFjgP0lzQEeqVPnJ4AZwCm9ubHI/RhCCH2jPwe1K2yvRwpGSNqfNIF6NPA+YFfSu64/SHp/8URJR0maLGly3vUT4G7gftJoyYOK5W3PIr1H+6GkJ4G/kCZmr5/fx60wjD9nINk4t+VQSXuu6g2HEEJYNf1y9GMduwFnAVcVkhkfLem9pCC0eaHsw6R7M2mo/yLSAJHZpDRZAi4sVm57cl7SZmtgtu0XC4eXUEiCLGkXUlaSw23Pzqm4rpX0Udu/a9D9hhBC6KV+EdTyI8G3kALTjlVlbJ+dy75P0vq2b8z77877i2XvJT1SRNLhwFjSumuDgKeBO0ijJ8suAQ4v11dq6675/FNt/ypf7yZJ44DLJe3c8zuPNFkhhNBIzX78WFvqZT7p0eJ3qHjUV7Iv6V1W2VxSL2wZSScAZ5OWnRlF6oUdSxrNeOAKjbHHFaYNLNvyebWpBg8BB9j+XuncG4Ed6oyuDCGEsBo0tadm+0lS72k5efJ1b+u6ntISMaTRiRfavqmw7wFJnwcekzTIdjktVnfXWULuBVYc63Y6QgghhL7TLx4/roTP5AwiVQYW3rndApwgaRpwH6lXuBXwNeDO3ga0vtAuuR+bIfJNhhDKmv34sVckHU9aduYfpMEbxW0t4OBaQMtpss4ENiFlC5lDGvn4M9JCoeURk9tKulnSPEkz8ujG7tozOGdE2bQhNxhCCGGVtEyaLADbF1a988rvvf5EClq1srU0WevmeWzr5kOjSO/Ziu2INFkhhNAG+kVPrbdpsupYl9QbW06kyQohhDVHvwhqDTIMeLFif6TJCiGENUR/DmorpMmqR9IQUmB6votiU4g0WSGE0Nb6c1BbLk1WN7YAnrf9GkSarBBCWFO1ypD+LXKvrWwwsJA0iZtcZjbwKSJNVgghrHH6RVDrQZqsv+deW/Gc9UiZSLaqs1BoS6TJCiGE0DjNDmrFNFnzSe+n7gJeaETlOU3WF0ipse4hPXp8B/AN0r2ft1xj7HHAuIp6NgOeyh9rabLuLZ17o6TbbL9aLyBWidyPIYTQOG2TJquOSJMVQghrkP48UKQRbgHGS9pH0hBJAyVtT+qp9Ys0WSGEEBqn2Y8fAZB0HjDI9r/BcsvMLAG2tj2jUPbjwPGkeWezgfskPQx8vbYMTcFHgJGk4Ka8vQ4sBW4q1NkJTM+ZR2r7pgAX2b7K9tOSkNRZastgYAGwme1lA0l6I3I/hhDWNH2Zt7VfBDVSj7HbXpOkA4BLgSOAybaX5BRXnwFuk7Sj7b+UTjva9qSVbNdheaRjPZEmK4QQ+pH+8vhxc0prodWxVS53S363RU57dTWp9zWy4pwLJM2s2M4tleuQNKe2keafzSElP55J6uGVdRJpskIIod9oek8tD+ffi7Q0THcuA/YH/iTpbmAeMJwUgC4DflNxzmd72FNbmida19o1BXiUNyZ/u+KcZWmy8gTuEEIITdT0oEZKJjwMOCb3ni4BPp2PdRQL2l4AfCxPkt4WGAK8THrEWK+3NFHSaRX7n7O9VzdtOwU4oaotWTFN1he6qWsZSeOB8QAdQ3qVNjKEEEIX+kNQ+zJpMvNbgS/aPhI4EpYNFCGnoPpF6bwOYCg5iXFpbtjbbM8D/hlYp851lxZ+N7BEUvm93hG2r871L9dTK6TJ2oU0WOU623d1fav5YvbFwMUAA0dsU9UDDCGEsBKaGtQkHU169PhuUvC5S9K00rwycrAYVjp3F+DevDRMud6LulgZu1gO4Hrbh1ExX65kOPBS4dqRJiuEEPqZpgW1nFbqAlJgeDjv+yTwI0njbJd7ZrUg+J+FXYvzoA6ANwPvt/1b28eSsoj0tk2HA9+rc3h9YEtJGxBpskIIoV9qZk9tU+Ag21NqO2xfL2k0abThCmxfQnrntgJJ0yv2zQTWqygOcLft/Uv1XwlcWaf+JfnXhqbJCiGE0DhNC2q2v15n/0P1zpF0PPAt8mPACsulqbK9cZ16xlDRk8vvyf6LNPikbDZphGRD02RF7scQQmic/jJPrTc6SO+/qrYPN6j+9epsezeg/hBCCH1Edgy+a6aBI7bxiCPPb9r1+zJdTQgh9IU8oHBU1bFW7KlVUrzICiGENV7Tg5qk2cX0VJLmS3oiHxuTM3vUyh4oaXFhWyTpJUmvA+eU6r2uVO8cSZY0QtJmFfPOtpV0s6R5kmbk92u1YyuUz/sH5zo3Le0/TdKkRvx9Qggh9FzTg5rtYbaH1jbgk8DcOmV/ZXtQbQMGA98HngBOL5X9eKne2qCRFerOSZFvJmXz3xg4jJSJ5EVJs4E/1ml+JDQOIYR+pOlBDUDS2nn+F6Sg8nwPznkPaTXrTwJ75RRaVeWGSVoLGAEsyAmQy/YEXrV9ru2Ftu8BvgPcmid371SnGZ1EQuMQQug3+kVQIwWV2lD+7YDinLP3S1oi6RRJW0v6N0m/AyaRUme9DPxa0r9L2qni3dos4G0V9ZLrvZE0crLc21pE91MeliU07tFdvnHd8ZKmSpq6dGFlpzSEEMJK6C9Bregs4CuSBpEW9fxNXrzzZuBOYBTwNWA729+0/W7gRNKyNFcAG9Wpdwqwb14VYG0A2wNsH0yad9Yp6WAASRsDxwD754wlj9Sps5jQuMdsX2x7lO1RHeuu35tTQwghdKHZuR+/Tcq2vyEwXNI9pHRXw4C38EaGfGw/CGxSVU/OSjKlUO9RwKGFIj8hzT/bINfxudL5syQdBlyWkxoPA84FTrdtSZsBT5XaPpaVTGgcQgihbzQ7S/8U0pplBpYAr5AW5pwF/BWo9ZxGkgaD9MRsUkAbkOu9hvQocW4+9ndSD/DC4km2J+clbbYGZtt+sXB4CfBM7UMkNA4hhP6pqUHN9rWwbPThicBRwGakIPJX0mPB/7T9JKUs+pKGkYLfBrbnVFR/by53ODCW9HhyEPA0KSHxSRXnXAIcns+rbLOkXYmExiGE0C81u6dW8yPSo8ETSe+v1iEtR/NdUu/txpWpVNIJpMU7jyWNlFwMvAP4BunezyuWtz0OGFdRT/HxY0MTGkfuxxBCaJz+MlDkQ8AE2/flIfVzbN9CmlD9kVWo9wDgQts32X7Z9iLbDwCfJw0a6W4NtRXYXlIOaIVjvU5oHEIIoXH6S0/tVuAMSROAP5HatQtpoMjPVqHeW4ATJE0D7iNl8d+KNHryTtvlla5Xu4eemUvnhK47opGfMYQQema1BjVJcnUG5THAyaS5Z5sCS0lD5b9HyhiyAtuzSQM+6rJ9gaS5pGwjW5LeqT1Hepx5VE/bbfvp7q5VKv8fPS0bQgihcXr8+FHSP0kqjgDsrC2cKem2Wq5ESf8753OsbbMkPZvzM15eUe9twIukd1/bklJfDSFl8fhALQgWr1c4d4qkTxU+W1JnsYztSbb3tr058BbbO1FnzTRJt+cJ2UtyeqzisRlKC5iWz7lP0qdL+94naUa5bAghhL7Vm57a2sA/uitk+wfAD2qfJQ0FLgW2AI6rc9qxtif1oi1Fh+Uh9suRdCuwe/64lBQsLwX+rV5FtvdZiesPIHI/hhBCv9CbgSKDSUPoe0TShpL+Hfgzab7Z1+oMvQe4QNLMiu3cUrmOYtZ94H2keW0z8/Z6raDt/QoJjTcijaqc1kV7p0lakLe5SqsFTOrmHgWMBP7WVbkQQgirR296ajtTmitWlueOjSflctwd+DHwHtKE5q9KmghcD3zLdjFAfraHPbWlOeN+7XpTSJO3p+RdlSueStqBNEDk6noV235X6Zw7SGm5uvJu0lSEzYAHuilbrHs86e9Ex5BepY0MIYTQhd4Etd2BHSW9HbgLGFpR5mVgHml04TTSfLNHgT1sv1fSO4EPkt6hFU2UdFpFfc/Z3qubdp3CG+m0OuqUuQD4se3lsgcX3tGtb/uVwv59gbeTgnJXPkHKdHKapBttv95NeSDlfgQuhrTydU/OCSGE0L0eBTVJbwE+THqUOMH2sDwgo5j1fnPS/C+AvfK2Dunx3HF5FGLNSZK+k+d1/XMuV2Vp4XcDS3JuxqIjbF+d21m1kOcXgOHAdpK+a/vhZRWmRMnl8psDV5IeKS4tHy+U2440qXtP4EzSQJeJ9cqHEELoez3tqZ0EPE7qmTwk6VJSDsWiJaT3W2VH16nz+5I+2d2Fc3aO620fRjePP0nBa9naZpKOIWXb3xPYG/iVpI/UaSeSdgRuIPXsPgBcIWlMeVK1pA1JKwJ8x/aDOXPJ7yW9nHthIYQQmqDboJaXYzkJOMj2dElnknoy/1Iq+lztvZiknUijDHcgZeCfTQqK37VdW0X6v6lISdWD9hxOmr9WZX1gS0kLc5kdgA/Zfh64Oo/E/DVwUKnOgaRe5knAF21fmlcQ+AXwW0l7F8quR3r8ej/wZQDbT0l6HzBZ0tTe3E+kyQohhMbpSU/taOBk27cB2D5b0kvUGcYuaQ9gMvAl4KukntMwUqLgeyS9pxDYkDQTWK/Ote+2vX9xh+0rSUG16tq1d2RLSQM3/tX2/MK5l0i6nhV7fCNJ8+L2sP3XXHa+pP2BvW0vquVztL1AaWmbu4sTyW3/RdIOOffj++rcTwghhD7UbVCz/fGKfReXJzkXfAy413YxE8jzwHmS/hcwGlgW1GxvXFWJpDGkd1bl/WOpM3ma1CNcmpeN+UZVvbZnVkzQ/hM5O39p/xJSz668v3LdtMj9GEIIzdUXabJ+CRybezPXkt5fbUR6XLkLXUx+7oUO6vfu9ia972oJPcn92Ncit2QIoV2sdJZ+2zNqowdt71t7n2b7HmBfUnC5g7Rky63AP5Ee5T1UrkvSlpIukfTXnFZrJukd13XSCuu4XEMKatvbXq+2kSZff9j2FbnO64oTtfNmSSNIg1rKbdhW0s2S5uWUWGMLxzYDRuYVtovnDM51blqqbjSFlbhDCCGsHn2S0Nj2NOAzPSkrqYM0yfmnwO62X8yBbHdSrsiBLP8ocUPSO7Mus5uUH5sqLTNTWwF7w9KxdYGbSathH0KaaH5dzmhi6gf/2t8v0mSFEEI/0B/WUxsMjAB+mt+F4eT3wFTSJOiiD5F6Whv1pHJJwyStla+xwPbCimJ7Aq/aPjev53YP8B3gVtvDSINIqnQC82y/VOd4CCGE1ajp66nZnifpROAXku4Hnib1zkaR1j87tFY2D70/HngQmCTpgDyYo+aO/LRyS9sz8r5ZwDakFQCKk8VroyVvBi5ixd7WIrr/+xwADJQ0vJT2K4QQQhP0h54atr9H6vWcSRpocjlwiO3dakPs82PKi4BXSImMXyI9IhxaqOoDtlUIaEVTSKtdd5BWHMD2ANsHA/cCnXlOHpI2Jk3a3j8nTn6kTtM/QVr37ZTe3K+k8ZKmSpq6dOHc7k8IIYTQI03tqeWe2Ral3UOBhcA/CmNEOoDFpODyEduv5UnYZwA/J2X/KNZ7FIUeHvCTXMcGwCbA54rlbc+SdBhwWU7DNQw4FzjdtvNAkadK1xgLbEwa0XmfpOvqDfUvi9yPIYTQN5oa1GzvVt4n6Q/A2bavKu3fF7jD9tJ87hJSIuGqe3iYdG8mjZasDRCZTUrvJdKgkGJbJkvahLSiwOza+71sCVBcIHUX4DzgcNuzJR0HXCvpo7Z/1/O/QAghhEZq+js1SYMpBIzsIkkXkd6tXWH7qFpGE0nnARfbfgyWBbfl2L6X9EixllZrLGnpmUGkd3Z3kFJilV1CnoS94kyCZe3dNZ9/qu1f5evdJGkccLmknXt88yGEEBqq6UEtL/kytOqY0nI0naXdh5ByMj5W2v8jSsExJxr+AikzyT2kR5jvIE0RGEDqbRXbMo6KfJSlx48PAQfkwFk890ZJt+U0WVW3UylyP4YQQuM0PajlBMHzgWepXuSzMs9jme0zK3YfAFxo+6bCvgckfR54TNIg2+WlbLq7zhJyL7DiWKTJCiGEJuoXox+zgaTHg+XtYxVlb5e0pGIrB7ZbgPGS9pE0RNJASduTemp39jaghRBC6N9USDTflvIoxXHAlqQg+RxwIzDR9pzmtSwZOGIbjzjy/GY3o+Ein2QIoa9ImmZ7VNWx/tRT6xFJN0lanLcFkhZK+lnh+JJSFv6bSKtw72p7uO2dbH8J+IOk0YXzZhY/l645WtKMxt9NCCGERmq5oGb7INuD8rYecDdp7bR6NgT+QZ3VrleWpAE5mfHiOtvYRl4vhBBC95o+UGRVSBpJ6oUdK+kJ4K2kSdZFHyQFtSGkLCSNtrXtp/ug3hBCCL3Ucj21Gklrk0ZGTrI93fbbbQ8lZfAvljmGlP/xwopqagNOykvHVBmZy97cgLZHmqwQQugDLRnUJG1OyuW4FnCSpD1qa6axfE/tAlJvdFdgW0kXljKQ7JPzP5bnt60raRNJu0k6kpQr8slc9kOr2n7bF9seZXtUx7rrr2p1IYQQspYKajnQXAQ8TkokvK/tV2zfa3tooac2RNLPgfeTckXOBQ4E3gbcUKf6xcBkSYtIc+Z+S8r/uEIqr5Lpdd6pnb6KtxtCCKGXWu2d2gJgHeBA23d2UW4RaeHRT9fWT8tLwxxU71Gj7c56leW5bdeXyi8h5ZCslXkcONl2vaAZQgihj7VUULM9j5zGStI+wAnAdsCbSTkd7wL2A2bYPi+X2xk4lbSS9kbAi5LuA74CTCvWn0csXlrn8k/m64UQQuinWiqo1UjaD/gxcCIpa8h80uTqk4DvkleqzjkbpwATgc+TsvQPA44Avg38Op9b9Bvbo0vXGw1MavydRO7HEEJopJYMasBBwDW2i3khH5d0PGkttm2BR0mrZ79g++xCuWeBiZLG5+PlFQK6JekRYGRpdwfwE0nlFC2711YUCCGE0LdWW1CTJDcuJ9dk4ApJU4BbSb2tTlJPbQbw51zu98AwSV8graZd66l9BhgOVK19tndeKLRoLVIwBMD2Oxt0Hzz0zFw6J9zYqOoqRcqqEMKaolejH5XXVJHUKWlB/n1KLXuGpANLIwAXSXpJ0uvAORX13VZId1Xeri6U65S0bN002zeTelj/Tsoo8iRpRORgYG/br+VyzwKjSatT/waYSXrvdjawp+2ZhWvcDvw38DqwoJC1ZBApoI3tzd8qhBDC6tdlT03SjqR1yExa/XlIXiqmUl40c1Dh/LWArwP/DNQb4n6s7Um9azYAL5NWs74tf/4icJrtZyXdShoYAmmI/2DgUtv/lvNC/s32Q6W279PTC0vamtQbrLfUzIG27+jxnYQQQmiILoNa/od/PQBJewGX2V7Uk0UwJb0HOJ+Ue/E9thfUKXqBpLMr9l9h+98Lnzvy5Oqa9YArSL0vSD2sWrv3K7VlGqWRjhXH354/LiX1YK+xPbbeOcDS3IsLIYTQT/Tmndp7gC57H7kHsx/pUd1Q4DLg48CvJV1Gev/1UOnd2md72FNbmidX1641hTQYZEreVfm+TtIOwFbA1VXHAWy/q3TOHaR5biGEEFpIj96p5Xdp44Bf5Hddj1SU2ZkUCEYBXwO2s/1N2+8mDb3fitSz2qh06kRJ0yu2/+lB004hZQi5gRUTGddcAPw4ZxUptre2sOjg0v59Sb22H/fg+islcj+GEELf6GlP7QhSUPqE7U/k91IPFwvYfhDYpOpk21N4o0dV9M+kDCFVlhZ+N7CkYlTiEbavBqgYSk8e9Tgc2E7Sd20va7PtFe4955S8Evhb6fpVOiraU9Ple0LbFwMXQ1oktJvrhBBC6KFug5qkdwDnAfsCkySNIeVFLBrZxT/wZbNJPasxPbg2wPW2D6MwAKWO4RSWlpF0DClD/57A3sCvJH2EOuuq5UExN5B6dh8gTRkYY3uFwSC2p7N8iqzFwKhi0AwhhLD6dTf68V2kf+gn2P6NpE+RMniMLxV9sjxoQtIw0pIvG9ieU1H9sb1trKTDge/VObw+sKWkhbnMDsCHbD8PXC1pKCmDyEGlOgeSso2cBHzR9qWSvg38AvitpL17284QQgjN0V1PbSRwiu0fAdj+Xe7RNCS7v6SZ5NGVFe62vX9xR84gcmVV4cI8tqWklbD/1fb8wrmXSLqeFXt8I0lptfaw/ddcdr6k/Ulz3no02jOEEELzdTek/9qKfX/P79RWme2Nq/bnR5wr9OTyJO//Is1RK5tNGiH5IvCNOtebWW677T8Bh1eUXULq2ZXbUDU1wcC9FcHvrbZfqWpLTeR+DCGExmnF3I8d1O/d7U0aYdlnbNedfB5CCKG51Lh0jKtfLW1XA3NKrnYDR2zjEUeev9qvG/kgQwitStI026OqjrXaytdPFHJKLiCl7vpi4fiSnjwalTQjLydT+zyz+LlUdrSkGavW8hBCCKtDSwU122/PSYbfBGxKyr24wiRtSd8oJUf+h6TLG9UOSQMkuZS8ubiNbdS1Qggh9FxLBbWS44E/kbL0L8f2l22vV9uAb/ZRG7YuZvMvbJP66HohhBC60IoDRZC0Bynr/1dJKwe8mA915OObsHx2k8pMJ70wMk8ZuN32h1axrhBCCH2k5YKapIOAnwBPAF8GHqylvCrMVfs/pIVA7y+cOqVU1R15nMmBpfrXJSVj3hjYkbSW2pO2Oxt4D+PJE9g7hgxvVLUhhLDGa5mglntf3wQ+SUqY/C3gEOBHki6x/aXSKb/uZumYD+SclLU0V5Nz/shXSem2ngT+SGHF6wrT60zMPsv2mfVOityPIYTQN1omqAFbAM8BW+bUVwDXSPoNsP2qVNxVL0zS9sD1pfJLWD734+PAybZvWJV2hBBCWDUtM1DE9r25N7ZY0oTC/tm26659lkcqbiRpVF7yZbs65cbmEY3LbaRldj7S8BsKIYTQcC0T1Ao2AM6qc+xx4DXSI8RDJc0HXgB+T1ppYHfgH13U/RvbKm6kjP0hhBBaQCs9fuyW7R3yr1/PW6VVSVAs6RFSEuSiDuAnFWu67W77sa7qi9yPIYTQOC0b1AojHcvG2/7hSla7d8W6cGtRGCxi+50rWXcIIYQ+1tK5H9tBs3I/rk6RZzKE0Ehtk/sRQNJNhXRUCyQtlPSzwvHl8j9Kekse9DGsVM9y+R/zvtuKg1AK+8dImtrwmwkhhNBQLff40XZ55erbSIuC1rMhaXDInB5e4nhJh1bU8VLpugN4Y1BKlWMjXVYIIaxeLRfUiiSNBPYCjpX0BPBWcqqsgg+SgtoQSoGpjnNsn1+6zhjgc3XKb2376V40O4QQQh9pucePNZLWBq4EJtmenjP4DwWWlsocA8wCLqyo5vb8uHLTwr6JpQz/C4D/7rs7CSGE0CgtGdQkbU7K5bgWcJKkPSTNkTSH5XtqF5B6o7sC20q6MD82rNnH9gDbzwDY3tf2wGKG/7wNqvdSciXbP17SVElTly6c26hqQwhhjddSQU3SJpIuIk2yngHsa/uVnG1kaKGnNkTSz4H3Ax+xPZeUuPhtQKNTWU2vs6ba6fVOsH2x7VG2R3Wsu36DmxNCCGuuVnuntgBYBziwq9RYwCLgTuDTthcC2J4FHFR61AiApEuAI0q7a3+b8ny4X9r+ZOR/DCGE/qelgprtecA4AEn7ACcA2wFvBp4G7gL2A2bYPi+X2xk4lZQiayPgRUn3AV8BpuV6jwaOLl5L0jnAUNtH9f2dhRBCaISWCmo1kvYDfgycCNwCzAe2BE4CvgvslMttRnr3NhH4PDAbGEbqlX0b+HU+t1bvHGBQ/lhbo21M/vyXvsgmEmmyQgihcVrqnVrBQcA1tq/MWfpftf04cDywbd4ARgEv2D7b9rO2/5F/TiQN719u8Ed+LzcobwPyNgj4MDCwVk7SIxUjJEeS8j8uKG2VqwKEEEJovJbsqQGTgSskTQFuJfW2Okk9tRnAn3O53wPDJH0BuJw3emqfAYYDv1uZi0f+xxBC6J9aNvejpP2B40jv1IYAzwN3A1+3/Wyh3I7ABArv1EjB7Fu2H1rd7S5rxdyPkcsxhNBMXeV+bMmemqSJpIBW8zPbY0tlOoBnCrvOsX1OPjaatJp1Z6H8bcBtts8u1TMG+Fwj56mFEELoGy0V1CQN5408j3Pyz9eBD0p6FNjZ9muShgAfBU4unN4haSfbf+ziEpH3MYQQWlhLBTXbsyRtXftIGuhyNOnx4om2X8vH1gLWK5TbgjSs/73dXCLyPoYQQgtrqaAGYHuxpE2AQ0lD+rcCvgM8WigzB7gIQNIGpGH/5wMv5cVFBTxVUf1ESf9R2jcAeLiR9yBpPDAeoGPI8EZWHUIIa7SWGtIv6cz8mPFx4F2k+Wa7AesCD0t6QtK7C+VHkTKLDCflhHzW9gBgn3LdqyvvY75WpMkKIYQ+0FJBDbgaOAzYwPaRtu+x/UDO+jEcGANMywmOfwxcS5p0vR1pntnfJH26ge3pdd7HEEIIfadlHj9KeoQ0wbn2GeBNpAEb5fyMXySlzBpne1Hed4yk7wEzSUGuVk/kfQwhhDbRMkGtPOFZKao9CEy0fUXVOZIGSDoO+BdSQBTwd9Kk7Am53sj7GEIIbaJlglqNpA+TAtJIUiaRMyR9E7gJONX2y4XiFwDvJj2C/AMpqO0EnAcMBq4q1DuH1Zz3ESL3YwghNFJLvVOTtBVwHfA125vb3t72NsCOpHdq3y+dcjDwVdu/tb3A9nzbdwFfJc1jWybyPoYQQutrtZ7afNJaadtLeoiUGmsdUgLjtwLlidW3AF+RNLdwbEfSsjM3r0wDGt1je+iZuXROuLGRVbadSMsVQuiplgpqtl+QtDspG/8vSLkcFwPPAtcA3yudclzeziFNwDYpddaNpOVoenLN24Ctuy0YQgih6Zr++FHSSEk/l/SypD9L+lzp+BJJnfn3wcBvgU8BbwP+y/Y7be9HysB/S+G864BZwBnA9qQMI5sBhwCXUkpxJWlbSTdLmidphqSxhWObSVoh87OkwZJcXk1b0mmSJq3M3yOEEMLKa2pPTdI6pAEeN5OWgxkJXCtpse2LyuVtv0JaOqZYh1yx1IDtj5fKDSI9upxLyudYPLZubsOFpKC3M3CdpHN5Ix1Xldrfb1Gd4yGEEFajZvfUdiMFslPyII6HgbNYcd4YkkZImp23WZKekfQ6FdlBSucNk7QWMAJYYHthRbE9gVdtn2t7oe17SKm3brU9jLySdoVOYJ7tl+ocDyGEsBo1O6iJ1BMq9rRep6Jdtp+zPSxvw0nvyv4CTOnmGrNIjyq3A6Yvd/H0aPNG0lD+cm9rEd33ZA8ABubVA3pM0nhJUyVNXbpwbm9ODSGE0IVmB7X7SYM8zsrvp7YDvgRUTqauyTkdJwFHAR+QtBj4YTfXmgLsm9dZWxsgD9s/GLgX6JR0cK5/Y+AYYP88f+2ROnV+grTS9indXHs5kfsxhBD6RlODmu1XgYNIAzmeJb1f+yHw3aryktaWdBJpQMjvcrlX8nyycYVyR0maLGly3vUT0qrY95NGSx5UascsUk7JH0p6ktQDvApY3/ZQYIVh/HkgycbA+4BDJe25En+CEEIIDdT0If22/0Ka4NwlSYcA55KC0yjbf83ZRS6SdAHLj2Z8mHRvJg31rw0QmU1KkyXSoJBiOybnJW22BmbbfrFweAmFVbQl7ULKSnK47dk5Fde1kj5q+3e9uf8QQgiN0/SgBiBpB9Iin+O7KHYrsDspvdVAANs35HdiAMuy79u+l/RIEUmHA2NJ664NAp4G7gBOqrjGJcDh+bx6bd01n3+q7V/l690kaRxwuaSdu7/jEEIIfaFfBDXSMP396xz7LmmE4QJggaQTSKMOxwLUhvNXBaFc9gvAscA9pEeP7wC+Qbr384rlbY+j8BizUM9mvLGo6EPAATlwFs+9UdJttl+tFxCrRO7HEEJonP4S1Oqy/dkelrscuLy0+wDgQts3FfY9IOnzwGOSBtle3Mv2LCH3AiuOvVq1P4QQwurRn4LaSEnl9ctqxtsujm78TCGDftlA20vz77cAJ0iaBtxHeu+2FfA14M7eBrS+ELkfQwirKvKjvqFfBDXbUygsutlN2TNIqa96UvaCnMz4dGBL0ju150i5H3u8Vprtp3vavlz+P3paNoQQQuM0e55an5J0E3ARaU21DUiDTP5k+0u25xTzStY5X/nnGElTVkOTQwghrIK2Dmq2DyqskbYeaTrAA+Vyko4srIE2X9IcSUuBfevVLelySa9JWlyx3d6HtxVCCKGOtg5qRZJGAnuRFvN8ImcK6QCwfZnt9fL2ZlI+yqWsuD5b2ZmFoFncusxHGUIIoW/0i3dqfU3S2sCVwCTb04G35/31BqZ8GHjA9vN91J7xwHiAjiG9ShsZQgihC23fU5O0OSnv41rASZL2yI8X55B7aqXyA0kDUc4rH2uUyP0YQgh9o22DmqRNJF0EPE5KOryv7Vds32t7aM7puLTi1LOAGbav6sFlTq/zTm1696eGEEJotLYNasACYB3gQNufzguM1iVpgKTzgf1IyY27ZHuM7bVzMuUzgBsK79S2XvXmhxBC6K22fadmex455ZWkfYATSGuqvZmU//EuUgB7RtIHScmSnwLeH4t+hhBCa2rboFYjaT/gx8CJpAwj80kTsU8i5ZXciTR/7Ru2f7a62xe5H0MIoXHaPqiR1k67xvaVhX2PSzoeWAhsa/v6nlYm6VTg1PLudEgLSvsvsP3llWl0CCGE3lsTgtpk4IqcEeRWUk+tk9RTmwH8uTeV2f4m8M1GNa6/536MnHIhhFbS1kFN0mxgPVJP6v+RhvAvAqYD/wCm2X4tl12HFKwOJeWI/DNwiu17bF8u6UeSOm3PWP13EkIIoSfaefQjtofl0YgDSSMhnwOOsr0zKanxokLxU4F/AnazvTHwHeAmSUOr6o40WSGE0P+0dVAr+QBpQEi9Z33vAa6qjXy0/VPgddKIyXoiTVYIIfQja0RQk/Rm4GLSCMd5hUOfyZn6TwXuAI6StL2kIZI+S5qc/XATmhxCCGEltPU7NQBJbwOuJiUnPrd0+P/ZHpvLdZD+Hj8FhpKy+e9re34ftClyP4YQQh9o256apJGS/i9wP3An8C+2X69T9hDgX4GZpHdp/wncA3xa0g8kvavOZVYqTVbkfgwhhL7Rzj21EcBbgA/YXmENtZKhwLD8+0jgE8DngT8ALwCPlU+wPQYYAyBpAjDK9qGNaHgIIYSV07ZBzfa9wL2S1pV0Ommo/ibAa6Qh/RfbPiOXvRRA0vrAu0j5In8k6eekVFohhBBaQNsGtYIfkeaqHQ48SrrnvYAfSBpq+9uFss+TckS+AmD7kNoBSe6LxkWarBBCaJy2fadWsA9whu2HbC+1/art24D/Jg3zL/sf2++s2H8BME/SqZIWFDfgK8BB5f2SvtF3txVCCKFsTeip3Qx8Pb/3epQ0Cfu9wNGkASFlD3bRK7u90WmyQgghNI7sPnmq1m9IehNp0MchwBbAq6QUWD8oJTluioEjtvGII89vdjP6pcg7GUKoImma7VFVx/rF40dJsyWt0EBJn5N0VWnfmyVZ0hal/dMljS58vk7SHFJqrFOAbUijIf8JOBK4onT+tpJuljRP0gxJYwvHNqvqvUkanNuyaWn/aZIm9ezuQwghNEq/CGq9tCEp08esrgrZ/rjtobUN2DgfmlsuK2ld0mPKW3K5w4CJkl7MSZH/WOcytce3i+ocDyGEsBr1p3dqt0paWto3CLihtO9DwBJgI9IK1l2SNAx4iTRvbYHthZI2LBXbE3jVdi3jyD2SvgPsYPtTkjYjrYpd1gnMi5WyQwihf+hPPbW9clb9ZRswoVhA0kDgeOBBYJKkclC+Iz8O7CzsmwW8jZSYeLlMHznv442k4FnubS2i+6B/ADBQUq9yXUkaL2mqpKlLF67QcQwhhLCS+lNQu1vSnOIGfKt2MOdmvIg0h+x9pN7XdaWlYT5gW3XWPJsC7JvrWRvA9gDbBwP3Ap2SDs7X2hg4Btg/t+OROm3+BGmh0VN6c6ORJiuEEPpGv3j8mHtldUkaDNxEygbyEduvSTocOAP4OaX5ZpKOImUQqfkJaYHQDUhZRT5Xuv4sSYcBl0laTEqZdS5wum1XPX7MA0k2BnYB7pN0ne27en7XIYQQGq1fBLXu2H5F0teBO2wvzfuWAKdVPIKEtFzMAMDANaRHiXOB2cDfSSthX1i6xmRJmwBbA7Ntv1g4vAR4pvZB0i7AecDhtmdLOg64VtJHbf+uEfccQgih95oa1CTdAuxd2r02aXHO8qCRQ2wvlXQeKW/jY7AsuC2nlvcxX+NwYCywFend2dOktdNOqmjSJaR0Wkiq1+Zd8/mn2v5Vvt5NksYBl0vaueu7DiGE0Ff63eTrPC/tYdv/Uef4DGCs7Sml/acDV9r+c2HfCcAXgGNJS8ksBt4BfAMYYHv/HrZpM+Cp9CRSA0gZ+e+tKDfQ9quSTgO2rq3V1pVRo0Z56tSpPWlGCCEEup583RKPH3vC9pkVuw8ALrR9U2HfA5I+DzwmaZDtxb28zhJyL7Di2Ku9qSuEEEJj9afRj71xex6OX97Kge0WYLykfSQNkTRQ0vakntqdvQ1oIYQQ+rd+9/ixK5KeIC3iadI7tzcBX7Z9dj6+hPTYb0bhnLHAOGBL0ju150g5IMfYvqFQ7jbgtlpdhf1jgM/V6+quqv6e+zHyL4YQ+pu2efxo++213/OCns8B/1Mul5d8+Wxh1zrAT/Nq1bX3cgsqLnG8pPLq1RuS5sQV6x9Aml5Q73HjsbYndXUvIYQQGq+lglrJ8cCfgLvLB2x/Gfhy7bOkM0hD9btzju3ziztqPbU65be23W2qrhBCCKtHSwY1SXsApwNfBYZIqs0p68jHNyFNsq7ZhJ6ZKKk86nIAad5bCCGEfq7lgpqkg0gZQp4g9cYetD0gH6vNWfs/wGeA+wunTilVdUeei3ag7cm29+3LdhdJGg+MB+gY0qu0kSGEELrQMqMfJW2S1yj7GWn04s6kSdU/knRWxSm/zsvP1LbzS8dreSInr0KzpktaXLGd3tVJkfsxhBD6Riv11LYgDQzZ0vbzed81kn4DbL+ylUq6BDiitLv2dylnK/ml7U/muWrLUo5Iehw4uTiaMoQQwurXMkGtlvpK0vqSJtSG3tueDdxZ77w8UnF90pD+3SiNlrR9NHB06ZxzgKG2j2rsXYQQQuhLLRPUCjYAzgLOrjj2OG8MtT9U0v/Kn18Gns3Hb6+qNC8xMyh/rL2jG5M//8X2OxvU/hBCCH2kpSZfA+QFQP9muzrjcM/qmEFF/sg6ZfcFLrK9df78CGkCeFEHKQlz+Y+5ey3xcj2R+zGEEHqnbSZfFxVGOpaNt/3Dvrpu9NhCCKH/armgllNgrXQvLdfR2Yuyt9GzidshhBCarGWG9IcQQgjdiaAWQgihbURQCyGE0DYiqIUQQmgbEdRCCCG0jQhqIYQQ2kYEtRBCCG2j5TKKtBtJ80nL6LS7YcDsZjdiNVhT7hPWnHtdU+4TWudeR9quXLer5SZft6En6qV7aSeSpsZ9tpc15V7XlPuE9rjXePwYQgihbURQCyGE0DYiqDXfxc1uwGoS99l+1pR7XVPuE9rgXmOgSAghhLYRPbUQQghtI4JaCCGEthFBrUkkHSDpCUnTJU1odnsaSdIMSQ9J+oOkqXnfhpJulfTn/HODZrdzZUj6oaQXJD1c2Ff33iR9KX/HT0j6UHNa3Xt17vMMSc/k7/UPkg4qHGvV+9xc0h2SHpP0iKTP5v3t+J3Wu9f2+l5tx7aaN6AD+AvwNmAd4EFg+2a3q4H3NwMYVtr3LWBC/n0CMLHZ7VzJe9sb2A14uLt7A7bP3+1AYMv8nXc0+x5W4T7PAE6uKNvK9zkC2C3//mbgT/l+2vE7rXevbfW9Rk+tOd4NTLf9V9v/AK4CPtbkNvW1jwGX5d8vAz7evKasPNt3Ai+Vdte7t48BV9l+1fbfgOmk777fq3Of9bTyfT5n+/78+3zgMWBT2vM7rXev9bTkvUZQa45NgacKn5+m6/9xtRoDt0iaJml83vdW289B+o8LeEvTWtd49e6tHb/n4yX9MT+erD2Sa4v7lNQJ7Ar8jjb/Tkv3Cm30vUZQaw5V7GunuRV72t4NOBA4TtLezW5Qk7Tb9/x9YCtgF+A54Ny8v+XvU9J6wDXA52zP66poxb5Wv9e2+l4jqDXH08Dmhc+bAc82qS0NZ/vZ/PMF4OekRxbPSxoBkH++0LwWNly9e2ur79n287aX2n4duIQ3HkW19H1KWpv0j/wVtq/Nu9vyO62613b7XiOoNcd9wDaStpS0DvAp4JdNblNDSBos6c2134H9gYdJ93dkLnYk8IvmtLBP1Lu3XwKfkjRQ0pbANsDvm9C+hqj9I58dQvpeoYXvU5KAHwCP2f6/hUNt953Wu9d2+14jS38T2F4i6XjgZtJIyB/afqTJzWqUtwI/T//9MAC40vZkSfcBP5X0v4G/A59oYhtXmqQfA6OBYZKeBk4Hzqbi3mw/IumnwKPAEuA420ub0vBeqnOfoyXtQnoENQM4Blr7PoE9gSOAhyT9Ie87lTb8Tql/r4e10/caabJCCCG0jXj8GEIIoW1EUAshhNA2IqiFEEJoGxHUQgghtI0IaiGEENpGBLUQQghtI4JaCCGEtvH/AbLv0eaM5p4vAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 시도별 투썸 분포\n", "plt.barh(index, v2)\n", "plt.yticks(index, a, fontsize=13,fontproperties=fontprob, rotation=0)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 170, "id": "d16a5b61", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "투썸의 전국 대비 전라북도에서의 비율 : 3.159%\n", "투썸의 전국 대비 부산광역시에서의 비율 : 5.505%\n", "투썸의 전국 대비 강원도에서의 비율 : 3.159%\n", "투썸의 전국 대비 경기도에서의 비율 : 21.209%\n", "투썸의 전국 대비 인천광역시에서의 비율 : 5.686%\n", "투썸의 전국 대비 충청북도에서의 비율 : 3.520%\n", "투썸의 전국 대비 경상북도에서의 비율 : 4.422%\n", "투썸의 전국 대비 전라남도에서의 비율 : 2.347%\n", "투썸의 전국 대비 제주특별자치도에서의 비율 : 1.986%\n", "투썸의 전국 대비 경상남도에서의 비율 : 4.242%\n", "투썸의 전국 대비 울산광역시에서의 비율 : 2.617%\n", "투썸의 전국 대비 세종특별자치시에서의 비율 : 0.722%\n", "투썸의 전국 대비 광주광역시에서의 비율 : 2.527%\n", "투썸의 전국 대비 서울특별시에서의 비율 : 24.639%\n", "투썸의 전국 대비 대구광역시에서의 비율 : 6.137%\n", "투썸의 전국 대비 대전광역시에서의 비율 : 3.881%\n", "투썸의 전국 대비 충청남도에서의 비율 : 4.242%\n" ] } ], "source": [ "sum_star = sum(v2)\n", "for i in range(len(a)):\n", " print('투썸의 전국 대비 {}에서의 비율 : {:.3f}%' .format(a[i],v2[i]/sum_star*100))" ] }, { "cell_type": "markdown", "id": "68f5f878", "metadata": {}, "source": [ "#### 전국 이디야" ] }, { "cell_type": "code", "execution_count": 172, "id": "97549cd2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "전국 이디야 점포 수 : 2158\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
상호명지점명상권업종대분류명상권업종중분류명시도명시군구명행정동명
0이디야커피원주반곡동점음식커피점/카페강원도원주시반곡관설동
1이디야커피춘천제일점음식커피점/카페강원도춘천시강남동
2이디야커피흥업점음식커피점/카페강원도원주시흥업면
3이디야커피주문진점음식커피점/카페강원도강릉시주문진읍
4이디야커피강릉입암남부점음식커피점/카페강원도강릉시성덕동
\n", "
" ], "text/plain": [ " 상호명 지점명 상권업종대분류명 상권업종중분류명 시도명 시군구명 행정동명\n", "0 이디야커피 원주반곡동점 음식 커피점/카페 강원도 원주시 반곡관설동\n", "1 이디야커피 춘천제일점 음식 커피점/카페 강원도 춘천시 강남동\n", "2 이디야커피 흥업점 음식 커피점/카페 강원도 원주시 흥업면\n", "3 이디야커피 주문진점 음식 커피점/카페 강원도 강릉시 주문진읍\n", "4 이디야커피 강릉입암남부점 음식 커피점/카페 강원도 강릉시 성덕동" ] }, "execution_count": 172, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_이디야 = df_coffee[df_coffee[\"상호명\"].str.contains(\"이디야\")]\n", "df_이디야.index = range(len(df_이디야))\n", "print('전국 이디야 점포 수 :', len(df_이디야))\n", "df_이디야.head()" ] }, { "cell_type": "code", "execution_count": 173, "id": "e599adc6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ,\n", " ],\n", " [Text(0, 0, '전라북도'),\n", " Text(1, 0, '부산광역시'),\n", " Text(2, 0, '강원도'),\n", " Text(3, 0, '경기도'),\n", " Text(4, 0, '인천광역시'),\n", " Text(5, 0, '충청북도'),\n", " Text(6, 0, '경상북도'),\n", " Text(7, 0, '전라남도'),\n", " Text(8, 0, '제주특별자치도'),\n", " Text(9, 0, '경상남도'),\n", " Text(10, 0, '울산광역시'),\n", " Text(11, 0, '세종특별자치시'),\n", " Text(12, 0, '광주광역시'),\n", " Text(13, 0, '서울특별시'),\n", " Text(14, 0, '대구광역시'),\n", " Text(15, 0, '대전광역시'),\n", " Text(16, 0, '충청남도')])" ] }, "execution_count": 173, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAFACAYAAABHvzzrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAucklEQVR4nO3debwcVZn/8c+XBBBZZEswAhJ0cAH3yeCOyiIoKow/GWF0jILigsu4g6PDOE4Ux9HRUXBER0VFMW4jbihGQMdRISgKARGEEGIiCRC2IQQSnt8f5zS30um+Xd19+i6V7/v16ld3V1c996muqudWV9U5pYjAzMyaZYvJTsDMzMpzcTczayAXdzOzBnJxNzNrIBd3M7MGcnE3M2ugmZOdAMCuu+4ac+fOnew0zMymlYsvvvjGiJjV6bNaxV3SjsBngEcBARwLXAl8FZgLLAX+JiLW5PFPAo4DNgBvjIgfjhd/7ty5LF68uE4qZmaWSbqu22d1D8t8DDgnIh4BPBa4AjgRWBQR+wCL8nsk7QscDewHHAacJmnG4OmbmVm/ehZ3STsABwD/BRARd0fELcARwBl5tDOAI/PrI4CzImJdRFwLXA3sXzZtMzMbT50994cAq4HPSfqNpM9I2hbYLSJWAuTn2Xn83YHrK9Mvz8PMzGyC1CnuM4EnAJ+MiMcD/0c+BNOFOgzbpAMbScdLWixp8erVq2sla2Zm9dQp7suB5RHxq/z+66Rif4OkOQD5eVVl/D0r0+8BrGgPGhGnR8S8iJg3a1bHk71mZjagnsU9Iv4MXC/p4XnQQcDlwNnA/DxsPvDt/Pps4GhJW0vaG9gHuLBo1mZmNq6617m/AThT0lbANcArSP8YFko6DlgGHAUQEUskLST9A1gPnBARG4pnbmZmXdUq7hFxCTCvw0cHdRl/AbBg8LTMzGwYU6KFqnU298TvDTTd0lMOL5yJmU037lvGzKyBXNzNzBrIxd3MrIFc3M3MGsjF3cysgVzczcwayMXdzKyBXNzNzBrIxd3MrIFc3M3MGsjF3cysgVzczcwayMXdzKyBXNzNzBrIxd3MrIFc3M3MGsjF3cysgVzczcwayMXdzKyBXNzNzBrIxd3MrIFc3M3MGsjF3cysgVzczcwayMXdzKyBXNzNzBqoVnGXtFTSpZIukbQ4D9tZ0rmSrsrPO1XGP0nS1ZKulHToqJI3M7PO+tlzf1ZEPC4i5uX3JwKLImIfYFF+j6R9gaOB/YDDgNMkzSiYs5mZ9TDMYZkjgDPy6zOAIyvDz4qIdRFxLXA1sP8Qf8fMzPpUt7gH8CNJF0s6Pg/bLSJWAuTn2Xn47sD1lWmX52EbkXS8pMWSFq9evXqw7M3MrKOZNcd7akSskDQbOFfS78cZVx2GxSYDIk4HTgeYN2/eJp+bmdngau25R8SK/LwK+BbpMMsNkuYA5OdVefTlwJ6VyfcAVpRK2MzMeutZ3CVtK2n71mvg2cBlwNnA/DzafODb+fXZwNGStpa0N7APcGHpxM3MrLs6h2V2A74lqTX+lyPiHEkXAQslHQcsA44CiIglkhYClwPrgRMiYsNIsjczs456FveIuAZ4bIfhNwEHdZlmAbBg6OzMzGwgbqFqZtZALu5mZg3k4m5m1kAu7mZmDeTibmbWQC7uZmYN5OJuZtZALu5mZg3k4m5m1kAu7mZmDeTibmbWQHX7czczG9rcE7838LRLTzm8YCbN5z13M7MGcnE3M2sgF3czswZycTczayAXdzOzBnJxNzNrIBd3M7MGcnE3M2sgF3czswZycTczayAXdzOzBnJxNzNrIBd3M7MGcnE3M2ug2sVd0gxJv5H03fx+Z0nnSroqP+9UGfckSVdLulLSoaNI3MzMuutnz/1NwBWV9ycCiyJiH2BRfo+kfYGjgf2Aw4DTJM0ok66ZmdVRq7hL2gM4HPhMZfARwBn59RnAkZXhZ0XEuoi4Frga2L9ItmZmVkvdPfePAu8A7q0M2y0iVgLk59l5+O7A9ZXxludhZmY2QXoWd0nPA1ZFxMU1Y6rDsOgQ93hJiyUtXr16dc3QZmZWR50996cCL5C0FDgLOFDSl4AbJM0ByM+r8vjLgT0r0+8BrGgPGhGnR8S8iJg3a9asIWbBzMza9SzuEXFSROwREXNJJ0p/EhEvBc4G5ufR5gPfzq/PBo6WtLWkvYF9gAuLZ25mZl3NHGLaU4CFko4DlgFHAUTEEkkLgcuB9cAJEbFh6EzNzKy2vop7RJwPnJ9f3wQc1GW8BcCCIXMzM7MBuYWqmVkDubibmTWQi7uZWQO5uJuZNZCLu5lZA7m4m5k1kIu7mVkDubibmTWQi7uZWQO5uJuZNZCLu5lZA7m4m5k1kIu7mVkDubibmTWQi7uZWQO5uJuZNZCLu5lZA7m4m5k1kIu7mVkDubibmTWQi7uZWQO5uJuZNZCLu5lZA7m4m5k1kIu7mVkDubibmTVQz+Iu6X6SLpT0W0lLJL03D99Z0rmSrsrPO1WmOUnS1ZKulHToKGfAzMw2VWfPfR1wYEQ8FngccJikJwEnAosiYh9gUX6PpH2Bo4H9gMOA0yTNGEHuZmbWRc/iHskd+e2W+RHAEcAZefgZwJH59RHAWRGxLiKuBa4G9i+ZtJmZja/WMXdJMyRdAqwCzo2IXwG7RcRKgPw8O4++O3B9ZfLleZiZmU2QWsU9IjZExOOAPYD9JT1qnNHVKcQmI0nHS1osafHq1atrJWtmZvX0dbVMRNwCnE86ln6DpDkA+XlVHm05sGdlsj2AFR1inR4R8yJi3qxZs/rP3MzMuqpztcwsSTvm19sABwO/B84G5ufR5gPfzq/PBo6WtLWkvYF9gAsL521mZuOYWWOcOcAZ+YqXLYCFEfFdSb8AFko6DlgGHAUQEUskLQQuB9YDJ0TEhtGkb2ZmnfQs7hHxO+DxHYbfBBzUZZoFwIKhszMzs4G4haqZWQO5uJuZNZCLu5lZA7m4m5k1kIu7mVkDubibmTWQi7uZWQO5uJuZNZCLu5lZA7m4m5k1kIu7mVkDubibmTWQi7uZWQO5uJuZNZCLu5lZA7m4m5k1kIu7mVkDubibmTWQi7uZWQO5uJuZNZCLu5lZA7m4m5k1kIu7mVkDubibmTWQi7uZWQO5uJuZNZCLu5lZA/Us7pL2lHSepCskLZH0pjx8Z0nnSroqP+9UmeYkSVdLulLSoaOcATMz21SdPff1wFsj4pHAk4ATJO0LnAgsioh9gEX5Pfmzo4H9gMOA0yTNGEXyZmbWWc/iHhErI+LX+fXtwBXA7sARwBl5tDOAI/PrI4CzImJdRFwLXA3sXzhvMzMbR1/H3CXNBR4P/ArYLSJWQvoHAMzOo+0OXF+ZbHkeZmZmE6R2cZe0HfAN4O8j4rbxRu0wLDrEO17SYkmLV69eXTcNMzOroVZxl7QlqbCfGRHfzINvkDQnfz4HWJWHLwf2rEy+B7CiPWZEnB4R8yJi3qxZswbN38zMOqhztYyA/wKuiIiPVD46G5ifX88Hvl0ZfrSkrSXtDewDXFguZTMz62VmjXGeCvwdcKmkS/KwdwGnAAslHQcsA44CiIglkhYCl5OutDkhIjaUTtzMzLrrWdwj4n/ofBwd4KAu0ywAFgyRl5mZDcEtVM3MGsjF3cysgVzczcwayMXdzKyBXNzNzBrIxd3MrIFc3M3MGsjF3cysgVzczcwayMXdzKyBXNzNzBrIxd3MrIFc3M3MGsjF3cysgVzczcwayMXdzKyB6tyJyaa5uSd+b+Bpl55yeMFMzGyieM/dzKyBXNzNzBrIh2UqBj184UMXZjbVeM/dzKyBXNzNzBrIh2XMCvKhPZsqvOduZtZALu5mZg3k4m5m1kA9i7ukz0paJemyyrCdJZ0r6ar8vFPls5MkXS3pSkmHjipxMzPrrs6e++eBw9qGnQgsioh9gEX5PZL2BY4G9svTnCZpRrFszcyslp7FPSJ+CtzcNvgI4Iz8+gzgyMrwsyJiXURcC1wN7F8mVTMzq2vQSyF3i4iVABGxUtLsPHx34JeV8ZbnYWb3cUdmZqNX+oSqOgyLjiNKx0taLGnx6tWrC6dhZrZ5G7S43yBpDkB+XpWHLwf2rIy3B7CiU4CIOD0i5kXEvFmzZg2YhpmZdTJocT8bmJ9fzwe+XRl+tKStJe0N7ANcOFyKZmbWr57H3CV9BXgmsKuk5cDJwCnAQknHAcuAowAiYomkhcDlwHrghIjYMKLczcysi57FPSKO6fLRQV3GXwAsGCYpMzMbjjsOGwF3HmVmk83dD5iZNZD33G3a8vXyZt15z93MrIG85242Bfm8jQ3Le+5mZg3UiD137+WYmW2sEcXdJoZPYJp1NhW3DRd3M5t2pmIxnWp8zN3MrIG8525mPfm81vTjPXczswZycTczayAXdzOzBnJxNzNrIBd3M7MGcnE3M2sgF3czswZycTczayA3YjKzzVaTuzHwnruZWQO5uJuZNZCLu5lZA7m4m5k1kE+omjWYe3PcfLm422avyVdM2ObLh2XMzBpoZMVd0mGSrpR0taQTR/V3zMxsUyMp7pJmAKcCzwH2BY6RtO8o/paZmW1qVHvu+wNXR8Q1EXE3cBZwxIj+lpmZtVFElA8qvQg4LCJemd//HfDEiHh9ZZzjgePz24cDVxZPJNkVuNFxNrs4JWM5zuYZp2SskjlV7RURszp9MKqrZdRh2Eb/RSLidOD0Ef39sUSkxRExz3E2rzhTMSfHmV5xpmpOdY3qsMxyYM/K+z2AFSP6W2Zm1mZUxf0iYB9Je0vaCjgaOHtEf8vMzNqM5LBMRKyX9Hrgh8AM4LMRsWQUf6uGUod+HGd6xSkZy3E2zzglY438EHS7kZxQNTOzyeUWqmZmDeTibmbWQC7uZmYNtFkUd0kPn+wcNhclv+sSsUrlI2mbEnFyLK+Pm6mJXPabxQlVSbdFxA6TnUeVpPdFxHumWqxhlfyuS8Qqlc9Um68+/ta1tDUg7CYiHjLiXD7XRy7HjjKXyTKRy74R/blLellEfKHy/j0R8b7qKDXjTOTK9yagVEHuGavUvJX6rkvFKrjsnxERF3SLWzdOqZwKrosvrRNjgvK5ukQuLQXX6WLbfcntY1iN2HOXdGdE3H+c97X+W0r6h7p/MyIW9Ih1bkQcUnn/h4h4WOX97RGxfZ2/VSJWqXkr9V2XilVw2U+1+Sq2Lo7zNx4XEZfUHHek+Ui6X0Tc1ec0pdbpktt9sfVoWE0p7msjYptx3pf4ed/XytdhoQ6cU8lYXeLXnreS33WJWKXymWrz1SN+34WwQ4xXAm8HHhUR9wwZa6h8JP0V8KUSuZTKadA4E1GL6mrEYRk6/KSS9BzGfgIN9VOotfJJGmblK/lftFisAeat5HddIlapfDrFeWQf048ip02UWBclvYN0KO/pBQr7UPlIegrwDeC4goW9xPY6aJyR1qJ+NKW4d/KRyuuBrwoquPJJ0sISOZWKVXDeinzXBWOVyudixjbGe4eIAwVyGmR5SToGWAtcS+rA793ASlIX3MsHyWPQfCTNAdZGxC2SdgHeCbwIODYifjBMLoPmNOo4Wcnto7amFveIiEe23ki6rc5EE7DyXdz6U6S7VE1YrBHO20Df9Qhjlcon2o+VDhhnoJwKLq83k7bzvYCdgN8Dx/db2Avl8ycg8vxvDSwF5kXEzf3kUjinUW/3JbePvjSmuOcFNOxPnqIrX5uIiA+23kh61wTHKjZvhb7rYrFK5lNKgZyKLK+I2L+S0/7A3wA/l/QfEfHuCc5nO1LNmUvaIXkRcImkV0bEj/qIUzKnknGAqbM+NuWE6r2kY12tLzQiYkbl87on1e7PpivfbkDfK5+ku4F/ar0F/jEitu43p1KxSs1bqe+6VKyCy/5eYH3rLbDFJM9XsXWxQ+xHkk5gLomIl9WcZiT5SHo56bDFSRHxqT6nLbVOl9zui20fQ4uIaf8gdSu80aPt89uGiP1y4Gbg1X1O9yXgi9XHoDmVjDXsvJX8rkvEKpUP8ND2x2TOV8l1sUusnYHLgScPEaNIPsDjgDXA/gXmq1ROg273I6tFfc/DRP2hyXwAlw05fbGVrxLz9qkQq/S8Dftdl45VKp/Cy2vgnAoXwm0LxCiST44zY9h8RpBT6e2+2PbR69GIwzKdSDorIo4uGO9xwKURsaFQvJMi4gNTIdaw81byux40lqQfRMSwJ6mLGlVO/SwvSQfUjRsRPx1lPpIe3OXvLqt8tgE4ICK+Mkgu/eY0qjhTYX1scnHfqOHPBP/tjitxm9uAp0bE90adz6iV/K4HjSXp7ojYasC/OZICOExOpSj1LVNHxOj7lmkdj249t45FzwZWk8553AhsF1OsL6h+TYVlP+2vlpF0EWMNByIintj2+WXAVvnDhzGOysrX7k/ArqQz6aLtJEkHS9n4pEpVK/5/AK8Gxi1kks7rktOmgSMOHCfO0PNW+LseOpY27hRrpqRr8uvvAM+vjBoR8dBx0jljvFyrcYBxC2CpnEqtixGx9zh/o5+WyUPnExFbSPoA8GfgAuA7EbFnjn9rROwkaWWdfErlVDhOqfWxiGlf3IGPka4kORn4dIfPHwo8r2asBwO/BR5DWpiXAfuRfipemz/vKSI2aagg6Qmka4xviNwPjKTX1Aj3mVqZ91Zi3kp+1yVivbzt/Zb5eQXwBuCZpEYj54wXpFQBLJkThdbFbpRuXH+BpHdGxPk1JimZT1Qe1WH9KpVTqTgvb3s/6LIvY6IO7o/yAVyYn2+vDLszP6/tM9aqyuub2+P1EWcH4InA/fP7TwNPoHK2vN+YBb6noeet8HddLFae5mXAv+fX9w77PZN+OfwKeOYQ3/nAOZVaF/M0nyUVn61JO3ULgUWkSz4nZP0hXWP/LeBzpH5tbgReWI1Haj3bz5VJpbbXYt/1qNbHfh9N2HPvZktJpzN2XK+uLSR9mfRfd9Bm4k8Cvk86trhe0sHATaRrZ388QLyDgN9FxOpB8qkYet66GPS7Lh3rUmD+oH9Y0meBnwJfIe21fQm4Iw8b1DA5lVgXV0XEbNK123OBfwGuB24HjoiIfrpVGDaf1+bnw4Gfk76bLwLfHCBWqZxKx6kaan0cVtPvxHRrPyNLmk86qbME+AVwg6STWx/3EeqDpOtjdwU+ACwAbgF2jogX9pNT9kPgekm/kHTUANOXnLdu+vquRxTrz6Rm9n2RtCq/fBFpb+uPwM+AHem/AJbKqdTy2jE/3xvpnMzLSecNzouIOyYyn4h4VkQ8C/i/yuthOlEr8h2NcNsYaNkXMxE/D0b9oNDPe+AaUodKrfcPJO3h7ER/hy5WVF5vT9pTegPpioBrSJdW1c6NdK3tDsBLgD+Qiv3OfX5HpeZtKh+W2Yaxn/e1fwYDd+fnW/LzwcANpFaTw66bg+ZUanm15q36He9JOun/solef/K0mxz2ANbk53WtnCcqp5LzVmLZl3pM+8Mykt4JPFDSG+l8grifEzW7kE6spAkj/izpRmAW/f0HXyfpARFxK6knvluAu4Cv5cdDJI17NUmbLSLiNuBMSV8DTgHOU7p70C01Yww9byW/68LLLU0QsVZStVuGn5Dmre4laTNynB9Lmgf8TNKfYuM7Mk1UTqXWxU0OKUXE9ZKeD5wr6YKIuK5GnFL5dPO6/Hx8H9OUymkk81ZgfRzKtC/upL2sK0mXGv1Ph8/X9RHrF8BrgI8CSHoucD/gKuDLfcT5BnC2pLOAVwJnkY6/LyX15vj9PF7dAnbfChYRdwNvkfRR4PPAkTVjlJi3kt/10LG6XJ/e+q5eURn2+R6hShXAkjkVWRcj4uD88sq24ZfmdWgB9W7FN3Q+ku4hrfMzlfpLEnBPzucr+bnuZalFcioZp+CyL6LJjZg2ugNKzWn2IR3yuCs/9gKOif47D9oS+AfgScBPgH8jLdxdIuJf+4mV421yGz1JM4CLgH+JiJ4npErNW5fYfX/XJWJ1uSb6rhjn0sYe8RZHxLy2YSeS7hBU616kpXIa1fKStE1ErM2vtwL2ioirJiIfSZ2OP0dELKsbo3ROheMUXR+H1bjiLunZEfEjSadHRD8/8VrTbwM8lfSf+5cRceOQ+ZwYEadIOhLYMSI+P0CM9ps1t4Y/i9Q/yHdrxik6b5W4A33XlennRMTKYWNJOjQifjhoHpU4AxXADnEeFBErhsmDwstLw7XkHdX6c2ZEvGQycxrVvE2mJhb3DTF+69G6cb4TEc/vPWbPOEM1Q9b4XRn8ifQz92HAVVGz/4tS81bKsN9RJU6pZV8qn1Jxii0vSfdExJa9x5yYfHK8Evc4LrW9TqltYxjT/ph7h+NckvR0OpwIif46Rjq0y9/bKh/3Hi+nzzF2PH1Gvn66lcOxkl4PPAtYFBGn9cjjj4z1w3Ev6fLVVnPpQ4DTSMX9WkkHRMSfe87ZgPOmjZtXtzuRNE8vILXAe3VErO8ybvty26JtmV1MujpoHvCriFjVPn2HGHlQkWU/zOV5Q89XB8Osi+1N6yWpfSegTpcaQ+cj6asR8WJJH4qIt0u6ADii8vk55O44IqJ2fz/D5FQyTsnto4Rpv+eugh0jtW0IYuMF9RZSR/4Hk/rF+Ot8BUunOCd3Gp79kdSQ5DPAq4B3RMRXeyUv6eaI2FnSmojYKQ/7CLAt8HrgE8D6iDhhVPMm6RmV6c/N47e8gPSz9mTgPcD3I+L948xPt+UWefqPk/rT3pXUwdqSPmJsEnO8Zd+pALLpRlqrAJaYrw45DbMujned9QNJ12KnBMc5aVxo/bktInaQtCIiHiTpKtJ5qWvz8NtJJzaJiDPHybtYToXjFNs+iogJuN5ysh7AI4CH9DH+7m2PvUmXaO1Oaoz0PdJe8teABQPm9FPgwPz6ucC5Naf7fX5eUxn2S+Bh+fXDgN9M1LwB9+TnY0i9+v2UfOMH4MnA/w6x3M4i/dODdD/LM0a57Ekn0Lo9nlh9P+T6WHu+Rr0uAo8lNf+fPVHbBrlbAXI7EFKbjV0qw/vqM7/UdzSK73qU20ft72fUf2AyH6Q940/1Mf5uwP0q77cgXZI3h3S51GPz8H2BS8aJ86+kfjS26/DZCmDL/PoBwNIeOS0ETmoVKjZubLG8EmsrKo2nRjhvjyIVvIeR7om5itTh0lLyzR9Ivyau63NZzSBdIjoHuBp4YB7+QPI/tlEu+y4x+iqAJeer1PLK45wKHAtsn9/vBywj3UZuwrYNyhf3Uut0ye96JNvHQOveqP/ARDyAL1Qeb6wM/0vggj7i3EvqU+RW0vHRnfNCeSKplenWebytSL07dotzF6nw3gy8pe2zGxk7HLYNsLJHTv9H+om3lnR8fZvKZ78nt1TNG8mVo5w30k/Ul+U4HyZdF/yf+bOljHWSti2wrM9l+HHgu/n1LcDM/HomsHoClv3QBbDwfBVZF/M4a4HFeX08Na+bL+pzPkqsP6WLe6nttVSckW0fgzya0rfMi0nHsteSutVsuRZ4UB9xbiWd0Hkc8O4cbw2ppdpdpMukIPWsN143sOsiYg9SXyWvlfS1fF06pD33R+bX+5JWnvFsiIhDSIcZHkNqVNO6DvwK0klV8vMVI563t5H64PgA8HTSccQ35c+uI+3pkvMcd74k7SxpC0k7SjqTdOx1fv74JtIxafLzzeOEKrXsjyX9FL9O0qmk657fEhF9dblccL5KrYuQ+nKZBxwAPJy0g3F+/bkqnk8ppXIqFafY9lFCU4r73RHxXuD0tuG3kvqHqCsiYh3pv+yVpJ9l60lXOFxD2lAB/iqP083MHOwnpG5+9yZ1Jgap9eqHJT2RtBL0aoDUinUdqXgJaN0l/hPAJyR9knTzj0+MeN5aV31cBzyb1GPiU/KwhcBHJR0KfAjodZL4RtKvkutIe0gHRsRN+bOLgL/Lr1+S33dTatmXKIBQbr5KrYuQt/OIuCxSi9Uzgf+VNLfuTBXKZ0tJLwO2yc/bdxlvInMqGafk9jG8Uf80mIgHYz/r/hL4Zttnt/YRp9XJzy6kn2qtn2vHkU6MLCX9d/4D43S6RFvHQKRe+NaQ/mNvQyrwa0hdy27dI6e1be/3JK00T83vDwE+Ajx71PNG6mv7b4Hj8/t5ebqtSceWTyXtMf8nPW52TNorejhpb/kS4HfkE5akPZybSb9EVgP7TdSyr7x/e/4u5va5LpaaryLrYo6xpsOwVwOXU/Mm2YXWnx+TDjG2Hj8iFfjWMhz3EOUIt9dScYptHyUeIw0+UQ/ysbq8gV9HujFB69FPx/9rOgz7AfCq/PoNwHepHNvtEmeTY6mkAvyFAebtex2G/SfwmT7jDD1vpD3Al7RW3jzsy8Drhlx+M0nnEy4ln9giXalwBDBnEpd9XwWw8HwVWRfzuD/qMvxr1Oz5smQ+3ZbhANMVyalgnJFsH4M+pn0jpuxj+XkF6cRaVT99uZzfZbgAIuLjpBNk44qIWR0Gf5T0c68vEXF4h8HvJe299+P8LsNrz1tE3CvpbDY+nPcx0qGngUVqzPE6Sd8kFdSPRcSfSC1weym17Dc5RBIRn1K60cobSYfQ+jLkfJ3fZXhf62Ie99ldPnodaQ+1jmL5bDSxtB3ppiiDKJVTkTij2j4G1YRGTL3ub3hPRKyU9PLoo18XSQ+OiGWSjiP1v37hUIlOQXneLouIXw04/Tzg16R+0PtqPt5lue1AOpm1lBrdKoxq2bf9jVmkk9rjnfzslVNf89Up5qDrYrfvKMdrfbYBOCByz4x9xB5629DYnaKKKLW9Drtt5BgDbx8lNKG4t7oRFek/5gY2bj5+RUQ8pt9+Pkr1UzLdSFKMs1JImtEqSpKuIJ0gPC8itpe0I+kwxI2kK03G636gtdx6dqtAKjybdKtQatmXLIAl5qtDzIHXxUrry9ZzK85s0nH/9aTltV0/BUjSzhFxs6RlEdHrn2x1ur1JDcIuiIiQtDoiZklqnXhcBzwv0knygUi6Jnq0Rh8w7rjbRh6nyPZRJN/pXtyrNE6nSON9Vhmn2p/F+cAz2LhY/Cki/ijp5GFWvskg6Tx69B8fEQfWKISXkY5B/p50LHk2ec9E0mmkE4q7AV+PiP+okddQ3SpU4gy87EdRAAt0F1FsXZT0AVI3AxcA34mIPfPwNRGxk1JXtdv2MW+PBr4UEY9Vf100P5l0UnU98PmIeFNrz13SetKVKfcjnZ/ouTcv6RDSpYm3kC4zvSEiNqhDF9k94vTaNpZFxMvr7CCW3j6G0ZRj7huRtAD4QURUbwJR57/Yf1Ve/5F0Uq7qC8D7SH21T6viTurLpkX5/XEdxuvaaZZSB2jbk25q/HXS1Sn3SvdN8lxSC71HkG4CUWfl7dR51lNIVyXcI+nD9HHZ2CDLPiK2GKcA3lopgP0Ydr5Kr4tReVSH1SLpQ8A/RuoK+RDSPWb79W5SQ5+vA5dp4z6Ybo+Ih0nq5/rvc0iXLm5LajewtaQb6P8uXq1tQ8DnSPeZrbq18nlXI9o+Blf3zOtUfQDvAJ6UX+8AHEba29q5bbxa92Ws+Tfvmez5LjAPa/PzK+p+T6T7Si4l7ZlsYKxZ9lrSJWNX5vdbk+8TO06sobtVKLnsSSdM30i6XHFZZXjrMrmV1Lj6psR8lVwXSd1gfItUtN5O+gXywn7nLS/vy0itN39LOqQE/d2r9DrGrhr6OvA0YFVbLte3htVdhyvvtycVz9pXSXX7PkmNkGb1sx6V3D5KPJrQiOn9wI8l/ZrUo9xXSd1p1joBNh5JO0haJKn9e5q2x7IkHZjn5/mSnsRYC7q6tgA+TfoJ3bo/5JakLk3vye/vZqxVXzeHAwcCS/LP1d9VPruDsQYu25M2mk6KLHtJf0Pam3o8qfHJ/SW9sJ8YFSXmq1OOg66LrwV2JF2i91zSoYIv1v27FbcA/03qa2VtjHWhLEnb5/x2kDTeoZ37RUSrhedqUiOzXSXdOUA+0DbvEXF7RFyWc5olaXbrMV6Qts/fImlnUkOvhw6QU6ntY2hNKO5rSc3Mv0H6mbo0atx2rhel7gK+ROq97d5h4002SW/LL88lNaJZR2rV+Q8DhNtAujTstfn9nRHxWNLeM6Rjir0KbIluFUot+1IFEMp1F3GfYdbFiHhWRDyL1AK39XqQ/urvR+qqdg2pyFfdkoe3nru5p/LPaXvgtjz+kwfIZzzbkg6xraw8d6R0zOTPkq6U9CbStf/fB86JiF8O+PdLbB/DG/VPg1E/SCtt6/WTSCvM2/P7dzLW2mxDjVh7kP7bPojUeu6rwBYdxit2iGcCv6fWz9/lpEY0a0jHpmvPG6kLhWWkQwoPIm3MWzDWwvBnwEGkwxsf75HPnZXXM4Gfkxt55RirgU+Sjl0fPOpln6dZ054f/R+WGXq+RrEuUmmBW5m3Nfl5Xa84lWmeTLoKqTV8Lall532PcWKcS+obfUvSnu0chjss0/GQEOkX0bbVR484dwDHk35l3UM6/LRlv991ye2jxGOkwSfi0b6ASXted5BOsOxAH31x52JwN3An6efnjMpnDyf1O3IA0/CYe2Ujaj3PIx1/3Qv4C8Zada7vEed6YKv8eglp77S18j4vbxy3kvuZHyfO0N0qlFz2efqhCmCp+RrFuthl3o7Jz/OB+T2mr/7T+iVwWKf57RHjSNIe62+Ab7Wtj63v+c66MduXf2V4X8fcyTsJpH86H8/Lel5lnaq1bUTB7aPEY6TBJ+JBhz6xgc8z2A0MtgMeTPov/lvgfxjrUvcjpGuTryXdOWbS573PeVtdfc6v30K66mIP0h1iTgZO7hFn18rrfyJ1jXtbZdhDaDsR1SXO0N0qlFz2edqhCmCp+Sq5LuZicjdj/yzu6VYUe8RZW3n9GuDT7cNrxjmM1DK21f1tq7i/Mj+fAJzQb05tw/st7u07CaeTLmUUY3dP6rlt5GmLbB8lHo26zr1F0hzgwTFc67KtSL0v7g4cGtP8i5J0/4i4s9VoJA+bSbqUbF5ErBki9mUR8agCOc4B7oiI2icau8Toa9lXGh7NJF2DLdIe8f0HzaNDTgPP1zDrojrfZi8iYlmfORwWEefk1w8lNULaQ9Kdw3xP1fVxgGlPiIhTOwzv64bb7dfq53MclwDvjz5b7XaJX2T76PvvTvOaNVL55M9PgH8mHYP74SSnNDRJD4xKq0hJR5I6lhr0ioVpr1QBHKVccK4HXhqpK+lh450ZES8ZcNq3kdaZ3/XTiKlLrKdExP8OOn2XmP02Ynp6RPysbdghwOMjop/+iaYUF/ceKnu8Q+2hTDb17ofltoi4RUP0w9I0wxTAUZB0U0TsUihWX3u3bdPe11JTud+bmtPV7qagTkylPuE72Yt0TX01XnuncnXidMqra5ypxsW9QtJX2PTa2b/Nnw21hzLZtHE/LO0CODUi3lynifXmYpgCWOjvn0Q6eXpyRFxXaarfujHJzcAREfHIcWJ8NSJeLOlDEfF2SReQrpZaFqlJ/DmkuxAREQeME+c8xraNZ7JxT4ofIjX+ej7pEsL3dYnRvg62+t1pF3XWQUnntg16BqmFcad43XrGLBZnqnFxr8jXuUK6Zvok4IMRsV3+bFrvudelGn3wNE2pAlg4p7eSTqYuJl1Z8VeV4n4nqfn6a0g3e+naSKf1D0rSioh4kKSrSJeNXpuH357jEBFnjhOn/ReMGLtW/ZHAUaT7hr4B+EREfIoeSq9r/R6OGXWcyebi3kFlI1oTY50+bS7FfbPbcy9VAAvndBHw2ohYrNQZ1ZGkRkyzNdYpWevmzf0U9z+QrlW/b94GKWSStibdTnAXUiOyUyLix5Kell8/rUaM+4q7pOfn+bupx2TV6dv723kpXfqGj4hjRx1nqmlkx2EjMlPSu1pvIuL9k5nMICQdT+qCdAtSr36fnOSUpqpN9ngmqqhX7B4Ri/PrxcBcYCulrhImnFL3tbcCNwBXkS4NXE26tG9voNV/+m9IudZxZo79HNJ15M8k9e5Y15Vt79/Tx7SjiDOluLjXtwXw6Px62v3cyYecXkfqICuAE/PJ4g9PbmbWRbX/9rtIrVW3JR0unAy7A28GHkg6DLMlqRHcbFIduTuPt56Ncx/PqyS9mzRPL46IJf0kFBEflLRlRNzT/pmkY4F9I+JtHSYdSZypxsW9vrsj4pjJTmIIryP1BrgEQNKFpPtCurhPTXdI2jEibiE1MltNasX5eEmj75dkU+tb17m3SLoNeADptoH7AReTbkSyolMASaeS/lEtI/VV82rSoZ2nRcRvBszrJsb6bKm6FHjVJMSZMlzcKyS17nU4Q9K+DNbB0lQ1i9SiseU6UvetSPoUqVm8qL/XZaO1CHiXpK+R7sH52w7j1Fk/t8yX+m2Tn4c6Uah0N6FLSb/+ZpF+TXwb+KCkE0mtMv+7y+TrSOvXAaQudXcltSO5q8v4tVLqMvx66h8eKhlnynBx31irkdK9pEuhNvmZNo2dD7xX0jvy+38kNWmHdNOAL09GUlNE0QJYyPuBnwJ/D7wxItZp7KYPrRcPovchwp+TzrMszs+XMnYIBfq/0fodpBOOInWUNZO0/uwPnEfq5OzfOk0YEW+5bwZSA8GnAe8CLpJ0TER8p89coPv8r6K/5VgqzpThq2VqasB17g8mdWX6YNKKvAJ4bkRcO+6EmwFJP2bTOxT9P9Kt7HaQtDIi5kxCXluQejS8Pb9vXcXVali3LUBE/N8AsfttxblJNwGSfkDqAOz0LpPVjf0q4N+B57S3FK0xbevWiJt8BNxV9wq3UnGmEu+51/fT3qNMXZFu9vx40k98Ab+OiLt7TLZZiIiDOw1X3lWejMKe/+69bHxDj+vz8Dvzc99FHe7rq2Zhn7l06v/lD3S+nWBfIuLTkjaQDtf0e/u+vccLPQlxpgzvuZt1IemTEfHa3mNOD5J2iYibcgOpNRHRfn23NYj33M3aSNo50q36Dp/sXAp7h6SN+myR9CjS9eXn9Xspok1tTbjNnlkxkh5NOjEI6WqQaU3SFyW1jq0/n7F5a83rL4EXA7+Q9LiJz9BGxcXdNnuSPqSx+5weQv/HfaeyvwUW5eb9ayLi8jxcpLYP746Ip5OuWnnzJOVoI+DibpbuSHWR0l3v5zN2srEJJ6T+TLpv7tdIl8LOZqyxziPIXQAAZzHWAtsawMXdLN3I+L9J9ypdGxGtK6MkaXtJO7Qek5XgEGYCryD13ng18Cvg3fmzXUldCEBqoTntD0PZGBd3s9QU/j3AGjZtXXlLHt56nm4UEbeSGhy9AdiXseJ+M7mVMrAj/XXaZVOci7tZKoBBOuY8v+2z2fkxKz9PV58DjiF1AdBq37CE1FgL4K/p3MWBTVO+FNIsi4hfSLpVlZtB99O/+BTVaoh1s6TFwF/m4QF8Evip0n10nwh0bMxl05P33M027jTq84ztzTbBOyuvf07qAwaAiLgUeA5wCXD4ED0z2hTkFqq22avuqUt6KHBBROwx3fsTaidpF9J5gzfjFqqN5+Ju1kbSYyLid00o7rmXy3Z7km6qsbI6MCK+MCFJ2YRwcbfNXpcCCKkf76XVAdOtAEo6t+aoERHPHmkyNqFc3G2zJ+m83mMBqQAeONJkzApxcTdrMEn3ULOlbURsNeJ0bAL5Ukjb7Em6nfoFcLq1Uv2LymsBV1WG7Q6sJTVmsobxnrtt9iTtVX0LXEa64TOk679/1fowIq6bwNSKa91RSdLTSLdW/OeI+Mxk52Xl+Tp32+zlgv3niLguIpYC38/DngZ8CtiQP5vWhT17qqTPku51eqoLe3P5sIxZcoek60j9nX9B0hmk4n5oRCyf3NQGJ2k5qcuB1aQ+dB5NOjTzqIi4ZjJzs9HyYRkzQNLNwAuAJwPHAg8BDu73hs1TjaT9gS2BbYHHklqoHg5cAbwtIupeKWTTjIu7GSDp1oh4QOX9y4APA+9sWktOSbOAtwJ/D7w1Ik6d3IxsFFzczUhXzETE9m3DHgH8BHh7RJzZecrpS9LhwCsj4q8nOxcrz8XdjHSj6Ii4rMPwJwB7RcS3JiEts4G5uJuZNZAvhTQzayAXdzOzBnJxNzNrIBd3M7MGcnE3M2ug/w8E+cYFqgthpAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "v3 = [len(df_이디야[df_이디야[\"시도명\"]==a[i]]) for i in range(len(a))]\n", "index = np.arange(len(a))\n", "plt.bar(a, v3)\n", "plt.xticks(index, a, fontsize=13,fontproperties=fontprob, rotation=90)" ] }, { "cell_type": "code", "execution_count": 174, "id": "845f1d64", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAD4CAYAAABv7qjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2dUlEQVR4nO3de7xWVb3v8c/XhUJCiAolirK8luY9dNs2jRLNSzf3sXYaJZuj6D5eKncZqaXWLqWtRy0rt1biSc0yzfISKia581KCZt6LCvOGgspNQAW/548xHpxMnmdd4Fk8F3/v12u+WGvOMcccY72qX2POMX5DtgkhhBDayTqNbkAIIYRQbxHcQgghtJ0IbiGEENpOBLcQQghtJ4JbCCGEttOv0Q14sxs6dKg7Ozsb3YwQQmgZM2bMmGt7WFdlIrg1WGdnJ9OnT290M0IIoWVIeqK7MvFaMoQQQtuJ4BZCCKHtRHALIYTQdiK4hRBCaDsR3EIIIbSdCG4hhBDaTgS3EEIIbSeCWwghhLYTi7gb7MGn59M58cZGN2OFWWcf0ugmhBDCGouRWwghhLbTksFN0iRJiwrH5CplOiTNLhxfKFwbLWlW4ffZkkbXeNZKZUMIITS/lnotKWkYcH/+dV7+93XgA5IeAXax/ZqkwcBHgC8Ubu+QtLPtP9WhHf2A14BXahQ51vbkNX1OCCGE1dNSwc32HEnbVH4ljTyPBiYCJ9p+LV9bBxhUKLcFcArwz3Vu0ja2n6pznSGEENZQSwU3ANtLJW0KHAacCGwNfAd4pFBmHnARgKQNgVuA84EXJS0DBDzZi8eOzPfdZvuDa9oHSROACQAdg7vctSGEEMJqaKlvbpLOzK8fHwPeDXwa2B1YH3hI0uOS9iyUHwXcAQwDOoBnbPcD9uviGetL2lTS7pKOBNYFnrDdrx6BDcD2xbZH2R7Vsf4G9agyhBBCQauN3K4GrgUesr28cP4oSceQAt19kvYCPgvsDYwH7iSN3P4u6bPA06V6lwJTJJn0He1F4AngT8AzXbRnpqRq58+yfWYv+xZCCKFOWia4SXoYGFn4HeAtpIkdy0rFv0QKaONtL8nnjpH0PWA2sH2xsO3OLp67A3B9qXzl1WalzGPAF2zf0KtOhRBC6BMtE9xsv6v4u1J0ewCYZPuKavdI6ifpOOBfSYFRwD+AP5AmoRTLjgMurfH4J4AT1qT9IYQQ1p6WCW4Vkj5ECkwjgYXAGZK+CdwEnGL7pULxC4A9gc8DfyQFt52B84CBwFWl6n9re3TpeaOByfXtxRt22mwDpkdWkBBCqKtWm1CyNXAd8DXbm9vewfa2wE6kSSPfL91yCPBV27+zvcj2Qtt3Al8lrYNbnTY8XFpAvogUaH9aPi9p++7qCyGEUH+tNnJbCCwBdpD0IPAcsB6wHfB20gSQoluAr0iaX7i2E/AV4OYq9e8raWnp3DoUJpWUX4+uqXrklox8kCGEsLKWCm62n5e0B3A88EtgY9JMx2eAa4DvlW45Lh/nkBZymzRT8kZgUqnuyfTh68cQQghrT1MGN0kTgXfaHidpKnA58DfSSAxSkHqdtL5tuO3Zksbm66NzHddVfi7YgPQNroM05b8443E70mLw95CWApxRSaElaQTwpO2V5v1LGggsAkbYfrpw/jRS9pJxa/BnCCGEsJoa+s1NUqckl75T9a9W1vYdtgfk4y3AScBM27NrlP+Y7SGVA9gkX5pfpR3rk15T3pLLHQ5MkvSCpLms+rqzovJ/DpbUuB5CCKEBmmJCie1BhaNWMuIVJK1HejVZnkBSrexQSesAw4FFthdXKbY38Irtc20vtn03aRR3q+2hpBmW1XQCC2y/2F07QgghrD1NEdxWw7nADsBVkk7MeR8vq1F2DrAVaeH2zOIFScsk3QgMYNXR1xK6f217INA/71bQY5ImSJouafryxasMJEMIIayhZg5un8rT7EdXTuRF2RcDxwKPA78Arsz5Io/spr5pwBhJHaR8keR8kYcA9wCdkg7Jz9kEOAY4QNI84OEadX4cmAWc3JuORW7JEELoW80c3K6wPYgUlJB0AGkh9mjgvcBupG9hf5T0vuKNko6SNEXSlHzqp8BdwH2k2ZUHF8vbnkP6zvYjSU8AfyUt8N4gf69bZfp/zmiySW7LYZL2XtMOhxBCqI+mnC1Zw+7AWcBVhaTJR0v6Z1Iw2rxQ9iFS30xaIrCENJFkLin9loALi5XbnpK30tkGmGv7hcLlZRSSLUvalZTl5Ajbc3OKr2slfcT27+vU3xBCCKupKYJbflX4NlKA2qlaGdtn57LvlbSB7Rvz+bvy+WLZe0ivGpF0BDCOtO/bAOAp4HbSbMuyS4AjyvWV2rpbvv8U27/Oz7tJ0njgckm79LznkX4rhBD6QqNfS1a2mFlIeuX4Haq8AiwZQ/rWVTafNCpbQdIJwNmk7W5GkUZlx5JmPx60SmPs8YXlBiuOfF9licKDwIG2v1e690ZgxxqzMUMIIaxFDR252X6CNJpaSV7E3du6rqe0NQ1pNuOFtm8qnLtf0ueBRyUNsF1Ot9Xdc5aRR4VVrnW7jCGEEELfa4rXkqvhMzkjSTX9C9/kbgFOkDQDuJc0Stwa+BpwR28DW1+oR27JNRW5KUMI7abRryV7RdLxpO1uXiVN8ige6wCHVAJbTr91JrApKfvIPNJMyZ+TNiwtz7DcTtLNkhZImpVnQ3bXnoE5w8pmdelgCCGEumiZ9FsAti+s9k0sfxf7Myl4VcpW0m+tn9fBrZ8vjSJ9hyu2I9JvhRBCG2mKkVtv02/VsD5pdLaSSL8VQghvPk0R3OpkKPBClfORfiuEEN5kmjm4rZJ+qxZJg0kB6rkuik0j0m+FEMKbQjMHt5XSb3VjC+A5269BpN8KIYQ3u1ZZCrBFHsWVDQQWkxaDk8vMBT5JpN8KIYQ3raYIbj1Iv/WPPIor3jOIlNlk6xoblrZE+q0QQgj11+jgVky/tZD0/epO4Pl6VJ7Tb32RlHLrbtIryXcC3yD1/byVGmOPB8ZXqWcE8GT+tZJ+657SvTdKmmr7lVqBsZrILRlCCPXXNum3aoj0WyGE8CbUzBNK6uEWYIKk/SQNltRf0g6kkVtTpN8KIYRQf41+LQmApPOAAbb/HVba3mYZsI3tWYWyHwOOJ61bmwvcK+kh4OuV7W8KPgyMJAU55eN1YDlwU6HOTmBmzmRSOTcNuMj2VbafkoSkzlJbBgKLgBG2V0w46Y1myC0ZQqivyNfaeE0R3EgjyG5HUZIOBC4FPg1Msb0sp876DDBV0k62/1q67Wjbk1ezXYfnmZG1RPqtEEJoQs3yWnJzSnux1bB1LndL/vZFTqd1NWk0NrLKPRdIml3lOLdUrkPSvMpBWr82j5RkeTZpxFfWSaTfCiGEptPwkVteBrAPaUua7lwGHAD8WdJdwAJgGCkQXQb8tso9n+3hyG15XrBdadc04BHeWETuKvesSL+VF4KHEEJoAg0PbqSkxUOBY/Jo6hLgU/laR7Gg7UXAR/Ni6+2AwcBLpFePtUZPkySdVuX8s7b36aZtJwMnVGtLVky/9cVu6lpB0gRgAkDH4F6lpQwhhNADzRDcTiUtin478CXbRwJHwooJJeTUVr8s3dcBDCEnSy6tLdvK9gLgX4D1ajx3eeFnA8sklb/7fdr21bn+lUZuhfRbu5ImtVxn+86uu5ofZl8MXAzQf/i21UaEIYQQ1kBDg5uko0mvJPckBaE7Jc0orUsjB42hpXt3Be7JW9KU672oi526i+UArrd9OFXW25UMA14sPDvSb4UQQpNqWHDL6aouIAWIh/K5TwA/ljTednmkVgmG/1U4tTRP/gB4K/A+27+zfSwpK0lv23QE8L0alzcAtpS0IZF+K4QQmlojR26bAQfbnlY5Yft6SaNJsxNXYfsS0je5VUiaWeXcbGBQleIAd9k+oFT/lcCVNepfln+sa/qtEEII9dew4Gb76zXOP1jrHknHA98ivx6sYqX0V7Y3qVHPWKqM7PJ3tP8mTVIpm0uaUVnX9FuRWzKEEOqvWda59UYH6ftYteNDdap/UI1j3zrUH0IIoY/Jjsl6jdR/+LYefuT5DXl2pAgKIbSiPPFwVFdlWnHkVpXiQ1cIIYSs4cFN0txi2itJCyU9nq+NzZlCKmUPkrS0cCyR9KKk14FzSvVeV6p3niRLGi5pRJV1a9tJulnSAkmz8ve3yrVVyufzA3Odm5XOnyZpcj3+PiGEEHqv4cHN9lDbQyoH8Algfo2yv7Y9oHIAA4HvA48Dp5fKfqxUb2VyySp15+TLN5N2D9gEOJyU2eQFSXOBP9VofiRODiGEJtTw4AYgad28fgxScHmuB/e8h7S79ieAfXJqrmrlhkpaBxgOLMqJlsv2Bl6xfa7txbbvBr4D3JoXie9coxmdROLkEEJoOk0R3EjBpbIEYHuguGbtfZKWSTpZ0jaS/l3S74HJpJRcLwG/kfQfknau8u1tDrBVlXrJ9d5ImmlZHn0tofulEisSJ/eol288d4Kk6ZKmL19cdZAaQghhDTRLcCs6C/iKpAGkzUV/mzcRvRm4AxgFfA3Y3vY3be8JnEjaDucKYOMa9U4DxuRdCNYFsN3P9iGkdWudkg4BkLQJcAxwQM6A8nCNOouJk3vM9sW2R9ke1bH+Br25NYQQQg80Orfkt0nZ/TcChkm6m5RGayjwNt7IyI/tB4BNq9WTs5xMK9R7FHBYochPSevXNsx1fK50/xxJhwOX5eTJQ4FzgdNtW9II4MlS28exmomTQwgh9K1G7wowjbRnmoFlwMukDULnAH8DKiOpkaRJIz0xlxTY+uV6ryG9Ypyfr/2DNCK8sHiT7Sl5K51tgLm2XyhcXgY8XfklEieHEEJza2hws30trJiteCJwFDCCFEz+Rnpd+F+2n6CUtV/SUFIQ3ND2vCrV35PLHQGMI722HAA8RUp8fFKVey4Bjsj3VW2zpN2IxMkhhNDUGj1yq/gx6ZXhiaTvW+uRtsH5Lmk0d+PqVCrpBNImoseSZlYuBd4JfIPU9/OK5W2PB8ZXqaf4WrKuiZMjt2QIIdRfs0wo+SAw0fa9eSr+PNu3kBZmf3gN6j0QuND2TbZfsr3E9v3A50mTS7rbw20VtpeVA1vhWq8TJ4cQQqi/Zhm53QqcIWki8GdSu3YlTSj5+RrUewtwgqQZwL2kXQO2Js22vMN2eeftte7Bp+fTObHrgWnkgAwhhN5Zq8FNklw9U/NY4AuktWubActJU+y/R8pAsgrbc0kTQ2qyfYGk+aTsJVuSvrk9S3rNeVRP2237qe6eVSr/nz0tG0IIof56/FpS0j9JKs4Y7Kxs4ClpaiUXo6T/nfNFVo45kp7J+R8vr1LvVOAF0rex7UgptQaTsoK8vxIMi88r3DtN0icLv1tSZ7GM7cm297W9OfA22ztTY882Sbflhd3Lctqt4rVZShuplu+5V9KnSufeK2lWuWwIIYS1ozcjt3WBV7srZPuHwA8rv0saAlwKbAEcV+O2Y21P7kVbig7PU/NXIulWYI/863JS0LwU+PdaFdnebzWe34/ILRlCCE2lNxNKBpKm3veIpI0k/QfwF9J6ta/VmLIPcIGk2VWOc0vlOopZ/oH3ktbFzc7H65WCtvcvJE7emDQLc0YX7Z0haVE+5ivtTjC5mz4KGAn8vatyIYQQ1q7ejNx2obTWrCyvPZtAyhW5B/AT4D2khdFflTQJuB74lu1ioPxsD0duy3OG/8rzppEWgU/Lp6ruvCppR9JEkqtrVWz73aV7biel++rKnqQlDCOA+7spW6x7AunvRMfgXqWlDCGE0AO9CW57ADtJegdwJzCkSpmXgAWk2YgzSOvVHgH2sv3Pkt4FfID0ja1okqTTqtT3rO19umnXybyRpqujRpkLgJ/YXilLceEb3ga2Xy6cHwO8gxScu/JxUuaU0yTdaPv1bsoDKbckcDGknbh7ck8IIYSe61Fwk/Q24EOkV4wTbQ/NEzeKWfY3J60fA9gnH+uRXtsdl2ctVpwk6Tt5Xdi/5HLVLC/8bGBZzv1Y9GnbV+d2VttQ9IvAMGB7Sd+1/dCKClNC5nL5zYErSa8al5evF8ptT1ocvjdwJmlCzKRa5UMIIaw9PR25nQQ8RhqpPCjpUlKOxqJlpO9fZUfXqPP7kj7R3YNzto/rbR9ON69FSUFsxd5qko4hZfffG9gX+LWkD9doJ5J2Am4gjfTeD1whaWx5cbakjUg7EHzH9gM5E8ofJL2UR2UhhBAaqNvglreBOQk42PZMSWeSRjb/Wir6bOW7maSdSbMSdyRl/J9LCo7ftV3Z1foHVEl11YP2HEFa/1bNBsCWkhbnMjsCH7T9HHB1nrn5G+DgUp39SaPOk4Av2b4071jwS+B3kvYtlB1Eei17H3AqgO0nJb0XmCJpem/6E+m3Qgih/noycjsa+ILtqQC2z5b0IjWmv0vaC5gCfBn4KmkkNZSUkPhuSe8pBDgkzQYG1Xj2XbYPKJ6wfSUpuFZ7duUb2nLSBI9/s72wcO8lkq5n1RHgSNK6ur1s/y2XXSjpAGBf20sq+SJtL1LaUueu4oJ023+VtGPOLfneGv0JIYSwFnQb3Gx/rMq5i8uLpQs+Ctxju5hZ5DngPEn/CxgNrAhutjepVomksaRvWuXz46ixCJs0Qlyet6v5RrV6bc+ustD7z+TdAErnl5FGeuXzVfdti9ySIYTQHPoi/davgGPz6OZa0vetjUmvMXeli0XUvdBB7dHevqTvYS2hJ7klGynyWoYQWtFq7wpge1ZltqHtMZXvbbbvBsaQgsztpK1ibgX+ifSK78FyXZK2lHSJpL/ldF2zSd/ArpNW2T/mGlJw28H2oMpBWsT9IdtX5DqvKy74zoclDSdNfim3YTtJN0takFNtjStcGwGMzDt+F+8ZmOvcrFTdaAo7g4cQQli7+iRxsu0ZwGd6UlZSB2mx9M+APWy/kAPaHqRclP1Z+RXjRqRval1mSym/TlXa3qayI/dGpWvrAzeTduc+lLRg/bqcIcXU/j8Blb9fpN8KIYQm0gz7uQ0EhgM/y9/KcPIHYDppMXXRB0kjr417UrmkoZLWyc9YZHtxlWJ7A6/YPjfvJ3c38B3gVttDSZNNqukEFth+scb1EEIIDdDw/dxsL5B0IvBLSfcBT5FGa6NI+68dVimbp+wfDzwATJZ0YJ70UXF7fou5pe1Z+dwcYFvSjgPFReeV2ZU3Axex6uhrCd3/fQ4E+ksaVkonFkIIoYGaYeSG7e+RRkFnkiakXA4canv3ytT8/PryIuBlUsLkF0mvDocUqnq/bRUCW9E00u7bHaQdDrDdz/YhwD1AZ17Th6RNSIu/D8gJmh+u0fSPk/adO7k3/ZU0QdJ0SdOXL57f/Q0hhBB6paEjtzxS26J0egiwGHi1MJekA1hKCjIftv1aXsx9BvALUjaRYr1HURjxAT/NdWwIbAp8rlje9hxJhwOX5fReQ4FzgdNtO08oebL0jHHAJqQZoPdKuq7WEoGyyC0ZQgh9q6HBzfbu5XOS/gicbfuq0vkxwO22l+d7l5ESFlfrw0Okvpk0u7IykWQuKW2YSJNHim2ZImlT0g4Gcyvf/7JlQHGj1l2B84AjbM+VdBxwraSP2P59z/8CIYQQ+kLDv7lJGkghcGQXSbqI9O3tCttHVTKkSDoPuNj2o7AiyK3E9j2kV42VdF3jSFveDCB907udlGqr7BLyYu5VVyCsaO9u+f5TbP86P+8mSeOByyXt0uPOhxBC6BMND255q5kh1a4pbYPTWTp9KCnn46Ol8z+mFCRzQuMvkjKd3E16tflO0tKCfqTRV7Et46mS77L0WvJB4MAcQIv33ihpak6/Va07VUVuyRBCqL+GB7eciHgh8AzVNxutmkeyzPaZVU4fCFxo+6bCufslfR54VNIA2+UtdLp7zjLyqLDKtUi/FUIITaApZktm/UmvDcvHR6uUvU3SsipHOcDdAkyQtJ+kwZL6S9qBNHK7o7eBLYQQQmtQIbF9W8qzGscDW5KC5bPAjcAk2/Ma17Kk//BtPfzI8xvdjKYQeSxDCD0haYbtUV2VaaaRW49IuknS0nwskrRY0s8L15eVsv7fRNoVfDfbw2zvbPvLwB8ljS7cN7v4e+mZoyXNqn9vQggh9IWWC262D7Y9IB+DgLtIe7fVshHwKjV2315dkvrlpMlLaxzj6vm8EEIIPdfwCSVrQtJI0qjsWEmPA28nLdYu+gApuA0mZTWpt21sP9UH9YYQQlhNLTdyq5C0Lmkm5WTbM22/w/YQ0o4BxTLHkPJLXlilmsrElPKWNdWMzGVvrkPbI/1WCCH0oZYMbpI2J+WKXAc4SdJelT3bWHnkdgFpdLobsJ2kC0sZTfbL+SXL6+PWl7SppN0lHUnKRflELvvBNW2/7Yttj7I9qmP9Dda0uhBCCCUtFdxywLkIeIyUsHiM7Zdt32N7SGHkNljSL4D3kXJRzgcOArYCbqhR/VJgiqQlpDV3vyPll1wlRVjJzBrf3E5fw+6GEEJYTa32zW0RsB5wkO07uii3hLQB6qcq+7flLWkOrvUK0nZnrcry2rjrS+WXkXJUVso8BnzBdq3gGUIIYS1pqeBmewE5PZak/YATgO2Bt5JyRt4J7A/Msn1eLrcLcAppZ++NgRck3Qt8BZhRrD/PcLy0xuOfyM8LIYTQ5FoquFVI2h/4CXAiKQvJQtIi7ZOA75J3zs45IacBk4DPk3YFGAp8Gvg28Jt8b9FvbY8uPW80MLn+PYnckiGE0BdaMrgBBwPX2C7mnXxM0vGkveC2Ax4h7eb9vO2zC+WeASZJmpCvl3ck6Jakh4GRpdMdwE8llVO+7FHZwSCEEMLasdaCmyS5frm+pgBXSJoG3EoafXWSRm6zgL/kcn8Ahkr6Iml378rI7TPAMKDa3mv75g1Li9YhBUUAbL+rTv3gwafn0znxxqrXIh1VCCGsnl7NllTey0VSp6RF+edplWwckg4qzRhcIulFSa8D51Spb2ohjVb5uLpQrlPSin3bbN9MGnH9BylDyROkGZQDgX1tv5bLPQOMJu2W/VtgNum73NnA3rZnF55xG/AD4HVgUSELygBSYBvXm79VCCGExuly5CZpJ9I+aCbtRj04b1FTVd68c0Dh/nWArwP/AtSaGn+s7cm9azYAL5F2156af/8ScJrtZyTdSppAAmlpwEDgUtv/nvNO/t32g6W279fTB0vahjQ6rLXFzUG2b+9xT0IIIdRVl8EtB4BBAJL2AS6zvaQnm3FKeg9wPim343tsL6pR9AJJZ1c5f4Xt/yj83pEXaVcMAq4gjcYgjbgq7d6/1JYZlGZGVrn+jvzrctKI9hrb42rdAyzPo7oQQghNpjff3N4DdDkaySOa/Umv8IYAlwEfA34j6TLS97EHS9/ePtvDkdvyvEi78qxppEkj0/Kpqt/zJO0IbA1cXe06gO13l+65nbROLoQQQgvq0Te3/K1tPPDL/C3s4SpldiEFhFHA14DtbX/T9p6kKftbk0ZaG5dunSRpZpXjf3rQtJNJGUduYNWEyRUXAD/JWUqK7a1scDqwdH4MaRT3kx48f7VEbskQQuhbPR25fZoUnD5u++P5u9VDxQK2HwA2rXaz7Wm8McIq+hdSxpFqlhd+NrCsyizGT9u+GqDKFHzyLMlhwPaSvmt7RZttr9L3nLPySuDvpedX01GlPRVdfke0fTFwMaTNSrt5TgghhF7qNrhJeidwHjAGmCxpLCnvYtHILv6HvmwuaaQ1tgfPBrje9uEUJqrUMIzCljaSjiHtCLA3sC/wa0kfpsa+bnnyzA2kkd77SUsNxtpeZdKI7ZmsnHprKTCqGDxDCCE0TnezJd9N+h/8ibZ/K+mTpIwgE0pFnyhPrpA0lLTVzIa251Wp/tjeNlbSEcD3alzeANhS0uJcZkfgg7afA66WNISUkeTgUp39SdlLTgK+ZPtSSd8Gfgn8TtK+vW1nCCGExupu5DYSONn2jwFs/z6PcOqym4Ck2eTZmFXcZfuA4omckeTKaoUL6+CWk3bm/jfbCwv3XiLpelYdAY4kpevay/bfctmFkg4grZnr0ezQEEIIzaO7pQDXVjn3j/zNbY3Z3qTa+fzqc5WRXV4s/t+kNW5lc0kzKl8AvlHjebPLbbf9Z+CIKmWXkUZ65TZUW9Jg4J4qQfDttl+u1paKyC0ZQgj114q5JTuoPdrblzQjs8/YrrmIPYQQQnNQ/dI9rn2VdGB1zFm51vUfvq2HH3l+o5vRI5HrMoTQDCTNsD2qqzKtthP344WclYtIKcG+VLi+rCevTCXNytvYVH6fXfy9VHa0pFlr1vIQQghrU0sFN9vvyMmM3wJsRsrtuMpib0nfKCVhflXS5fVqh6R+klxKEl08xtXrWSGEEHqvpYJbyfHAn0m7AqzE9qm2B1UO4Jt91IZtirsHFI7JffS8EEIIPdCKE0qQtBdpl4GvknYqeCFf6sjXN2XlbClVM6f0wsi81OA22x9cw7pCCCH0sZYLbpIOBn4KPA6cCjxQSaVVWOv2f0gbkt5XuHVaqarb83yUg0r1r09K+rwJsBNpL7cnbHfWsQ8TyAvhOwYPq1e1IYQQspYJbnk09k3gE6TEzN8CDgV+LOkS218u3fKbbraseX/OeVlJnzUl56d8hZTG6wngTxR24K5iZo0F3mfZPrPWTZFbMoQQ+lbLBDdgC+BZYMucUgvgGkm/BXZYk4q7GpVJ2gG4vlR+GSvnlnwM+ILtG9akHSGEEOqjZSaU2L4nj86WSppYOD/Xds291/LMxo0ljcpbzWxfo9y4PANypYO0vc+H696hEEIIfaZlglvBhsBZNa49BrxGerV4mKSFwPPAH0g7G+wBvNpF3b+1reJB2iEghBBCC2ml15Ldsr1j/vHr+ahqTRIhS3qYlGy5qAP4aZU95faw/WhX9UVuyRBCqL+WDW6FmZFlE2z/aDWr3bfKvnTrUJhUYvtdq1l3CCGEtaSlc0u2g1bKLdlbkYsyhNAX2i63JICkmwpprhZJWizp54XrK+WXlPS2PDlkaKmelfJL5nNTi5NVCufHSppe986EEELoEy33WtJ2eSftqaTNSWvZiDSJZF4PH3G8pMOq1PFi6bn9eGPySjXHRhquEEJojJYLbkWSRgL7AMdKehx4OzkFV8EHSMFtMKUAVcM5ts8vPWcs8Lka5bex/VQvmh1CCKGPtdxryQpJ6wJXApNtz8w7BgwBlpfKHAPMAS6sUs1t+TXmZoVzk0o7CiwCftB3PQkhhFBvLRncJG1OyhW5DnCSpL0kzZM0j5VHbheQRqe7AdtJujC/TqzYz3Y/208D2B5ju39xR4F8DOju42Uv2z9B0nRJ05cvnl+vakMIIWQtFdwkbSrpItJi7VnAGNsv5+wlQwojt8GSfgG8D/iw7fmkBMlbAfVOkTWzxp5up9e6wfbFtkfZHtWx/gZ1bk4IIYRW++a2CFgPOKirlFvAEuAO4FO2FwPYngMcXHoFCYCkS4BPl05X/jbl9XS/sv2JyC8ZQgjNq6WCm+0FwHgASfsBJwDbA28FngLuBPYHZtk+L5fbBTiFlHprY+AFSfcCXwFm5HqPBo4uPkvSOcAQ20f1fc9CCCHUU0sFtwpJ+wM/AU4EbgEWAlsCJwHfBXbO5UaQvs1NAj4PzAWGkkZp3wZ+k++t1DsPGJB/rewRNzb//te+yE4S6bdCCKH+WuqbW8HBwDW2r8y7Arxi+zHgeGC7fACMAp63fbbtZ2y/mv+dRFoWsNIkkfzdbkA++uVjAPAhoH+lnKSHq8yoHEnKL7modFTdhSCEEELfacmRGzAFuELSNOBW0uirkzRymwX8JZf7AzBU0heBy3lj5PYZYBjw+9V5eOSXDCGE5tayuSUlHQAcR/rmNhh4DrgL+LrtZwrldgImUvjmRgpq37L94Npud1mz5ZaMfJAhhGbXk9ySLTlykzSJFNgqfm57XKlMB/B04dQ5ts/J10aTdtfuLJSfCky1fXapnrHA5+q5zi2EEELfaqngJmkYb+SRnJf/fR34gKRHgF1svyZpMPAR4AuF2zsk7Wz7T108IvJKhhBCG2ip4GZ7jqRtKr+SJsQcTXrteKLt1/K1dYBBhXJbkJYD/HM3j4i8kiGE0AZaKrgB2F4qaVPgMNJSgK2B7wCPFMrMAy4CkLQhabnA+cCLeZNTAU9WqX6SpP8snesHPFTPPkiaAEwA6Bg8rJ5VhxBCoMWWAkg6M79+fAx4N2m92u7A+sBDkh6XtGeh/ChSppJhpJyTz9juB+xXrntt5ZXMz4r0WyGE0IdaKrgBVwOHAxvaPtL23bbvz1lEhgFjgRk5kfJPgGtJi7e3J61T+7ukT9WxPb3OKxlCCKHvtcxrSUkPkxZKV34HeAtpYkc5/+OXSKm4xtteks8dI+l7wGxSsKvUE3klQwihzbRMcCsvnFaKbg8Ak2xfUe0eSf0kHQf8KykwCvgHaXH3xFxv5JUMIYQ20zLBrULSh0iBaSQpM8kZkr4J3AScYvulQvELgD1Jryb/SApuOwPnAQOBqwr1zmMt55WEyC0ZQgh9oaW+uUnaGrgO+JrtzW3vYHtbYCfSN7fvl245BPiq7d/ZXmR7oe07ga+S1sGtEHklQwihfbTayG0haa+2HSQ9SEq5tR4pUfLbgfIC7VuAr0iaX7i2E2m7m5tXpwH1HsE9+PR8OifeWM8q21akBgsh9FRLBTfbz0vag5T9/5ekXJFLgWeAa4DvlW45Lh/nkBZym5SS60bSNjg9eeZUYJtuC4YQQmgaDX8tKWmkpF9IeknSXyR9rnR9maTO/PNA4HfAJ4GtgP+2/S7b+5My/t9SuO86YA5wBrADKWPJCOBQ4FJKqbMkbSfpZkkLJM2SNK5wbYSkVTJMSxooyeXdvSWdJmny6vw9QgghrLmGjtwkrUeaCHIzaRuakcC1kpbavqhc3vbLpC1rinXIVbY2sP2xUrkBpFea80n5IovX1s9tuJAU/HYBrpN0Lm+k+aqm8vdbUuN6CCGEBmj0yG13UkA7OU/2eAg4i1XXnSFpuKS5+Zgj6WlJr1Ml20jpvqGS1gGGA4tsL65SbG/gFdvn2l5s+25SSq9bbQ8l7+xdRSewwPaLNa6HEEJogEYHN5FGRsWR1+tUaZftZ20Pzccw0re0vwLTunnGHNIrzO2BmSs9PL3yvJG0BKA8+lpC9yPbA4H+ebeCHpM0QdJ0SdOXL57fm1tDCCH0QKOD232kySBn5e9X2wNfBqouyq7IOSMnA0cB75e0FPhRN8+aBozJ+7ytC5Cn+x8C3AN0Sjok178JcAxwQF7/9nCNOj9O2vn75G6evZLILRlCCH2rocHN9ivAwaQJH8+Qvr/9CPhutfKS1pV0EmniyO9zuZfzerTxhXJHSZoiaUo+9VPSLt33kWZXHlxqxxxSzsofSXqCNCK8CtjA9hBglen/ecLJJsB7gcMk7b0af4IQQgh9oOFLAWz/lbRQukuSDgXOJQWpUbb/lrOVXCTpAlae/fgQqW8mLRGoTCSZS0q/JdLkkWI7puStdLYB5tp+oXB5GYVdvSXtSspycoTtuTnF17WSPmL7973pfwghhPpreHADkLQjabPRCV0UuxXYg5Q2qz+A7RvyNzOAFdn+bd9DetWIpCOAcaR93wYATwG3AydVecYlwBH5vlpt3S3ff4rtX+fn3SRpPHC5pF2673EIIYS+1BTBjTS9/4Aa175LmpG4CFgk6QTSLMVxAJVlANWCUS77ReBY4G7SK8l3At8g9f28Ynnb4ym83izUM4I3Njd9EDgwB9DivTdKmmr7lVqBsZrILRlCCPXXLMGtJtuf7WG5y4HLS6cPBC60fVPh3P2SPg88KmmA7aW9bM8y8qiwyrVXqp0PIYSwdjVTcBspqbx/WsUE28XZkJ8pZOwv6297ef75FuAESTOAe0nf5bYGvgbc0dvA1hcit2QI4c1mbeSJbYrgZnsahc0/uyl7BimlVk/KXpCTJp8ObEn65vYsKbdkj/dqs/1UT9uXy/9nT8uGEEKov0avc+tTkm4CLiLt6bYhaTLKn21/2fa8Yt7KGvcr/ztW0rS10OQQQgh10NbBzfbBhT3aBpGWEdxfLifpyMIebAslzZO0HBhTq25Jl0t6TdLSKsdtfditEEII3Wjr4FYkaSSwD2lT0cdz5pEOANuX2R6Uj7eS8l0uZ9X94crOLATP4tFlvssQQgh9qym+ufU1SesCVwKTbc8E3pHP15rA8iHgftvP9VF7JgATADoG9yotZQghhB5o+5GbpM1JeSXXAU6StFd+7TiPPHIrle9PmrByXvlavURuyRBC6FttG9wkbSrpIuAxUnLjMbZftn2P7SE5Z+TyKreeBcyyfVUPHnN6jW9uM7u/NYQQQl9p2+AGLALWAw6y/am80WlNkvpJOh/Yn5REuUu2x9peNydtPgO4ofDNbZs1b34IIYTV1bbf3GwvIKfSkrQfcAJpT7e3kvJL3kkKZE9L+gApKfOTwPti89EQQmhtbRvcKiTtD/wEOJGUsWQhaUH3SaS8lTuT1r99w/bP13b7IrdkCCHUX9sHN9LebdfYvrJw7jFJxwOLge1sX9/TyiSdApxSPp0uaVHp/AW2T12dRocQQlh9b4bgNgW4ImcYuZU0cuskjdxmAX/pTWW2vwl8s16Na9XckmsjN1wIIayutg5ukuYCg0gjq/9Hmvq/BJgJvArMsP1aLrseKWgdRspB+RfgZNt3275c0o8lddqetfZ7EkIIoTfaebYktofm2Yv9STMnnwWOsr0LKXnykkLxU4B/Ana3vQnwHeAmSUOq1R3pt0IIoXm1dXAreT9p4kitd4DvAa6qzJS0/TPgddIMy1oi/VYIITShN0Vwk/RW4GLSjMgFhUufyTsDnALcDhwlaQdJgyV9lrTI+6EGNDmEEMIaaOtvbgCStgKuJiVBPrd0+f/ZHpfLdZD+Hj8DhpB2Dxhje2EftClyS4YQQh9q25GbpJGS/i9wH3AH8K+2X69R9lDg34DZpG9t/wXcDXxK0g8lvbvGY1Yr/VbklgwhhL7VziO34cDbgPfbXmUPt5IhwND880jg48DngT8CzwOPlm+wPRYYCyBpIjDK9mH1aHgIIYQ107bBzfY9wD2S1pd0OmmK/6bAa6SlABfbPiOXvRRA0gbAu0n5KH8s6RekFF0hhBBaSNsGt4Ifk9a6HQE8QurzPsAPJQ2x/e1C2edIOShfBrB9aOWCJPdF4yL9Vggh1F/bfnMr2A84w/aDtpfbfsX2VOAHpOUBZf9j+11Vzl8ALJB0iqRFxQP4CnBw+bykb/Rdt0IIIdTyZhi53Qx8PX8Xe4S0mPufgaNJE0fKHuhilHZbvdNvhRBCqD/ZffK2rWlIegtpcsihwBbAK6TUWj8sJVNuiP7Dt/XwI89vdDOaTuSuDCHUImmG7VFdlWmK15KS5kpapaGSPifpqtK5t0qypC1K52dKGl34/TpJ80gpt04GtiXNnvwn4EjgitL920m6WdICSbMkjStcG1FtNCdpYG7LZqXzp0ma3LPehxBCqLemCG69tBEpc8icrgrZ/pjtIZUD2CRfml8uK2l90uvLW3K5w4FJkl7IyZf/VOMxlde6S2pcDyGE0ADN9M3tVknLS+cGADeUzn0QWAZsTNpRu0uShgIvkta9LbK9WNJGpWJ7A6/YrmQwuVvSd4AdbX9S0gjSLt1lncCC2Lk7hBCaSzON3PbJWfxXHMDEYgFJ/YHjgQeAyZLKwfn2/Jqws3BuDrAVKQHySplDcl7JG0lBtDz6WkL3wf9AoL+kXuXQkjRB0nRJ05cvXmUgGUIIYQ01U3C7S9K84gF8q3Ix5368iLQG7b2k0dh1pS1p3m9bNfZcmwaMyfWsC2C7n+1DgHuATkmH5GdtAhwDHJDb8XCNNn+ctOHpyb3paKTfCiGEvtUUryXzKK0mSQOBm0jZRT5s+zVJRwBnAL+gtF5N0lGkjCQVPyVtVLohKUvJ50rPnyPpcOAySUtJqbjOBU637WqvJfOEk02AXYF7JV1n+86e9zqEEEJfaYrg1h3bL0v6OnC77eX53DLgtCqvJiFtU9MPMHAN6RXjfGAu8A/SztwXlp4xRdKmwDbAXNsvFC4vA56u/CJpV+A84AjbcyUdB1wr6SO2f1+PPocQQlh9DQ1ukm4B9i2dXpe0SWh5csmhtpdLOo+UF/JRWBHkVlLJK5mfcQQwDtia9G3tKdLebSdVadIlpDRdSKrV5t3y/afY/nV+3k2SxgOXS9ql616HEELoa023iDuva3vI9n/WuD4LGGd7Wun86cCVtv9SOHcC8EXgWNIWNkuBdwLfAPrZPqCHbRoBPJneUKofaQeAe6qU62/7FUmnAdtU9orryqhRozx9+vSeNCOEEAI9W8TdEq8le8L2mVVOHwhcaPumwrn7JX0eeFTSANtLe/mcZeRRYZVrr/SmrhBCCH2jmWZL9sZteRp/+SgHuFuACZL2kzRYUn9JO5BGbnf0NrCFEEJoDU33WrIrkh4nbSZq0je5twCn2j47X19Geh04q3DPOGA8sCXpm9uzpByTY23fUCg3FZhaqatwfizwue6GwKurGXNLRl7HEEIza7vXkrbfUfk5byz6LPA/5XJ5q5nPFk6tB/ws755d+W63qMojjpdU3k17I9KaumL9/UjLEmq9hjzW9uSu+hJCCKHvtFRwKzke+DNwV/mC7VOBUyu/SzqDNMW/O+fYPr94ojJyq1F+G9vdpgALIYSwdrVkcJO0F3A68FVgsKTKmrSOfH1T0mLtik3pmUmSyrM0+5HWzYUQQmgRLRfcJB1MyjjyOGl09oDtfvlaZc3b/wE+A9xXuHVaqarb81q2g2xPsT2mL9tdJGkCMAGgY3Cv0lKGEELogZaZLSlp07xH2s9Jsx13IS3O/rGks6rc8pu87U3lOL90vZKHcsoaNGumpKVVjtO7uilyS4YQQt9qpZHbFqQJJFvafi6fu0bSb4EdVrdSSZcAny6drvxdytlPfmX7E3mt24oUJpIeA75QnH0ZQgihcVomuFVSaknaQNLEypR923OBO2rdl2c2bkBaCrA7pdmVto8Gji7dcw4wxPZR9e1FCCGEtaFlglvBhsBZwNlVrj3GG1P0D5P0v/LvLwHP5Ou3Vas0b20zIP9a+YY3Nv/+V9vvqlP7Qwgh9LGWWsQNkDci/bvt6pmNe1bHLKrkp6xRdgxwke1t8u8PkxaSF3WQkj2X/5h7VBI81xK5JUMIoXfabhF3UWFmZNkE2z/qq+fGCC6EEJpfywW3nFprtUdtuY7OXpSdSs8WgIcQQmgSLbMUIIQQQuipCG4hhBDaTgS3EEIIbSeCWwghhLYTwS2EEELbieAWQgih7URwCyGE0HZaLkNJu5G0kLR9T7sZCsxtdCP6SLv2rV37Be3bt3btF3Tdt5G2u9wvrOUWcbehx7tLI9OKJE1vx35B+/atXfsF7du3du0XrHnf4rVkCCGEthPBLYQQQtuJ4NZ4Fze6AX2kXfsF7du3du0XtG/f2rVfsIZ9iwklIYQQ2k6M3EIIIbSdCG4hhBDaTgS3BpF0oKTHJc2UNLHR7ektST+S9LykhwrnNpJ0q6S/5H83LFz7cu7r45I+2JhWd0/S5pJul/SopIclfTafb+m+SRog6Q+SHsj9OjOfb+l+VUjqkHS/pBvy7+3Sr1mSHpT0R0nT87l26dsQST+X9Fj+79t76to323Gs5QPoAP4KbAWsBzwA7NDodvWyD/sCuwMPFc59C5iYf54ITMo/75D72B/YMve9o9F9qNGv4cDu+ee3An/O7W/pvpE2+B2Uf14X+D2wV6v3q9C/k4ArgRva5T+Lub2zgKGlc+3St8uAo/LP6wFD6tm3GLk1xp7ATNt/s/0qcBXw0Qa3qVds3wG8WDr9UdJ/YMn/fqxw/irbr9j+OzCT9DdoOraftX1f/nkh8CiwGS3eNyeL8q/r5sO0eL8AJI0ADgF+UDjd8v3qQsv3TdJg0v9B/iGA7Vdtz6OOfYvg1hibAU8Wfn8qn2t1b7f9LKQgAbwtn2/J/krqBHYjjXJavm/51d0fgeeBW223Rb+A84GTgdcL59qhX5D+D8gtkmZImpDPtUPftgLmAJfm18k/kDSQOvYtgltjqMq5dl6T0XL9lTQIuAb4nO0FXRWtcq4p+2Z7ue1dgRHAnpJ27KJ4S/RL0oeA523P6OktVc41Xb8K9ra9O3AQcJykfbso20p960f6rPF927sBL5NeQ9bS675FcGuMp4DNC7+PAJ5pUFvq6TlJwwHyv8/n8y3VX0nrkgLbFbavzafbom8A+fXPNOBAWr9fewMfkTSL9Hr/A5Iup/X7BYDtZ/K/zwO/IL2Ka4e+PQU8ld8eAPycFOzq1rcIbo1xL7CtpC0lrQd8EvhVg9tUD78Cjsw/Hwn8snD+k5L6S9oS2Bb4QwPa1y1JIn0HeNT2/y1caum+SRomaUj++S3AGOAxWrxftr9se4TtTtJ/j35jeywt3i8ASQMlvbXyM3AA8BBt0Dfbs4EnJb0jn9oPeIR69q3RM2berAdwMGkm3l+BUxvdntVo/0+AZ4HXSP+v6n8DGwO3AX/J/25UKH9q7uvjwEGNbn8X/Xov6XXHn4A/5uPgVu8bsDNwf+7XQ8BX8/mW7lepj6N5Y7Zky/eL9F3qgXw8XPnfiXboW27rrsD0/J/J64AN69m3SL8VQgih7cRryRBCCG0nglsIIYS2E8EthBBC24ngFkIIoe1EcAshhNB2IriFEEJoOxHcQgghtJ3/D2RC/+IAH4D7AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 시도별 이디야 분포\n", "plt.barh(index, v3)\n", "plt.yticks(index, a, fontsize=13,fontproperties=fontprob, rotation=0)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 175, "id": "202c89de", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "이디야의 전국 대비 전라북도에서의 비율 : 3.151%\n", "이디야의 전국 대비 부산광역시에서의 비율 : 6.024%\n", "이디야의 전국 대비 강원도에서의 비율 : 3.939%\n", "이디야의 전국 대비 경기도에서의 비율 : 27.108%\n", "이디야의 전국 대비 인천광역시에서의 비율 : 6.441%\n", "이디야의 전국 대비 충청북도에서의 비율 : 3.105%\n", "이디야의 전국 대비 경상북도에서의 비율 : 4.727%\n", "이디야의 전국 대비 전라남도에서의 비율 : 3.661%\n", "이디야의 전국 대비 제주특별자치도에서의 비율 : 0.649%\n", "이디야의 전국 대비 경상남도에서의 비율 : 5.746%\n", "이디야의 전국 대비 울산광역시에서의 비율 : 3.475%\n", "이디야의 전국 대비 세종특별자치시에서의 비율 : 0.834%\n", "이디야의 전국 대비 광주광역시에서의 비율 : 2.688%\n", "이디야의 전국 대비 서울특별시에서의 비율 : 20.992%\n", "이디야의 전국 대비 대구광역시에서의 비율 : 2.873%\n", "이디야의 전국 대비 대전광역시에서의 비율 : 1.483%\n", "이디야의 전국 대비 충청남도에서의 비율 : 3.105%\n" ] } ], "source": [ "sum_star = sum(v3)\n", "for i in range(len(a)):\n", " print('이디야의 전국 대비 {}에서의 비율 : {:.3f}%' .format(a[i],v3[i]/sum_star*100))" ] }, { "cell_type": "markdown", "id": "15b54208", "metadata": {}, "source": [ "## 3대 커피브랜드의 점포 수 비교" ] }, { "cell_type": "code", "execution_count": 185, "id": "c1c791c4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([,\n", " ,\n", " ],\n", " [Text(0, 0, '스타벅스'), Text(1, 0, '투썸'), Text(2, 0, '이디야')])" ] }, "execution_count": 185, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEdCAYAAADgjbcLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAARhUlEQVR4nO3df+xddX3H8efLVhv8wQZrYdhWi6xTgW0Ya8fm4lSmIP4Ao5iabTBFaxgsLpnZypLp/KMbc9ElRGHiRIpRGIkzMNFNgsQfGxO/MCIUbKiCUMtoFR1lCgq898c9NTdfbvv99vvt957bfp6P5Oae8z7n3PtuLry+537u556bqkKS1Ian9N2AJGl8DH1JaoihL0kNMfQlqSGGviQ1xNCXpIYs7ruBmSxdurRWrVrVdxuSdEC5+eabv19Vy6bXJz70V61axdTUVN9tSNIBJcl3R9Ud3pGkhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1ZOK/nCVpcq3acG3fLRy07rngtQvyuJ7pS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDZkx9JOsTHJDkjuTbE7y7q5+eJLrktzV3R82dMz5SbYm2ZLk5KH6i5Pc1m27MEkW5p8lSRplNmf6jwF/VlUvBE4Ezk1yLLABuL6qVgPXd+t029YBxwGnABclWdQ91sXAemB1dztlP/5bJEkzmDH0q+r+qrqlW94F3AksB04DNnW7bQJO75ZPA66sqker6m5gK7A2yVHAoVV1Y1UVcPnQMZKkMdinMf0kq4AXAV8Hjqyq+2HwhwE4otttOXDf0GHbutrybnl6fdTzrE8ylWRq586d+9KiJGkvZh36SZ4JfAb406p6aG+7jqjVXupPLlZdUlVrqmrNsmXLZtuiJGkGswr9JE9lEPifqqp/6coPdEM2dPc7uvo2YOXQ4SuA7V19xYi6JGlMZjN7J8DHgTur6kNDm64BzuqWzwKuHqqvS7IkydEMPrC9qRsC2pXkxO4xzxw6RpI0BrP5ucSXAn8I3Jbk1q72l8AFwFVJzgbuBc4AqKrNSa4C7mAw8+fcqnq8O+4c4DLgEOAL3U2SNCYzhn5VfY3R4/EAJ+3hmI3AxhH1KeD4fWlQkrT/+I1cSWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDVkcd8NLKRVG67tu4WD1j0XvLbvFiTNgWf6ktQQQ1+SGjJj6Ce5NMmOJLcP1f46yfeS3NrdTh3adn6SrUm2JDl5qP7iJLd12y5Mkv3/z5Ek7c1szvQvA04ZUf+Hqjqhu30eIMmxwDrguO6Yi5Is6va/GFgPrO5uox5TkrSAZgz9qvoK8OAsH+804MqqerSq7ga2AmuTHAUcWlU3VlUBlwOnz7FnSdIczWdM/7wk3+yGfw7rasuB+4b22dbVlnfL0+sjJVmfZCrJ1M6dO+fRoiRp2FxD/2LgGOAE4H7gg1191Dh97aU+UlVdUlVrqmrNsmXL5tiiJGm6OYV+VT1QVY9X1RPAx4C13aZtwMqhXVcA27v6ihF1SdIYzSn0uzH63d4I7J7Zcw2wLsmSJEcz+MD2pqq6H9iV5MRu1s6ZwNXz6FuSNAczfiM3yRXAy4GlSbYB7wNenuQEBkM09wDvAqiqzUmuAu4AHgPOrarHu4c6h8FMoEOAL3Q3SdIYzRj6VfXWEeWP72X/jcDGEfUp4Ph96k6StF/5jVxJaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQxb33YA0bNWGa/tu4aB1zwWv7bsFTQDP9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDZgz9JJcm2ZHk9qHa4UmuS3JXd3/Y0Lbzk2xNsiXJyUP1Fye5rdt2YZLs/3+OJGlvZnOmfxlwyrTaBuD6qloNXN+tk+RYYB1wXHfMRUkWdcdcDKwHVne36Y8pSVpgM4Z+VX0FeHBa+TRgU7e8CTh9qH5lVT1aVXcDW4G1SY4CDq2qG6uqgMuHjpEkjclcx/SPrKr7Abr7I7r6cuC+of22dbXl3fL0+khJ1ieZSjK1c+fOObYoSZpuf3+QO2qcvvZSH6mqLqmqNVW1ZtmyZfutOUlq3VxD/4FuyIbufkdX3wasHNpvBbC9q68YUZckjdFcQ/8a4Kxu+Szg6qH6uiRLkhzN4APbm7ohoF1JTuxm7Zw5dIwkaUxmvMpmkiuAlwNLk2wD3gdcAFyV5GzgXuAMgKranOQq4A7gMeDcqnq8e6hzGMwEOgT4QneTJI3RjKFfVW/dw6aT9rD/RmDjiPoUcPw+dSdJ2q/8Rq4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNmVfoJ7knyW1Jbk0y1dUOT3Jdkru6+8OG9j8/ydYkW5KcPN/mJUn7Zn+c6b+iqk6oqjXd+gbg+qpaDVzfrZPkWGAdcBxwCnBRkkX74fklSbO0EMM7pwGbuuVNwOlD9Sur6tGquhvYCqxdgOeXJO3BfEO/gC8muTnJ+q52ZFXdD9DdH9HVlwP3DR27ras9SZL1SaaSTO3cuXOeLUqSdls8z+NfWlXbkxwBXJfkW3vZNyNqNWrHqroEuARgzZo1I/eRJO27eZ3pV9X27n4H8FkGwzUPJDkKoLvf0e2+DVg5dPgKYPt8nl+StG/mHPpJnpHkWbuXgVcDtwPXAGd1u50FXN0tXwOsS7IkydHAauCmuT6/JGnfzWd450jgs0l2P86nq+rfknwDuCrJ2cC9wBkAVbU5yVXAHcBjwLlV9fi8upck7ZM5h35VfQf4jRH1HwAn7eGYjcDGuT6nJGl+/EauJDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDRl76Cc5JcmWJFuTbBj380tSy8Ya+kkWAR8BXgMcC7w1ybHj7EGSWjbuM/21wNaq+k5V/RS4EjhtzD1IUrMWj/n5lgP3Da1vA35z+k5J1gPru9WHk2wZQ299Wwp8v+8mZit/13cHE8HX7MBzwLxm++H1eu6o4rhDPyNq9aRC1SXAJQvfzuRIMlVVa/ruQ7Pna3bg8TUb//DONmDl0PoKYPuYe5CkZo079L8BrE5ydJKnAeuAa8bcgyQ1a6zDO1X1WJLzgH8HFgGXVtXmcfYwwZoazjpI+JodeJp/zVL1pCF1SdJBym/kSlJDDH1JaoihL0kNMfQnTJLn992DpIOXod+zJL+a5Iih0jd6a0Y6iCT55LT1y3pqZaI4e6dnSa4CNlfV+7v1XVX1rJ7bEpDkCUZ8Yxz4NrCKwbTjAE9U1bi/3a4ZJPlpVT1taP3HVfX0PnuaBP6H2qMkbwJeBpwzVPav8ORYySDUbweOY/DO+AXAbQyuIbWyq93VV4N6siQ3MPj/aHGSLw1tWjJtnap65VibmwCGfk+SvA74KPDmqvpB3/3oyarqewBJvsrgciEfBo6uqlOTUFXbu+3+oZ4sl3X3m6bVp683ydAfoySvAnYCbwfeAJxeVV/rtyvtSZJ3Aw8BVwDfBG4G3tJrU5pRVRnue2Hoj9eHgWcDzwDeD/xnv+1oT5IE+D0GwzsvBJYBHwd+2mdfmp0kK4DfZzAcdxSwC7gF+GRVbeuzt745e2eMqur5wC8ApwJvAq5JsqTfrjRKDby+ql5XVccALwJ+G7g5yUr87GViJTkZ2AycCNwJfAa4CXgJcHuSV/fYXu+cvdOTJE8HPgfcXVVnD9UfqqpD++tMuyV5NvB/DP5Qfwh4hMHFAt8AnA58ksE7gT+oqqf21KamSfIt4D1V9bkR214PfKiqVo+/s8lg6PcoyZHAVuA1u8f2Df3JMTRlMwxep9+pqh1Jngq8h6F3ylW1sZ8uNV2Sh4HnVNWDI7YtBe6pqmeOv7PJYOj3LMnfAt/a/eGToT9ZkixmMF3zncAbgXVV9dV+u9LeJPkEg3H8DVV161D9BOAC4H+q6o96aW4CGPoTJsntVXV8333oyZK8AnhvVb0iyaur6ot996Qn6z4n+3vgbQwmq/wI+EXgZ8ClDP4YPNJXf30z9KV9kCRVVb4jm3zdu7TnAEcCDwNbqqr52VeG/hglOXMPm37GYHx40e5CVV0+lqa0R0k+WlXv6pbPq6oPJ/mvqjrRy2XoQGXoj1GS64ZWXwns/kr4TxjMCf+Pbr2qqulpZZNg+FotSXZU1RG7z/AN/ck1dBmGGXkZBi2oqnrV7uUkT0xb/8nwuiZC+m5Ac/JPfTcwyQz9/kw/E/Et1+TZ62uS5M9/vmPVBxa+Hc1GVX1qT9uSnAEcVVUXjrGliWLoj9G0t50ZuuLfX/TUkubnJd29f7AnTJJVVXXPiE07GczqMfQ1Fpd196cANwCXA2cBh/fVkOauqs7ouwft0TeBUbOrvgscM+ZeJoqhP0ZDX8BaChxTVZuSnNhzW9qzpyR5CYOZVYuTrO27Ic3anj6P+QGDi+c1y9Dv38+He3rtQqM8DHy+W34cuBb4fn/taB+MHHKrqoe66141y9Afo6F5+muAI7r15zP4D/Q1vTWmkapqad89aEE0fXVhQ3+83raH9QeramrczWhevP7OZHtGku+MqDf/jtovZ/UoyfMYXFrZF0Haj5KctJfNT1TVDWNrZsIY+j1KsgP4lap6qO9epINFkpfNdt+q+spC9jKJHN4ZoyTPmVZaBKxMsmv6vlV173i6kg46s/2N3AKet5CNTCLP9Mdo2o9yTDdcr6paNGIfSZoXQ39CJDkWeLyqtvTdi6SDl8M7k2Mt8FvAu/puRDrQJXkRsB54AYNf0doF3AL8Y1X9d5+99a3p+ap9SPLloeVLhzbdAviLWdI8JXkLg8ucPAF8FPgT4IMMfrfiS932Zjm8M2ZJflhVh3XLP//1pe7SDF+vqqavCyLNV5JvA+8YNS2z+8nLT1TVqrE3NiE80+/X8Ae6P2L0BaIk7ZtlwG172HY78Etj7GXiGPrjV6OWq+oxYMn425EOOlcCVyT5teFikl8HPg38cy9dTQg/yB2/Q5K8t1teMrQsaf84D/gAcGMSgB8ChzE4yfoYsKG/1vrnmP6YJfnYXjY/AvxrVX1xXP1IB6skTwOeC/wygyum3llVj/TbVf8M/Z5112j/393z84c/3JWk/c0x/f5tBN4wtN78VQAlLRxDv0dJzgWOBj4yVPatl6QF4we5PUnyx8BfAa+qqh/33Y+kNhj6Y5TkncBO4O3AcuB3vdaOpHEy9MfrzcBzGPxE4kXAtn7bkdQax/THqKpOrqoXAscBq4EvJzms57YkNcQpmz1J8hTgCuDpVfX6obpTNiUtGM/0e1JVTwDvAE5M8rq++5HUBkO/R1W1C/gbBj+buJvz9CUtGId3JkySz1fVqX33IengZOhLUkMc3pGkhhj6ktQQQ1+SGmLoS1JDDH1Jasj/A7lPiyh4XzWhAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "star = sum(v1)\n", "two = sum(v2)\n", "edia = sum(v3)\n", "X=[\"스타벅스\",\"투썸\",\"이디야\"]\n", "Y=[star, two, edia]\n", "index = [0,1,2]\n", "plt.bar(X, Y)\n", "plt.xticks(index, X, fontsize=13,fontproperties=fontprob, rotation=90)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }