{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | id | \n", "feat_1 | \n", "feat_2 | \n", "feat_3 | \n", "feat_4 | \n", "feat_5 | \n", "feat_6 | \n", "feat_7 | \n", "feat_8 | \n", "feat_9 | \n", "... | \n", "feat_85 | \n", "feat_86 | \n", "feat_87 | \n", "feat_88 | \n", "feat_89 | \n", "feat_90 | \n", "feat_91 | \n", "feat_92 | \n", "feat_93 | \n", "target | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "Class_1 | \n", "
1 | \n", "2 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "Class_1 | \n", "
2 | \n", "3 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "Class_1 | \n", "
3 | \n", "4 | \n", "1 | \n", "0 | \n", "0 | \n", "1 | \n", "6 | \n", "1 | \n", "5 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "1 | \n", "2 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "Class_1 | \n", "
4 | \n", "5 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "Class_1 | \n", "
5 rows × 95 columns
\n", "\n", " | id | \n", "date | \n", "price | \n", "bedrooms | \n", "bathrooms | \n", "floors | \n", "waterfront | \n", "condition | \n", "grade | \n", "yr_built | \n", "yr_renovated | \n", "zipcode | \n", "lat | \n", "long | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "7129300520 | \n", "20141013T000000 | \n", "221900.0 | \n", "3 | \n", "1.00 | \n", "1.0 | \n", "0 | \n", "3 | \n", "7 | \n", "1955 | \n", "0 | \n", "98178 | \n", "47.5112 | \n", "-122.257 | \n", "
1 | \n", "6414100192 | \n", "20141209T000000 | \n", "538000.0 | \n", "3 | \n", "2.25 | \n", "2.0 | \n", "0 | \n", "3 | \n", "7 | \n", "1951 | \n", "1991 | \n", "98125 | \n", "47.7210 | \n", "-122.319 | \n", "
2 | \n", "5631500400 | \n", "20150225T000000 | \n", "180000.0 | \n", "2 | \n", "1.00 | \n", "1.0 | \n", "0 | \n", "3 | \n", "6 | \n", "1933 | \n", "0 | \n", "98028 | \n", "47.7379 | \n", "-122.233 | \n", "
3 | \n", "2487200875 | \n", "20141209T000000 | \n", "604000.0 | \n", "4 | \n", "3.00 | \n", "1.0 | \n", "0 | \n", "5 | \n", "7 | \n", "1965 | \n", "0 | \n", "98136 | \n", "47.5208 | \n", "-122.393 | \n", "
4 | \n", "1954400510 | \n", "20150218T000000 | \n", "510000.0 | \n", "3 | \n", "2.00 | \n", "1.0 | \n", "0 | \n", "3 | \n", "8 | \n", "1987 | \n", "0 | \n", "98074 | \n", "47.6168 | \n", "-122.045 | \n", "