
message
Day 1 Tasks

English (ISC)

Message
Aisha and Basma are two friends who correspond with each other. Aisha has a message M , which
is a sequence of S bits (i.e., zeroes or ones), that she would like to send to Basma. Aisha
communicates with Basma by sending her packets. A packet is a sequence of 31 bits indexed from
0 to 30. Aisha would like to send the message M to Basma by sending her some number of
packets.

Unfortunately, Cleopatra compromised the communication between Aisha and Basma and is able
to taint the packets. That is, in each packet Cleopatra can modify bits on exactly 15 indices.
Specifically, there is an array C of length 31, in which every element is either 0 or 1, with the
following meaning:

C[i] = 1 indicates that the bit with index i can be changed by Cleopatra. We call these
indices controlled by Cleopatra.
C[i] = 0 indicates that bit with index i cannot be changed by Cleopatra.

The array C contains precisely 15 ones and 16 zeroes. While sending the message M , the set of
indices controlled by Cleopatra stays the same for all packets. Aisha knows precisely which 15
indices are controlled by Cleopatra. Basma only knows that 15 indices are controlled by Cleopatra,
but she does not know which indices.

Let A be a packet that Aisha decides to send (which we call the original packet). Let B be the
packet that is received by Basma (which we call the tainted packet). For each i, such that
0 ≤ i < 31:

if Cleopatra does not control the bit with index i (C[i] = 0), Basma receives bit i as sent by
Aisha (B[i] = A[i]),
otherwise, if Cleopatra controls the bit with index i (C[i] = 1), the value of B[i] is decided by
Cleopatra.

Immediately after sending each packet, Aisha learns what the corresponding tainted packet is.

After Aisha sends all the packets, Basma receives all the tainted packets in the order they were
sent and has to reconstruct the original message M .

Your task is to devise and implement a strategy that would allow Aisha to send the message M to
Basma, so that Basma can recover M from the tainted packets. Specifically, you should implement
two procedures. The first procedure performs the actions of Aisha. It is given a message M and

message (1 of 5)

the array C, and should send some packets to transfer the message to Basma. The second
procedure performs the actions of Basma. It is given the tainted packets and should recover the
original message M .

Implementation Details

The first procedure you should implement is:

void send_message(std::vector<bool> M, std::vector<bool> C)

M : an array of length S describing the message that Aisha wants to send to Basma.
C: an array of length 31 indicating the indices of bits controlled by Cleopatra.
This procedure may be called at most 2100 times in each test case.

This procedure should call the following procedure to send a packet:

std::vector<bool> send_packet(std::vector<bool> A)

A: an original packet (an array of length 31) representing the bits sent by Aisha.
This procedure returns a tainted packet B representing the bits that will be received by
Basma.
This procedure can be called at most 100 times in each invocation of send_message .

The second procedure you should implement is:

std::vector<bool> receive_message(std::vector<std::vector<bool>> R)

R: an array describing the tainted packets. The packets originate from packets sent by Aisha
in one send_message call and are given in the order they were sent by Aisha. Each
element of R is an array of length 31, representing a tainted packet.
This procedure should return an array of S bits that is equal to the original message M .
This procedure may be called multiple times in each test case, exactly once for each
corresponding send_message call. The order of receive_message procedure calls is not
necessarily the same as the order of the corresponding send_message calls.

Note that in the grading system the send_message and receive_message procedures are called

in two separate programs.

Constraints

1 ≤ S ≤ 1024
C has exactly 31 elements, out of which 16 are equal to 0 and 15 are equal to 1.

message (2 of 5)

Subtasks and Scoring

If in any of the test cases, the calls to the procedure send_packet do not conform to the rules

mentioned above, or the return value of any of the calls to procedure receive_message is

incorrect, the score of your solution for that test case will be 0.

Otherwise, let Q be the maximum number of calls to the procedure send_packet among all

invocations of send_message over all test cases. Also let X be equal to:

1, if Q ≤ 66
0.95 , if 66 < Q ≤ 100

Then, the score is calculated as follows:

Subtask Score Additional Constraints

1 10 ⋅X S ≤ 64

2 90 ⋅X No additional constraints.

Note that in some cases the behaviour of the grader can be adaptive. This means that the values
returned by send_packet may depend not just on its input arguments but also on many other

things, including the inputs and return values of the prior calls to this procedure and pseudo-
random numbers generated by the grader. The grader is deterministic in the sense that if you run
it twice and in both runs you send the same packets, it will make the same changes to them.

Example

Consider the following call.

send_message([0, 1, 1, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

The message that Aisha tries to send to Basma is [0, 1, 1, 0]. The bits with indices from 0 to 15
cannot be changed by Cleopatra, while the bits with indices from 16 to 30 can be changed by
Cleopatra.

For the sake of this example, let us assume that Cleopatra fills consecutive bits she controls with
alternating 0 and 1, i.e. she assigns 0 to the first index she controls (index 16 in our case), 1 to the
second index she controls (index 17), 0 to the third index she controls (index 18), and so on.

Aisha can decide to send two bits from the original message in one packet as follows: she will send
the first bit at the first 8 indices she controls and the second bit at the following 8 indices she

Q−66

message (3 of 5)

controls.

Aisha then chooses to send the following packet:

send_packet([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Note that Cleopatra can change bits with the last 15 indices, so Aisha can set them arbitrarily, as
they might be overwritten. With the assumed strategy of Cleopatra, the procedure returns:
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0].

Aisha decides to send the last two bits of M in the second packet in a similar way as before:

send_packet([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

With the assumed strategy of Cleopatra, the procedure returns:
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0].

Aisha can send more packets, but she chooses not to.

The grader then makes the following procedure call:

receive_message([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],

 [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]])

Basma recovers message M as follows. From each packet she takes the first bit that occurs twice
in a row, and the last bit that occurs twice in a row. That is, from the first packet, she takes bits
[0, 1], and from the second packet she takes bits [1, 0]. By putting them together, she recovers the
message [0, 1, 1, 0], which is the correct return value for this call to receive_message .

It can be shown that with the assumed strategy of Cleopatra and for messages of length 4, this
approach of Basma correctly recovers M , regardless of the value of C. However, it is not correct in
the general case.

Sample Grader

The sample grader is not adaptive. Instead, Cleopatra fills consecutive bits she controls with
alternating 0 and 1 bits, as described in the example above.

message (4 of 5)

Input format: The first line of the input contains an integer T , specifying the number of
scenarios. T scenarios follow. Each of them is provided in the following format:

S

M[0] M[1] ... M[S-1]

C[0] C[1] ... C[30]

Output format: The sample grader writes the result of each of the T scenarios in the same order as
they are provided in the input in the following format:

K L

D[0] D[1] ... D[L-1]

Here, K is the number of calls to send_packet , D is the message returned by receive_message

and L is its length.

message (5 of 5)

