최대의 이익을 위한 최대의 선택!

LS산전에서는 저희 제품을 선택하시는 분들께 최대의 이익을 드리기 위하여 항상 최선의 노력을 다하고 있습니다.

프로그래머블 로직 컨트롤러

XGB 하드웨어 편

XGT Series

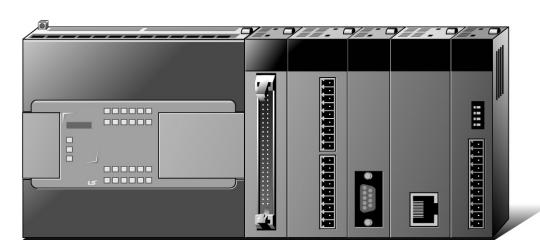
사용설명서

기본유닛 XBM-DR16S XBM-DN16S XBM-DN32S

XBC-DR32H

XBC-DN32H

XBC-DR64H


XBC-DN64H

XBC-DN32H/DC

XBC-DN64H/DC

XBC-DR32H/DC

XBC-DR64H/DC

안전을 위한 주의사항

- ●사용전에 안전을 위한 주의사항을 반드시 읽고 정확하게 사용하여 주십시오.
- ●사용설명서를 읽고 난 뒤에는 제품을 사용하는 사람이 항상 볼 수 있는 곳에 잘 보관하십시오.

제품을 사용하기 전에…

제품을 안전하고 효율적으로 사용하기 위하여 본 사용설명서의 내용을 끝까지 잘 읽으신 후에 사용해 주십시오.

- ▶ 안전을 위한 주의 사항은 제품을 안전하고 올바르게 사용하여 사고나 위험을 미리 막 기 위한 것이므로 반드시 지켜 주시기 바랍니다.
- ▶ 주의사항은 '경고'와 '주의'의 2가지로 구분되어 있으며, 각각의 의미는 다음과 같습니다.

지시사항을 위반하였을 때, 심각한 상해나 사망이 발생할 가능성이 있는 경우

지시사항을 위반하였을 때, 경미한 상해나 제품 손상이 발생할 가 능성이 있는 경우

- ▶ 제품과 사용설명서에 표시된 그림 기호의 의미는 다음과 같습니다.
 - ! 는 위험이 발생할 우려가 있으므로 주의하라는 기호입니다.
 - $\cancel{/}$ 는 감전의 가능성이 있으므로 주의하라는 기호입니다.
- ► 사용설명서를 읽고 난 뒤에는 제품을 사용하는 사람이 항상 볼 수 있는 곳에 보관해 주십시오.

A급 기기 (업무용 방송통신기기)

▶ 이 기기는 업무용(A급)으로 전자파적합등록을 한 기기이오니 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정 외의 지역에서 사용하는 것을 목적으로 합니다.

설계 시 주의 사항

♠ 경고

▶ 외부 전원, 또는 PLC모듈의 이상 발생시에 전체 제어 시스템을 보호하기 위해 PLC 의 외부에 보호 회로를 설치하여 주십시오.

PLC의 오출력/오동작으로 인해 전체 시스템의 안전성에 심각한 문제를 초래할 수 있습니다.

- PLC의 외부에 비상 정지 스위치, 보호 회로, 상/하한 리미트 스위치, 정/역방향 동작 인터록 회로 등 시스템을 물리적 손상으로부터 보호할 수 있는 장치를 설치하여 주십시오.
- PLC의 CPU가 동작 중 워치독 타이머 에러, 모듈 착탈 에러 등 시스템의 고장을 감지하였을 때에는 시스템의 안전을 위해 전체 출력을 Off시킨 후, 동작을 멈추도록 설계되어 있습니다. 그러나 릴레이, TR등의 출력 소자 자체에 이상이 발생하여 CPU가 고장을 감지할 수 없는 경우에는 출력이 계속 On 상태로 유지될 수 있습니다. 따라서, 고장 발생시 심각한 문제를 유발할 수 있는 출력에는 출력 상태를 모니터링 할 수 있는 별도의 회로를 구축하여 주십시오.
- ▶ 출력 모듈에 정격 이상의 부하를 연결하거나 출력 회로가 단락되지 않도록 하여 주십시오.

화재의 위험이 있습니다.

- ▶ 출력 회로의 외부 전원이 PLC의 전원보다 먼저 On 되지 않도록 설계하여 주십시오. 오출력 또는 오동작의 원인이 될 수 있습니다.
- ▶ 컴퓨터 또는 기타 외부 기기가 통신을 통해 PLC와의 데이터 교환, 또는 PLC의 상태를 조작 (운전 모드 변경 등)하는 경우에는 통신 에러로 부터 시스템을 보호할 수 있도록 시퀀스 프로그램에 인터록을 설정하여 주십시오.

오출력 또는 오동작의 원인이 될 수 있습니다.

설계 시 주의 사항

⚠ 주 의

▶ 입출력 신호 또는 통신선은 고압선이나 동력선과는 최소 100mm 이상 떨어뜨려 배선하십시오.

오출력 또는 오동작의 원인이 될 수 있습니다.

설치 시 주의 사항

↑ 주의

▶ PLC는 사용설명서 또는 데이터 시트의 일반 규격에 명기된 환경에서만 사용해 주십시오.

감전/화재 또는 제품 오동작 및 열화의 원인이 됩니다.

- ▶ 모듈을 장착하기 전에 PLC의 전원이 꺼져 있는지 반드시 확인해 주십시오. 감전, 또는 제품 손상의 원인이 됩니다.
- ▶ PLC의 각 모듈이 정확하게 고정되었는지 반드시 확인해 주십시오.

 제품이 느슨하거나 부정확하게 장착되면 오동작, 고장, 또는 낙하의 원인이 됩니다.
- ▶ 1/0 또는 증설 커넥터가 정확하게 고정되었는지 확인해 주십시오. 오입력 또는 오출력의 원인이 됩니다.
- ▶ 설치 환경에 진동이 많은 경우에는 PLC에 직접 진동이 인가되지 않도록 하여 주십시오.

감전/화재 또는 오동작의 원인이 됩니다.

▶ 제품 안으로 금속성 이물질이 들어가지 않도록 하여 주십시오.

감전/화재 또는 오동작의 원인이 됩니다.

배선 시 주의 사항

⚠ 경고

▶ 배선 작업을 시작하기 전에 PLC의 전원 및 외부 전원이 꺼져 있는지 반드시 확인 하여 주십시오.

감전 또는 제품 손상의 원인이 됩니다.

▶ PLC 시스템의 전원을 투입하기 전에 모든 단자대의 커버가 정확하게 닫혀 있는지 확인하여 주십시오.

감전의 원인이 됩니다.

⚠ 주 의

- ▶ 각 제품의 정격 전압 및 단자 배열을 확인한 후 정확하게 배선하여 주십시오. 화재, 감전 사고 및 오동작의 원인이 됩니다.
- ▶ 배선시 단자의 나사는 규정 토크로 단단하게 조여 주십시오.
 단자의 나사 조임이 느슨하면 단락, 화재, 또는 오동작의 원인이 됩니다.
- ▶ FG 단자의 접지는 PLC전용 3종 접지를 반드시 사용해 주십시오.

접지가 되지 않은 경우, 오동작의 원인이 될 수 있습니다.

▶ 배선 작업 중 모듈 내로 배선 찌꺼기 등의 이물질이 들어가지 않도록 하여 주십시오.

화재, 제품 손상, 또는 오동작의 원인이 됩니다.

시운전, 보수 시 주의사항

⚠ 경고

▶ 전원이 인가된 상태에서 단자대를 만지지 마십시오.

감전 또는 오동작의 원인이 됩니다..

▶ 청소를 하거나, 단자를 조일 때에는 PLC및 모든 외부 전원을 Off시킨 상태에서 실시하여 주십시오.

감전 또는 오동작의 원인이 됩니다.

▶ 배터리는 충전, 분해, 가열, Short, 납땜 등을 하지 마십시오.

발열, 파열, 발화에 의해 부상 또는 화재의 위험이 있습니다.

⚠ 주 의

▶ 모듈의 케이스로 부터 PCB를 분리하거나 제품을 개조하지 마십시오.

화재, 감전 사고 및 오동작의 원인이 됩니다.

▶ 모듈의 장착 또는 분리는 PLC 및 모든 외부 전원을 Off시킨 상태에서 실시하여 주십시오.

감전 또는 오동작의 원인이 됩니다.

▶ 무전기 또는 휴대전화는 PLC로 부터 30cm 이상 떨어뜨려 사용하여 주십시오.

오동작의 원인이 됩니다.

폐기 시 주의사항

⚠ 주 의

▶ 제품 및 배터리를 폐기할 경우, 산업 폐기물로 처리하여 주십시오.

유독 물질의 발생, 또는 폭발의 위험이 있습니다.

개 정 이 력

버전	일자	주요 변경 내용	관련 페이지
V 1.0	2006.6	1. 초판 발행	-
V 1.1	2007.7	 위치/특수 내용 분리에 따른 변경 위치 결정 기능 분리 (위치결정편 발행) 	-
		(2) PID제어 및 12장 아날로그 입출력 모듈 분리 (아날로그편 발행)	-
		2. 내용 추가	
		(1) 형명부여 기준 내용 추가	2-3 ~ 2-6
		(2) 입출력 모듈 선정 시 주의사항 추가	7-1 ~ 7-6
		(3) 스마트 링크 보드를 이용한 입출력 결선 방법 추가 (4) 설치 및 배선 내용 추가	7-27 ~ 7-28
		3. 내용 수정	10-1 ~ 10-18
		(1) 안전에 대한 주의사항 내용 수정	
		(2) 시스템 구성도 그림 수정	1 ~ 6
		(3) 고속카운터 기능 카운터 동작 그림 수정	2-7 ~ 2-10
		(4) 외형치수 전면 개정	8-6 ~ 8-8
			부 2-1 ~ 2-4
V 1.2	2008.3	1. XGB 콤팩트형 'H'타입 기종 추가	_
		2. 내장 통신 내용 분리에 따른 변경	
		(1) 9장 내장 통신 기능 분리 (Cnet I/F 사용설명서)	9 장
V 1.3	2008.6	1. "UL 취득전압" 문구 추가	4-6
		2. RTC 예제 프로그램 수정	6-24
		3. XBC 입력 저항 수정 및 혼합 모듈 입출력 규격 추가	7-27
		4. 모듈의 설치 내용 추가	9-10
V 1.4	2008.8	1. DC 전원 기종 추가	앞표지
		2. DC 전원 및 증설모듈 기종 추가	2-1 ~ 2-4
		3. DC 전원 및 증설모듈 기종 추가	4-6 ~ 4-7
		4. DC 전원 및 증설모듈 기종 추가	7 장
		5. DC 전원 및 증설모듈 기종 추가	부록 2 외형치수
		6. 고속카운터 채널 오타 수정	8-3

V 1.5	2009.2	1. 기본 유닛 위치 결정용 트랜지스터 출력 접점 규격 변경	7-13, 14, 17, 18
V1.6	2009.5 2009.12 2010.2	1. XGB 기본 유닛 그림 오류 수정 2. 외장형 메모리 모듈 내용 추가 3. XGB 콤팩트형 타입 기종 추가 4. 'S', 'H' 타입 최대 입출력 점수 수정 5. 'S', 'H' 타입 최대 입출력 점수 수정	4-4 6-13 앞표지 2-1 ~ 2-4 4-1 ~ 4-2
V1.7	2010.6	1. XBF-AD08A/AH04A, XBE-DC16B, RY08B 소비전류 내용 추가 2. 접점 정격 입력전류, 접점 입력저항 오류로 인한 수정 3. XBE-DC16B 기종 추가 4. XBE-RY08B 기종 추가 5. 스마트 링크 보드를 이용한 입출력 결선 방법 추가 6. 패널에 직접 설치하는 경우 내용 추가 7. 외형치수 XBE-DC16B/RY08B 기종 추가	4-7 7-10 ~ 7-11 7-23 7-27 7-41 ~ 7-43 9-10 早 2-5
V1.8	2010.11	1. "PLC 지우기 실행 후 PLC 로부터 열기 시 오류 및 에러가 표시"문구 추가	6–4
V1.9	2014.3	1.데이터 백업 시간 추가 2.기종추가 (1) XBF-ADO4C/DVO4C/DCO4C (2) XBL-EIMT/EIMF/EIMH/EIPT/CMEA/CSEA/PMEC 3.홈페이지 도메인 변경 4.외장형 메모리 모듈(XBO-M1024B→XBO-M2MB) 수정	4-11 2-2~2-8 앞표지,뒷표지 6-25~6-33

[※] 사용설명서의 번호는 사용설명서 뒷표지의 우측에 표기되어 있습니다.

[©] LSIS Co., Ltd 2006 All Rights Reserved.

LS 산전 PLC 를 구입하여 주셔서 감사 드립니다.

제품을 사용하시기 이전에 올바른 사용을 위하여 구입하신 제품의 기능과 성능, 설치, 프로그램 방법 등에 대해서 본 사용설명서의 내용을 숙지하여 주시고 최종 사용자와 유지 보수 책임자에게 본 사용설 명서가 잘 전달될 수 있도록 하여 주시기 바랍니다.

다음의 사용설명서는 본 제품과 관련된 사용설명서입니다.

필요한 경우, 아래의 사용설명서의 내용을 보시고 주문하여 주시기 바랍니다.

또한, 당사 홈페이지 http://www.lsis.com/ 에 접속하여 PDF 파일로 다운로드 받으실 수 있습니다.

관련된 사용설명서 목록

사용설명서 명칭	사용설명서 내용	사용설명서 번호
	XGK 시리즈를 사용하여 프로그래밍, 인쇄, 모니	
XG5000 사용설명서	터링, 디버깅과 같은 온라인 기능을 설명한	10310000511
	XG5000 소프트웨어 사용설명서입니다.	
	XGK 시리즈에서 사용하는 명령어의 사용 방법	
XGK/XGB 명령어집	설명 및 프로그래밍을 하기 위한 사용설명서입니	10310000509
	다.	
	XGB 기본 유닛의 전원, 입출력, 증설 규격 및	
XGB 하드웨어 편	시스템 구성, 내장 고속카운터 규격 등에 대해서	10310000893
	설명한 XGB 기본 유닛 사용설명서입니다.	
	XGB 기본 유닛의 아날로그 입력, 출력, 온도 입	
VOD 011137 H	력 모듈의 규격 및 시스템 구성, 내장 PID 제어	1021000000
XGB 아날로그 편	등에 대해서 설명한 XGB 기본 유닛 아날로그 편	10310000862
	사용설명서입니다.	
	XGB 기본 유닛의 내장 위치제어 기능에 대해서	
XGB 위치결정 편	설명한 XGB 기본 유닛 위치결정편 사용설명서입	10310000863
	니다.	
	XGB 기본 유닛의 내장 통신 기능 및 외장 Cnet	
XGB Cnet I/F 편	I/F 모듈에 대해서 설명한 XGB Cnet I/F 편 사용	10310000736
	설명서입니다.	
V00 5 1 511 1 1/5 =1	XGB FEnet I/F 모듈에 대해서 설명한 XGB FEnet	1001000054
XGB Fast Ethernet I/F 편	I/F 편 사용설명서입니다.	10310000854

◎ 목 차 ◎

제 1 장 개요1-1~1-5
1.1 사용 설명서 구성1-1
1.2 특징1-2
1.3 용어 설명1-4
제 2 장 시스템 구성2-1~2-6
2.1 XGB 시리즈 시스템 구성2-1
2.2 구성 제품 일람2-2
2.3 제품 형명의 구분 및 종류2-4
2.3.1 기본 유닛의 구분 및 종류2-4
2.3.2 증설 입출력 모듈의 구분 및 종류2-5
3.3.3 특수 모듈의 구분 및 종류2-6
3.3.4 통신 모듈의 구분 및 종류 2-7
2.4 시스템 구성2-8
2.4.1 Cnet 시스템2-8
2.4.2 자사 네트워크 시스템2-11
2.4.3 Enet 시스템2-11
제 3 장 일반 규격3-1
3.1 일반 규격
제 4 장 CPU 모듈의 규격 4-1~4-5
4.1 성능 규격4-1
4.2 각부의 명칭 및 기능4-4
4.3 전원 규격4-6
4 4 소비 저르/저렫 계사 예 4-8

4.5 배터리4-10
4.6 데이터 백업 시간4-11
제 5 장 프로그램의 구성과 운전 방식5-1~5-35
5.1 프로그램의 기본5-1
5.1.1 프로그램 수행 방식5-1
5.1.2 순시 정전 시 연산 처리5-2
5.1.3 스캔 타임 (Scan Time) 5-3
5.1.4 스캔 워치독 타이머(Scan Watchdog Timer) 5-4
5.1.5 타이머 처리 5-5
5.1.6 카운터 처리 5-8
5.2 프로그램 실행5-10
5.2.1 프로그램의 구성5-10
5.2.2 프로그램의 수행 방식5-10
5.2.3 인터럽트5-12
5.3 운전 모드5-24
5.3.1 런(RUN)모드5-24
5.3.2 스톱(STOP)모드5-25
5.3.3 디버그(DEBUG) 모드5-25
5.3.4 운전 모드 변경5-29
5.4 메모리
5.4.1 데이터 메모리5-30
5.5 데이터 메모리 구성도5-32
5.5.1 데이터 래치 영역 설정5-33
제 6 장 CPU 모듈의 기능6-1~6-20
6.1 기종설정6-1
6.2 파라미터 설정6-2
6.2.1 기본 파라미터 설정6-2
6.2.2 I/0 파라미터 설정6-3
6.3 자기진단 기능6-4
6.3.1 에러 이력 저장 기능6-4
6.3.2 고장 처리6-5

6.4 리모트 기능6-	-6
6.5 입출력 강제 I/O On/Off 기능6-	-7
6.5.1 강제 I/O 설정 방법6	- 7
6.5.2 강제 I/O On/Off 처리 시점 및 처리 방법6	- 8
6.6 즉시(Direct)입출력 연산 기능6	-9
6.7 외부기기의 고장 진단 기능6-	10
6.8 입출력 번호 할당 방법6-	·11
6.9 운전 중 프로그램의 수정(RUN 중 수정)6-	13
6.10 I/0 정보 읽기6-	16
6.11 모니터 기능6-	17
6.12 RTC 기능6-2	23
6.12.1 사용 방법6-	23
6.13 외장형 메모리 모듈6-2	25
6.13.1 메모리 모듈 규격6-	25
6.13.2 메모리 모듈 구조6-	25
6.13.3 메모리 모듈 사용 방법6-	26
6.13.4 프로그램 암호 설정 시 사용 방법6-	31
┃제 7 장 입출력 규격 7-1~7-3	30
세 / 상 입술덕 규격/-1~/-(<u></u>
7.1 모듈 선정 시 주의사항	-1
7.1 모듈 선정 시 주의사항	-1 -7
7.1 모듈 선정 시 주의사항	-1 -7 '-7
7.1 모듈 선정 시 주의사항 7- 7.2 기본 유닛 디지털 입력 규격 7.2.1 XBM-DR16S 8점 DC24V 입력부(소스/싱크 타입) 7.2.2 XBM-DN16S 8점 DC24V 입력부(소스/싱크 타입)	-1 -7 '-7
7.1 모듈 선정 시 주의사항 7- 7.2 기본 유닛 디지털 입력 규격 7.2.1 XBM-DR16S 8점 DC24V 입력부(소스/싱크 타입) 7.2.2 XBM-DN16S 8점 DC24V 입력부(소스/싱크 타입) 7.2.3 XBM-DN32S 16점 DC24V 입력부(소스/싱크 타입)	-1 -7 '-7 '-8 '-9
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9 -10
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9 -10 -11 13
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9 -10 -11 13 -13
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9 10 11 13 -13
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9 10 11 13 13 -14 -15
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9 -10 -11 13 -13 -14 -15 -16
7.1 모듈 선정 시 주의사항	-1 -7 '-7 '-8 '-9 -10 -11 13 -13 -14 -15 -16 -17

7.4.1 8점 DC24V 입력 모듈(소스/싱크 타입)7-22
7.4.2 16 점 DC24V 입력 모듈(소스/싱크 타입)7-23
7.4.3 32 점 DC24V 입력 모듈(소스/싱크 타입)7-24
7.5 디지털 출력 모듈 규격7-25
7.5.1 8점 릴레이 출력 모듈7-25
7.5.2 8점 릴레이 출력 모듈(독립접점)
7.5.3 16 점 릴레이 출력 모듈7-27
7.5.4 8점 트랜지스터 출력 모듈(싱크 타입)7-28
7.5.5 16점 트랜지스터 출력 모듈(싱크 타입)7-29
7.5.6 32점 트랜지스터 출력 모듈(싱크 타입)7-30
7.5.7 8점 트랜지스터 출력 모듈(소스 타입)7-31
7.5.8 16점 트랜지스터 출력 모듈(소스 타입)7-32
7.5.9 32 점 트랜지스터 출력 모듈(소스 타입)7-33
7.6 혼합 모듈 디지털 입력 규격
7.6.1 8점 DC24V 입력부 (소스/싱크 타입)7-34
7.7 혼합 모듈 디지털 출력 규격
7.7.1 8점 릴레이 출력부7-35
7.8 스마트 링크 보드를 이용한 입출력 결선
7.8.1 스마트 링크 보드7-36
7.8.1 스마트 링크 보드7-36
제 8 장 고속 카운터 기능 8-1~8-28
제 8 장 고속 카운터 기능 8-1~8-28 8.1 고속 카운터 규격
제 8 장 고속 카운터 기능
제 8 장 고속 카운터 기능 8-1~8-28 8.1 고속 카운터 규격
제 8 장 고속 카운터 기능
제 8 장 고속 카운터 기능
제 8 장 고속 카운터 기능 8-1~8-28 8.1 고속 카운터 규격 8-1 8.1.1 성능 규격 8-1 8.1.2 각부의 명칭 8-2 8.1.3 기능 8-4 8.2 설치 및 배선 8-17 8.2.1 배선상의 주의사항 8-17
제 8 장 고속 카운터 기능
제 8 장 고속 카운터 기능 8-1~8-28 8.1 고속 카운터 규격
제 8 장 고속 카운터 기능 8-1~8-28 8.1 고속 카운터 규격 8-1 8.1.1 성능 규격 8-1 8.1.2 각부의 명칭 8-2 8.1.3 기능 8-4 8.2 설치 및 배선 8-17 8.2.1 배선상의 주의사항 8-17 8.2.2 배선 예 8-17 8.3 내부 메모리 8-19 8.3.1 고속카운터용 특수 영역 8-19
제 8 장 고속 카운터 기능 8-1~8-28 8.1 고속 카운터 규격

9.1 안전상의 주의사항9-1
9.1.1 페일 세이프 회로9-3
9.1.2 PLC 발열량 계산9-6
9.2 모듈의 장착 및 분리9-8
9.2.1 모듈의 장착 및 분리9-8
9.2.2 취급시 주의사항 9-13
9.3 배선9-14
9.3.1 전원 배선9-14
9.3.2 입출력 기기 배선9-17
9.3.3 접지 배선 9-17
9.3.4 배선용 전선 규격9-18
제 10 장 유지 및 보수 10-1~10-2
10.1 보수 및 점검10-1
10.2 일상 점검10-1
10.3 정기 점검10-2
10.0 671 00
제 11 장 트러블 슈팅 11-1~11-11
제 11 장 트러블 슈팅 11-1~11-11 11.1 트러블 슈팅의 기본 절차 11-1 11.2 트러블 슈팅 11-1
제 11 장 트러블 슈팅
제 11 장 트러블 슈팅의 기본 절차
제 11 장 트러블 슈팅의 기본 절차
제 11 장 트러블 슈팅의 기본 절차
제 11 장 트러블 슈팅의 기본 절차

부록 1 플래그 일람..... 부 1-1~부 1-9

부 4.2 기본 명령 부 4-2 부 4.3 응용 명령 부 4-5 부 4.4 특수/통신 명령 부 4-37
부 4.2 기본 명령
부 4.2 기본 명령
부 4.2 기본 명령
부 4.1 명령어 분류 부 4-1
부록 4 명령어 일람부 4-1~부 4-40
부록 3 MASTER-K 와의 호환성(특수 릴레이) 부 3-1~부 3-6
부록 2 외형 치수부 2-1~부 2-4
부 1.3 네트워크 레지스터(N)일람 부 1-9
부 1.1 특수 릴레이(F)일람 부 1-1 부 1.2 링크(통신용) 릴레이(L)일람 부 1-6

제 1 장 개 요

1.1 사용 설명서 구성

본 사용 설명서는 XGB PLC 시스템을 사용하는데 필요한 각 제품의 규격·성능 및 운전 방법 등에 대한 정보를 제공합니다.

사용 설명서의 구성은 다음과 같습니다.

장	항 목	내용	
제 1 장	개 요	본 사용설명서의 구성, 제품특징 및 용어에 대해 설명합니다.	
제 2 장	시스템 구성	XGB PLC 에서 사용할 수 있는 제품 종류 및 시스템 구성방법에 대해 설명합니다.	
제 3 장	일반 규격	XGB PLC에 사용하는 각종 모듈의 공통규격을 나타냅니다.	
제 4 장	CPU 모듈의 규격		
제 5 장	프로그램의 구성과 운전 방식	XGB PLC의 성능·규격 및 조작법에 대해 설명합니다.	
제 6 장	CPU 모듈의 기능		
제 7 장	입출력 규격	XGB PLC의 기본 유닛 및 증설 모듈의 입출력 사용 방법 등에 대해 설명합니다.	
제 8 장	고속 카운터 기능	XGB PLC의 내장 고속 카운터 기능에 대해 설명합니다.	
제 9 장	설치 및 배선	PLC 시스템의 신뢰성을 확보하기 위한 설치, 배선방법 및 주의 사항에 대해 설명합니다.	
제 10 장	유지 및 보수	PLC 시스템을 장기간 정상적으로 가동하기 위한 점검항목 및 방법 등에 대해 설명합니다.	
제 11 장	트러블 슈팅	시스템 사용 중 발생하는 각종 에러의 내용 및 조치방법 등에 대하여 설명합니다.	
부록 1	플래그 일람	각종 플래그의 종류 및 내용에 대해 설명합니다.	
부록 2	외형치수	XGB PLC의 외형치수를 나타냅니다.	
부록 3	MASTER-K 와의 호환성	기존 MASTER-K 시리즈와의 프로그램 호환성 등에 대해 설명합니다.	
부록 4	명령어 일람	XGB PLC 에서 사용 가능한 명령어 일람을 나타냅니다.	

1.2 특징

XGB 시스템은 아래와 같은 특징을 갖고 있습니다.

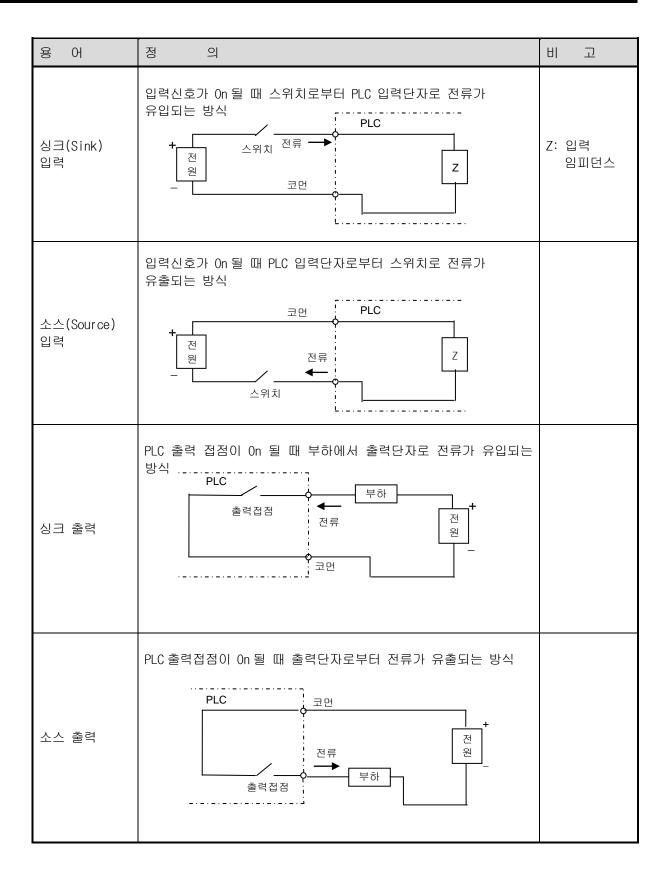
- (1) 아래와 같은 고성능 기능을 실현하였습니다.
 - (a) 고속 처리 속도
 - (b) 최대 704점 I/O 제어로 중소형 시스템 구축 가능

항 목	기 종		
80 🗖	XBM-DxxxS	XBC-DxxxH	
연산처리속도	160ns / Step	83ns / Step	
최대입출력점수	256 점	384 점	
프로그램용량	10kstep	15kstep	
최대증설단수	7 단	10 단	

- (c) 풍부한 프로그램 용량 확보.
- (d) 부동 소수점 지원을 통한 적용 분야 확대.
- (e) 이하에서는 XBM-DxxxS 는 "S" 타입으로 XBC-DxxxH 는 "H" 타입으로 설명합니다.
- (2) 콤팩트 사이즈: 경쟁사 대비 동급 최소 사이즈를 실현하였습니다.
 - (a) 동급 최소 사이즈 실현을 통하여 콤팩트한 패널 제작이 가능합니다.

(단위 : mm)

품 명	기 종	크기(W * H * D)	비고
	XBC-Dx32H	114 * 90 * 64	"H" 타입
기본 유닛	XBC-Dx64H	180 * 90 * 64	п GB
	XBM-DxxxS	30 * 90 * 64	"S" 타입
증설 모듈	XBE-, XBF-, XBL-	20 * 90 * 60	최소 사이즈 기준

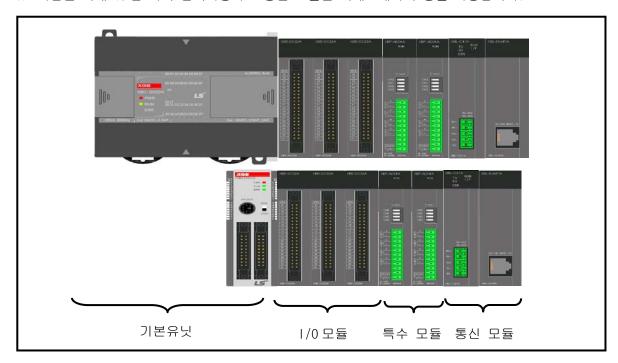

- (3) 손쉬운 착탈/증설 방식 제공을 통하여 사용자 편리성을 증대 시켰습니다.
 - (a) 착탈이 가능한 유럽식 단자대와 사용이 간편한 MIL 커넥터 방식을 채용하여 배선의 편의성을 증대 시켰습니다. ("S"타입 기본 유닛 및 증설모듈)
 - (b) 착탈이 가능한 단자대 커넥터 (M3 X 6 나사)를 채용하여 배선의 편의성을 증대 시켰습니다. ("H"타입 기본 유닛)
 - (c) 모듈 증설 시 커넥터 체결 방식을 채용하여 접속 및 분리를 편리하게 하였습니다.
- (4) 각종의 레지스터 제공, 코멘트 백업, RTC 내장 ("H" 타입) 등을 통하여 유지 보수성을 향상 시켰습니다
 - (a) 아날로그 레지스터, 인덱스 레지스터 제공을 통한 편리한 프로그래밍 환경을 제공합니다.
 - (b) 프로그램 모듈화를 통한 복수의 프로그램 및 태스크 프로그램 운영을 통한 유지 보수성을 향상 시켰습니다.
 - (c) 플래시 ROM 내장 방식을 채용하여 배터리 없이 프로그램 영구 백업을 가능하게 하였습니다.
 - (d) 각종 코멘트 백업을 가능하게 하여 유지 보수성을 향상 시켰습니다.
 - (e) RTC 기본 내장을 통한 편리한 이력 및 스케줄 관리 기능을 제공합니다.

- (5) 최적의 통신 환경을 제공합니다.
 - (a) 내장 통신 2 채널(로더 포트 제외) 제공을 통해 별도 증설 모듈 없이 통신이 가능합니다.
 - (b) 다양한 프로토콜 제공을 통하여 편리성을 향상 시켰습니다. (전용, 모드버스, 사용자 정의 통신)
 - (c) 증설모듈을 통한 추가 통신 모듈 장착이 가능합니다. (Cnet, Enet 등 최대 2 단 증설 가능)
 - (d) 네트워크 및 통신 프레임 모니터 기능을 통해 편리한 네트워크 진단 기능을 보유하고 있습니다.
 - (e) Enet 또는 Cnet 을 통한 상위 시스템과의 편리한 네트워크 구성이 가능합니다.
 - (f) USB Port 기본 제공으로 고속 프로그램 업/다운로드가 가능합니다.
- (6) 다양한 입출력 모듈을 통한 적용 어플리케이션을 확대 할 수 있습니다
 - (a) 8 점, 16 점, 32 점 모듈을 제공합니다. (단, 릴레이 출력의 경우 8/16 점 모듈)
 - (b) 단독 입력, 단독 출력, 혼합 입출력 모듈을 제공합니다.
- (7) 아날로그 전용 레지스터 제공 및 전 슬롯 장착 가능을 통한 적용 확대가 가능합니다.
 - (a) 증설 전 슬롯 아날로그 모듈 장착이 가능합니다. (H 타입 : 최대 10 단 장착 가능)
 - (b) 아날로그 전용 레지스터(U)및 전용 모니터링 기능을 탑재하여 아날로그 입/출력의 사용 편의성을 극대화 하였습니다.
 - (U 영역을 이용한 손쉬운 프로그램 및 모니터링 기능을 이용한 제반 동작 지정 가능)
- (8) 통합 프로그래밍 환경을 제공합니다.
 - (a) XG 5000 : 프로그램 편리성 강화 및 다양한 모니터링, 진단 기능, 편집 기능 강화
 - (b) XG PD : 통신 및 네트워크 관련 파라미터 설정, 프레임 모니터링, 프로토콜 분석 기능 제공
- (9) 내장 고속 카운터 기능
 - (a) 고속 카운터 1상 2상 제공 및 각종 부가 기능을 제공 합니다.
 - (b) XG5000을 이용한 파라미터 설정, 다양한 모니터링 및 진단 기능을 제공합니다.
 - (c) 프로그램 없이 XG5000의 모니터링을 통해 시운전을 수행, 외부 배선 및 데이터 설정 등의 점검 이 가능합니다.
- (10) 내장 위치 제어 기능
 - (a) 최대 100kpps 2 축을 제공합니다.
 - (b) XG5000을 이용한 파라미터 설정, 운전 데이터 편집, 다양한 모니터링 및 진단 기능을 제공합니다.
 - (c) 프로그램 없이 XG5000의 모니터링을 통해 시운전 수행 외부 배선 및 운전 데이터 설정 점검 이 가능합니다.
- (11) 내장 PID 기능
 - (a) 최대 16 루프를 제공합니다.
 - (b) XG5000을 이용한 파라미터 설정, 트렌드 모니터를 통한 편리한 루프 상태 모니터링을 제공합니다.
 - (c) 향상된 자동동조 기능을 통한 손쉬운 제어 상수 설정이 가능합니다.
 - (d) PWM 출력, Δ MV, Δ PV, SV Ramp 등 다양한 부가기능 제공을 통하여 제어 정밀도를 향상 시킬 수 있습니다.
 - (e) 정/역 혼합운전, 2 단 SV PID 제어, 캐스케이드 제어 등 각종 제어 모드를 제공합니다.
 - (f) PV MAX, PV 변동 경보 등 다양한 알람 기능을 통한 안전성을 확보할 수 있습니다.

1.3 용어설명

본 사용 설명서에서 사용하는 용어에 대해 설명합니다.

용 어	정 의	비고
모듈 (Module)	시스템을 구성하는 일정한 기능을 가진 표준화된 요소로서 입출력 보드와 같은 장치.	예) 증설모듈, 특수모듈, 통신모듈
유닛 (Unit)	PLC 시스템의 동작상에서 최소단위가 되는 모듈 또는 모듈의 집합체이며, 다른 모듈 또는 모듈의 집합체와 접속되어 PLC 시스템을 구성하는 것.	예) 기본유닛, 증설유닛
PLC 시스템 (PLC System)	PLC 와 주변장치로 이루어지는 시스템으로 사용자 프로그램에 의하여 제어가 가능하도록 구성된 것.	
XG5000	프로그램 작성,편집 및 디버그 기능을 수행하는 그래픽 로더 (PADT : Programming Added Debugging Tool)	
XG-PD	내장 통신 및 외장 통신 모듈의 기본 파라미터 및 고속링크, P2P 파라미터를 작성, 편집 및 통신 진단 기능을 수행하는 소프트웨어	
입출력 이미지 영역	입출력 상태를 유지하기 위하여 설치된 CPU 모듈의 내부 메모리 영역	
Cnet	컴퓨터 네트워크 (Computer Network)	
FEnet	고속 이더넷 네트워크 (Fast Ethernet Network)	
Pnet	프로피버스 네트워크 (Profibus-DP Network)	
Dnet	디바이스넷 네트워크 (DeviceNet Network)	
RTC	Real Time Clock의 약어로서 시계기능을 내장한 범용 IC 의 총칭	
워치독 타이머 (Watchdog Timer)	프로그램의 미리 정해진 실행시간을 감시하고 규정시간 내에 처리가 완료되지 않을 때 경보를 발생하기 위한 타이머	

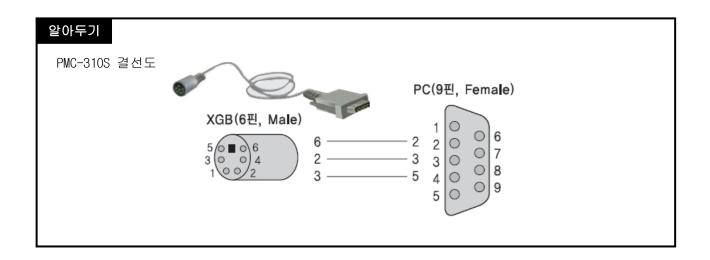


제 2 장 시스템 구성

XGB PLC는 기본 시스템, 컴퓨터 링크 및 네트워크 시스템 구성에 적합한 각종 제품을 구비하고 있습니다. 이 장은 각 시스템의 구성 방법 및 특징에 대해 설명합니다.

2.1 XGB 시스템 구성

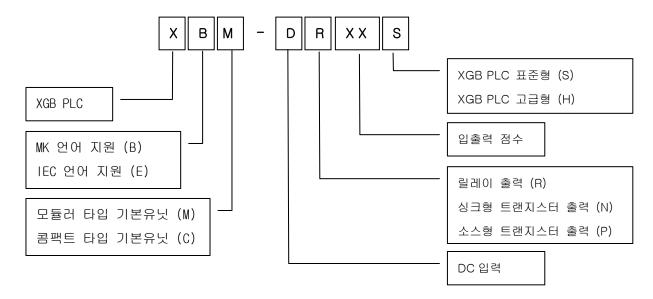
XGB PLC의 시스템 구성은 아래 그림과 같습니다. 증설 I/O 모듈, 특수 모듈의 경우 "S"타입은 최대 7 단, "H"타입은 최대 10 단 까지 접속가능하고 통신 모듈은 최대 2 대까지 증설 가능합니다.


	항	목	내 용
이ᄎ검	입출력 구성 점수		• XBC-DxxxH ("H"타입): 32 ~ 384점
합물의	70 67		● XBM-DxxxS ("S"타입): 16 ~ 256점
, , , , , , , , , , , , , , , , , , ,	드 저소	디지털 입출력모듈	• "S" 타입: 최대 7 대 / "H" 타입: 최대 10 대
증설 모 가능 대		특수 모듈	• "S" 타입: 최대 7 대 / "H" 타입: 최대 10 대
가능 내	Ť	통신 모듈	• 최대 2대
	기본	"H" 타입	
	유닛	"S" 타입	
구성		디지털 입출력	•2.2구성 제품 일람 참조
제품	증설	모듈	
	모듈	특수 모듈	
		통신모듈	

2.2 구성 제품 일람

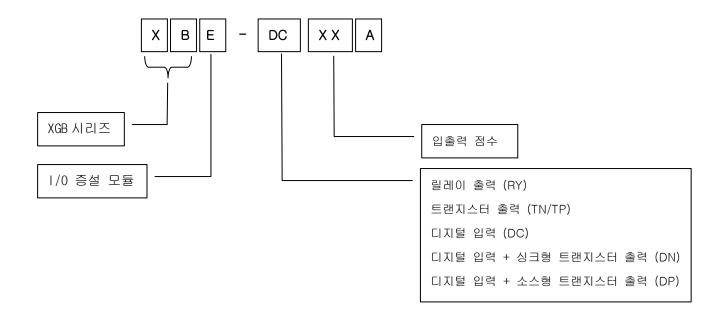
XGB PLC의 제품 구성은 아래 표와 같습니다.

구 분	형 명	내 용	비고
	XBC-DR32H	AC 100V-220V 전원, DC24V 입력 16 점, 릴레이 출력 16 점	
	XBC-DN32H	AC 100V-220V 전원, DC24V 입력 16점, 트랜지스터 출력 16점	
	XBC-DR64H	AC 100V-220V 전원, DC24V 입력 32 점, 릴레이 출력 32 점	
	XBC-DN64H	AC 100V-220V 전원, DC24V 입력 32 점, 트랜지스터 출력 32 점	"H" 타입
기본	XBC-DR32H/DC	DC 24V 전원, DC24V 입력 16 점, 릴레이 출력 16 점	11 46
유닛	XBC-DN32H/DC	DC 24V 전원, DC24V 입력 16 점, 트랜지스터 출력 16 점	
	XBC-DR64H/DC	DC 24V 전원, DC24V 입력 32 점, 릴레이 출력 32 점	
	XBC-DN64H/DC	DC 24V 전원, DC24V 입력 32 점, 트랜지스터 출력 32 점	
	XBM-DN16S	DC24V 전원, DC24V 입력 8 점, 트랜지스터 출력 8 점	
	XBM-DN32S	DC24V 전원, DC24V 입력 16 점, 트랜지스터 출력 16 점	"S" 타입
	XBM-DR16S	DC24V 전원, DC24V 입력 8 점, 릴레이 출력 8 점	
	XBE-DC08A	DC24V 입력 8 점	
	XBE-DC16A/B	DC24V 입력 16 점	입력
	XBE-DC32A	DC24V 입력 32 점	
	XBE-RY08A	릴레이 출력 8 점	
	XBE-RY08B	릴레이 출력 8 점(독립 접점)	
디지털	XBE-RY16A	릴레이 출력 16점	
입출력 모듈	XBE-TN08A	트랜지스터 출력 8 점(싱크형)	
	XBE-TN16A	트랜지스터 출력 16점(싱크형)	출력
	XBE-TN32A	트랜지스터 출력 32점(싱크형)	
	XBE-TP08A	트랜지스터 출력 8점(소스형)	
	XBE-TP16A	트랜지스터 출력 16점(소스형)	
	XBE-TP32A	트랜지스터 출력 32점(소스형)	
	XBE-DR16A	DC24V 입력 8 점, 릴레이 출력 8 점	입출력
	XBF-AD04A	전류/전압 입력 4 채널	
	XBF-AD04C	전류/전압 입력 4 채널, 고분해능	
	XBF-AD08A	전류/전압 입력 8채널	
특수	XBF-DC04A	전류 출력 4 채널	아날로그
고듈	XBF-DC04C	전류 출력 4 채널, 고분해능	입출력
	XBF-DV04A	전압 출력 4 채널	
	XBF-DV04C	전압 출력 4 채널, 고분해능	
	XBF-AH04A	전류/전압 입력 2 채널,전류/전압 출력 2 채널	


	XBF-RD01A	측온 저항체(RTD) 입력 1 채널	
	XBF-RD04A	측온 저항체(RTD) 입력 4 채널	
특수	XBF-TC04S	열전대(TC) 입력 4 채널	
모듈	XBF-PD02A	위치결정 2 축,Line Drive Type	위치결정
	XBF-HD02A	고속카운터 2채널, Line Drive Type	그소리으디
	XBF-H002A	고속카운터 2채널, Opencollecter Type	고속카운터
	XBL-C21A	Cnet(RS-232C/모뎀) I/F	
	XBL-C41A	Cnet(RS-422/485) I/F	
	XBL-EMTA	Enet I/F	
통신	XBL-EIMT/F/H	RAPIEnet I/F	
모듈	XBL-ETPT	EtherNet/IP 모듈	
	XBL-CMEA	CANopen MasterI/F	
	XBL-CSEA	CANopen Slave I/F	
	XBL-PMEC	Pnet I/F	
CPU 접속	PMC-310S	RS-232C 접속(다운로드) 케이블	
케이블	USB-301A	USB 접속(다운로드) 케이블	_

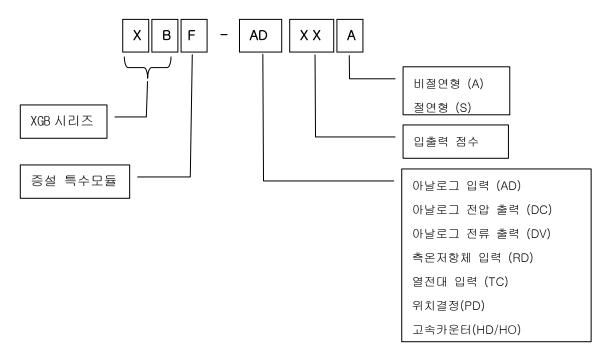
2.3 제품 형명의 구분과 종류

2.3.1 기본 유닛의 구분 및 종류


기본 유닛의 제품명은 다음과 같이 구분합니다.

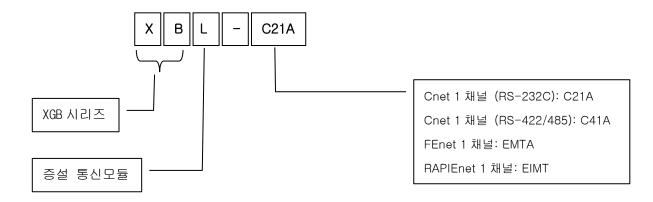
구분	형명	DC 입력	릴레이 출력	트랜지스터 출력	전원
	XBM-DR16S	8 점	8 점	없음	
모듈러 타입	XBM-DN16S	8 점	없음	8 점	DC24V
기본유닛	XBM-DN32S	16 점	없음	16 점	
	XBC-DR32H	16 점	16 점	없음	
	XBC-DN32H	16 점	없음	16 점	A0110V 000V
	XBC-DR64H	32 점	32 점	없음	AC110V~220V
콤팩트 타입	XBC-DN64H	32 점	없음	32 점	
기본유닛	XBC-DR32H/DC	16 점	16 점	없음	
	XBC-DN32H/DC	16 점	없음	16 점	D00 4V
	XBC-DR64H/DC	32 점	32 점	없음	DC24V
	XBC-DN64H/DC	32 점	없음	32 점	

2.3.2 증설 입출력 모듈의 구분 및 종류


증설 모듈의 제품명은 다음과 같이 구분합니다.

형명	DC 입력	릴레이 출력	트랜지스터 출력	비고
XBE-DC08A	8 점	없음	없음	
XBE-DC16A/B	16 점	없음	없음	
XBE-DC32A	32 점	없음	없음	
XBE-RY08A/B	없음	8 점	없음	
XBE-RY16A	없음	16 점	없음	
XBE-TN08A	없음	없음	8점(싱크타입)	
XBE-TN16A	없음	없음	16 점(싱크타입)	
XBE-TN32A	없음	없음	32점(싱크타입)	
XBE-TP08A	없음	없음	8점(소스타입)	
XBE-TP16A	없음	없음	16 점(소스타입)	
XBE-TP32A	없음	없음	32점(소스타입)	
XBE-DR16A	8 점	8 점	없음	

2.3.3 특수 모듈의 구분 및 종류

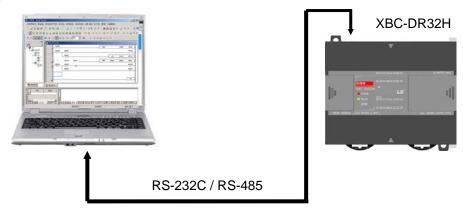

특수 모듈의 제품명은 다음과 같이 구분합니다.

구분	형 명	입력채널 수	입력 구분	출력 채널수	출력 구분
아날로그 입력	XBF-AD04A/C	4	전압/전류	없음	_
N527 84	XBF-AD08A	8	전압/전류	없음	
아날로그 출력	XBF-DC04A/C	없음	_	4	전류
이글도 <u>그</u> 물득	XBF-DV04A/C	없음	_	4	전압
측온저항체 입력	XBF-RD04A	4	PT100/JPT100	없음	_
국근사용제 합력	XBF-RD01A	1	PT100/JPT100	없음	_
열전대 입력	XBF-TC04S	4	K, J, T, R	없음	_
위치결정	XBF-PD02A			2	라인드라이버
747100	XBF-HD02A	2	라인드라이버		
고속카운터	XBF-H002A	2	오픈컬렉터		

2.3.4 통신모듈의 구분 및 종류

통신 모듈의 제품명은 다음과 같이 구분합니다

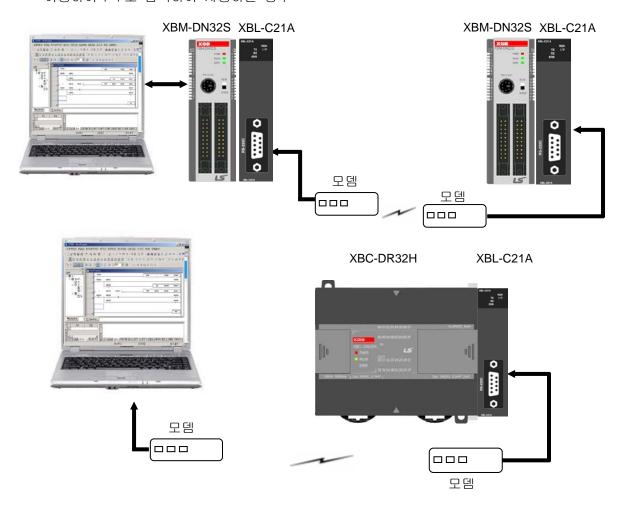
구분	형명	종류
Cnet 통신 모듈	XBL-C21A	RS-232C, 1 채널
이번 중선 포함	XBL-C41A	RS-422/485, 1 채널
FEnet 통신 모듈	XBL-EMTA	전기, 오픈형 Ethernet
RAPIEnet 통신 모듈	XBL-	PLC 간 통신 모듈, 전기 미디어,
NATICIEL SU IZ	EIMT/EIMF/EIMH	100 Mbps 산업용 이더넷 지원
EtherNet/IP 통신 모듈	XBL-EIPT	전기, 오픈형 EtherNet
CAMenon EAL DE	XBL-CMEA	CANopen Master
CANopen 통신 모듈	XBL-CSEA	CANopen Slave
Pnet 통신모듈	XBL-PMEC	Profibus-DP


2.4 시스템 구성

2.4.1 Cnet I/F 시스템

Cnet I/F 시스템이란 RS-232C/RS-422(485) I/F 모듈을 사용하여 PC 등의 외부 기기와 기본유닛 사이의 데이터 송수신을 하기 위한 통신 시스템입니다. XGB PLC 의 경우 기본 유닛에 RS-232C 1 포트 및 RS-485 1 포트가 각각 내장되어 있으며 또한 RS-232C 전용 증설 모듈 (XBL-C21A)과 RS-422/485 전용 증설 모듈 (XBL-C41A)이 있습니다. 사용자의 용도에 따라 다음과 같이 각종 통신 시스템을 구축할 수 있습니다.

(1) 1:1 통신시스템

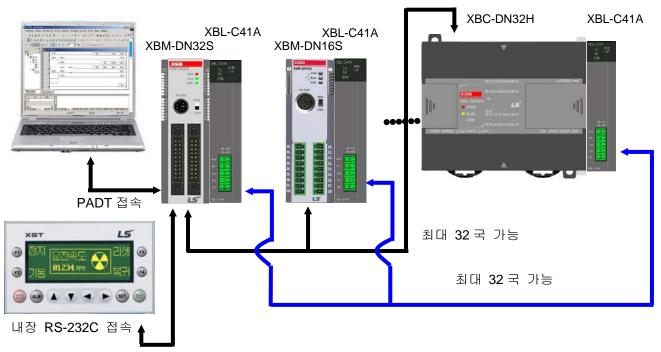

(a) 기본 유닛의 RS-232C/RS-485 내장포트를 사용하여 PC 와 1:1로 접속하여 사용하는 경우

(b) 기본 유닛의 RS-485 내장 포트를 사용하여 1:1 접속하여 사용하는 경우 (내장 RS-232C 는 HMI 기기 접속)

(c) 원거리에 있는 기기를 I/F 하기 위해 RS-232C 전용 Cnet I/F 모듈의 모뎀 접속 기능을 이용하여 1:1로 접속하여 사용하는 경우



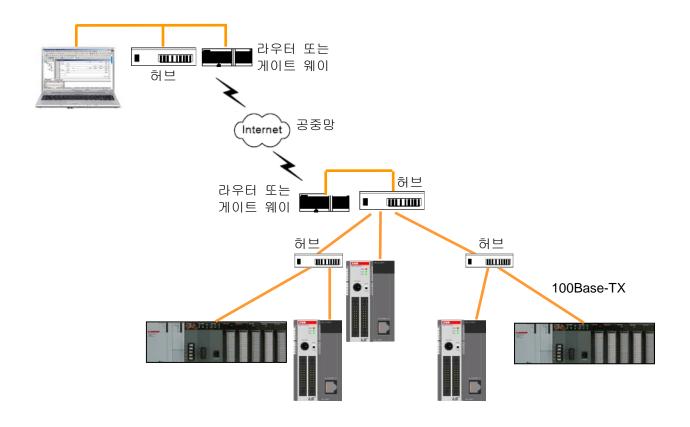
(d) 기본 유닛의 RS-232C/485 내장포트를 사용하여 모니터링 기기등과 1:1로 접속하여 사용하는 경우



(2) 1:N 통신시스템

(a) RS-485 내장 Cnet I/F 기능을 이용하여 최대 32 개의 통신국을 접속할 수 있습니다.

(b) 내장 RS-485/증설 Cnet I/F 모듈을 이용하여 각각 최대 32 개의 통신국을 접속할 수 있습니다.



알아두기

1) Cnet 통신의 상세한 규격에 대해서는 "XGB Cnet I/F 편" 사용설명서를 참조하여 주십시오.

2.4.2 Enet 시스템

Ethernet 은 미국의 제록스(Xerox), 인텔, DEC 사가 공동으로 개발한 대표적인 LAN 접속 방식(IEEE 802.3)으로 100Mbps 전송 능력과 1.5kB 의 패킷을 사용하는 네트워크 연결 시스템입니다. Ethernet 은 다양한 종류의 컴퓨터를 네트워크로 묶을 수 있기 때문에 랜의 대명사처럼 불려지게 되었고, 특정 업체만의 규격이 아닌 범용성을 가진 규격으로서 다양한 상품이 나와 있습니다. 또한, CSMA/CD 라는 방식을 사용하여 통신을 제어하며 손쉬운 네트워크 망을 구축함은 물론 고속 대용량의 데이터 수집이 가능합니다.

알아두기

1) 자사 네트워크 시스템 구성과 Enet 시스템 구성의 사용 방법에 대한 상세 사항은 "XGB FEnet I/F 편"사용 설명서를 참조하여 주십시오.

제 3 장 일반 규격

3.1 일반 규격

XGB 시리즈의 일반 규격은 다음과 같습니다.

No.	항목		관련 규격				
1	사용 온도			0℃~	+55°C		
2	보관 온도			-25 ℃ -	~+70°C		
3	사용 습도		5~95%	%RH, 이슬	이 맺히지 않을	것	
4	보관 습도		5~95%	%RH, 이슬	이 맺히지 않을	것	
			단:	속적인 진동	등이 있는 경우		
		주파수		가속도	진폭	횟수	
		10≤f< 57 Hz		-	0.075mm		
5	내진동	57≤f≤150 Hz	!	9.8 m/s²	-		
3	내신경	연속적인 진동	통이 있는	= 경우		X,Y,Z 각방향	IEC 61131-2
		주파수		가속도	진폭	_ 10 회	
		10≤f< 57 Hz		-	0.035mm		
		57≤f≤150 Hz	4.9	m/s²(0.5G)	-		
	= =.	* 최대 충격		I47 № (15G)		
6	내충격	* 인가 시간 * 퍽스 파혁		바마 퍽스 ()	⟨,Y,Z 3 방향 각	3 হা)	IEC 61131-2
		E = #10	. 0	_==(/			
		방형파 임펄2	스 노이		AC: ±1,500V DC: ±900V 전압 : 4kV(접촉 방전)		LS 산전 내부시험규격
		정전기 방전					IEC 61131-2, IEC 61000-4-2
7	내노이즈	방사 전자계	노이즈		80 ~ 1,000	MHz, 10 V/m	IEC 61131-2, IEC 61000-4-3
		패스트 트랜지언트 /버스트	구분	전원 모듈		로그 입출력, 터페이스	IEC 61131-2, IEC 61000-4-4
		노이즈 -	전압	2kV	1	kV]
8	주위환경	부식성 가스, 먼지가 없을 것					
9	사용고도	2000m 이하					
10	오염도	2 이하					
11	냉각 방식			자연	 공랭식		

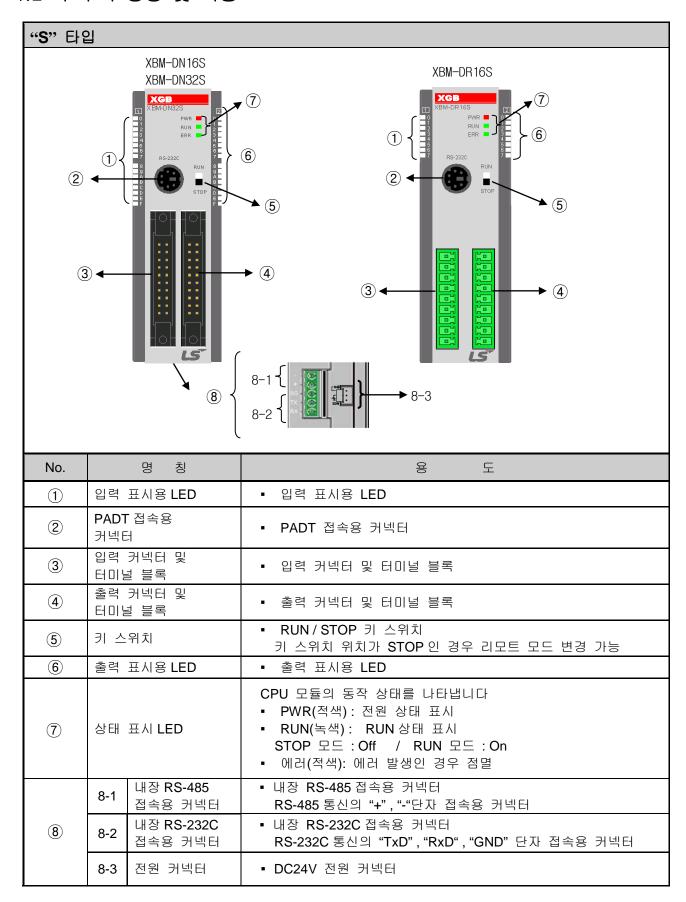
알아두기

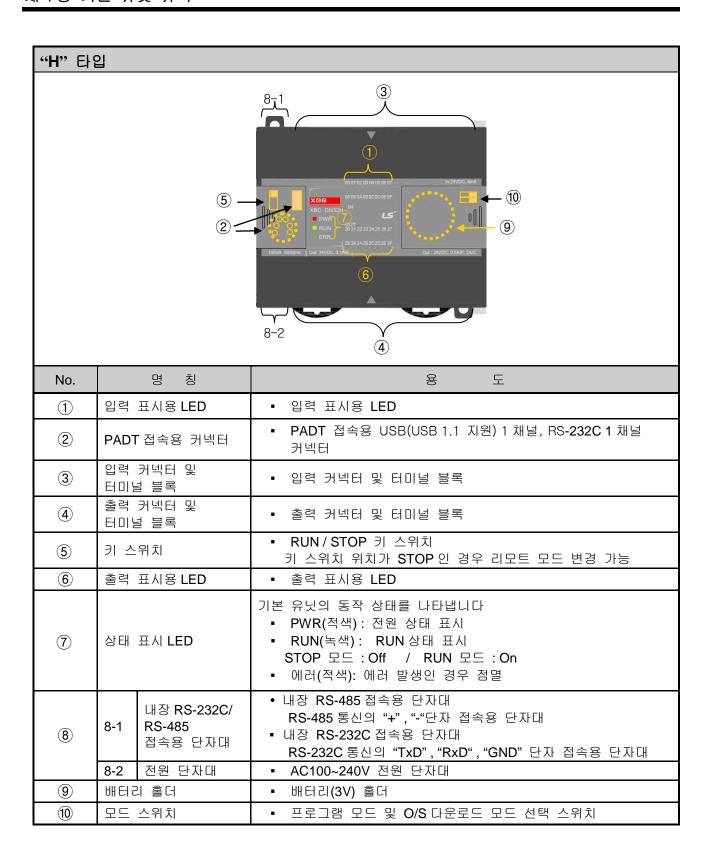
- 1) IEC (International Electrotechnical Commission : 국제 전기 표준회의) : 전기·전자기술 분야의 표준화에 대한 국제 협력을 촉진하고 국제 규격을 발간하며 이와 관련된 적합성 평가 제도를 운영하고 있는 국제적 민간 단체
- 2) 오염도 : 장치의 절연 성능을 결정하는 사용 환경의 오염 정도를 나타내는 지표이며 오염도 2 란 통상, 비 도전성 오염만 발생하는 상태입니다. 단, 이슬 맺힘에 따라 일시적인 도전이 발생하는 상태를 말합니다.

제 4 장 기본 유닛 규격

4.1성능 규격

XGB PLC 표준형 기본 유닛의 성능 규격은 다음과 같습니다.


		-X-1 80 πης ι	규 격 ("S" 타	입)	비고
항	当	XBM-DR16S	XBM-DN16S	XBM-DN32S	- OI 12
연산 방식		반복 연산, 정주기	연산, 인터럽트 연신	, 고정주기 스캔	
입출력 제	어 방식	스캔 동기 일괄처 명령어에 의한 다	리 방식 (리프레시 방 이렉트 방식	식),	
프로그램	언어	래더 다이어그램 명령 리스트 (I	(Ladder Diagram) nstruction List)		
명령어 수	기본 명령	28 종			
88VI T	평 명 용 이	677 종			
연산 속도((기본 명령)	0.16 <i>⊭</i> s/Step			
프로그램	메모리 용량	10ksteps			
최대 입출	력 점수	240 점(기본 + 증설	7 단)	256 점	
	Р	P0000 ~ P127F (2	,048 점)		
	M	M0000 ~ M255F (4	4,096 점)		
	K	K00000 ~ K2559F	(특수 영역 : K2600~2	2559F) (40,960 점)	
	L	L00000 ~ L1279F	(20,480 점)		
	F	F000 ~ F255F (4,0	096 점)		
데이터	Т	100ms, 10ms, 1ms : T000 ~ T255 (256 점) (파라미터 설정에 의해 영역 변경이 가능함)			
영역	С	C000 ~ C255 (256	점)		
	S	S00.00 ~ S127.99			
	D	D0000 ~ D5119 (5	5120 워드)		워드
	U	U00.00 ~ U07.31 (256 워드, 아날로그 [베이터 리프레시 영역)	워드
	Z	Z000~Z127 (128 ዓ	^{릭드})		워드
	N	N0000~N3935(3936 워드)			워드
총 프로그	램 수	128 개			
초기화 태:	스크	1 개			
정주기 태:	스크	최대 8개			
외부 접점	태스크	최대 8개			
내부 디바이스 태스크		최대 8개			
운전 모드		RUN, STOP, DEBUG			
자기 진단 기능		연산 지연 감시, 메모리 이상, 입출력 이상			
프로그램 포트		RS-232C(Loader)			
정전 시 데이터 보존방법		기본 파라미터에서 래치 영역 설정			
내부 소비	전류	400mA	250mA	280mA	
량 중		140g	100g	110g	


XGB PLC 콤팩트형 기본 유닛의 성능 규격은 다음과 같습니다.

			규 격	("H" 타입)		
항	목	XBC-DN32H (/DC)	XBC-DR32H (/DC)	XBC-DN64H (/DC)	XBC-DR64H (/DC)	비고
연산 방식		반복 연산, 정주기	연산, 인터럽트 연신	t, 고정주기 스캔		
입출력 제	어 방식	스캔 동기 일괄처 명령어에 의한 다	리 방식 (리프레시 이렉트 방식	방식),		
프로그램	언어		(Ladder Diagram) Instruction List)			
명령어	기본 명령	28 종	종			
수	응용 명령	687 종				
연산 속도((기본 명령)	0.083 <i>⊭</i> s/Step				
프로그램	메모리 용량	15kstep				
최대 입출	력 점수	352 점(기본 + 증설	10 단) 384 점(기	본 + 증설 10 단)		
	Р	P0000 ~ P1023F (16	,384 점)			
	М	M0000 ~ M1023F (16,384 점)				
	K	K0000 ~ K4095F (65	,536 점)			
	L	L0000 ~ L2047F (32,768 점)				
	F	F0000 ~ F1023F (16,384 점)				
데이터	Т	100 ms, 10 ms, 1 ms: T0000 - T1023 (1,024 점) (파라미터 설정에 의해 영역 변경이 가능함)				
영역	С	C0000 ~ C1023 (1,024 점)				
	S	S00.00 ~ S127.99				
	D	D0000 ~ D10239 (10	,240 워드)			워드
	U	U0.0 ~ U0A.31 (352 워드, 아날로그 데이터 리프레시 영역)				
	Z	Z000~Z127 (128 워드)				워드
	N	N0000 ~ N5119 (5,120 워드)				
	R	R0000 ~ R10239 (10	,240 워드)			
총 프로그	. 램 수	128 개				
초기화 태	스크	1 기H				
정주기 태	스크	최대 8개				
외부 접점	태스크	최대 8개				
내부 디바	이스 태스크	최대 8 개				
운전 모드		RUN, STOP, DEBUG				
자기 진단 기능		연산 지연 감시, 메모리 이상, 입출력 이상				
프로그램 포트		RS-232C 1 채널, USB 1 채널 (USB 1.1 지원)				
정전 시 데이터 보존방법		기본 파라미터에서 래치 영역 설정				
내부 소비	전류	260mA	660mA	330mA	1,040mA	
중 량		500g	600g	800g	900g	

	항	목	ਜ	격	비고		
))	一	"S" 타입	"H" 타입	UI 1		
	PID	제어기능	명령어에 의한 제어, 오토 튜닝, PWM 출력 기능 당제 출력, 연산 스캔시간 설정, Anti Windup Delta MV 기능, SV-Ramp 기능				
	Cne	t I/F 기능		RS-232C 1 포트 RS-485 1 포트			
		성 능	1 상 : 20 싼 4 채널 2 상 : 10 싼 2 채널	1 상 : 100 월 4 채널, 20월 4 채널 2 상 : 50월 2 채널, 10월 2 채널			
	고속카운터	카운터 모드	입력 펄스와 가·감산 방식에 따라 4 • 1 상 펄스 입력 시 가·감산 카운터 • 1 상 펄스 입력 시 B 상 입력에 의 • 2 상 펄스 입력 시 가·감산 펄스 입 • 2 상 펄스 입력 시 위상차에 의한	한 가·감산 카운터 입력 카운터			
	71	부가 기능					
내장 기능	위 치	기본 기능	제어축수 : 2 축 제어방식 : 위치/속도제어 제어단위 : 펄스 위치 결정 데이터 : 각 축마다 30 개 데이터 선택 (운전 스텝 번호:1~30) 운전 모드 : 종료, 계속, 연속운전 운전 방식 : 단독, 반복운전	제어축수 : 2 축 제어방식 : 위치/속도제어 제어단위 : 펄스 위치 결정 데이터 :각 축마다 80 개 데이터 선택 (운전 스텝 번호:1~80) 운전 모드 : 종료, 계속, 연속운전 운전 방식 : 단독, 반복운전			
	결 정 기 능	위치 결정	위치 결정 방식 : 엡설루트(Absolute) 방식 / 인크리먼 위치 어드레스 범위 : -2,147,483,64 속도 : 최대 100kpps(설정 속도 범 가/감속 처리 (운전 패턴 : 사다리플	8 ~ 2,147,483,647 위: 1 ~ 100,000pps)	TR 출력 타입지원		
		원점 복귀 방법	근사 원점 신호(Off)와 원점 신호에 근사 원점 신호(On)와 원점 신호에 근사 원점 신호에 의한 방법				
		조그 운전	설정 속도 범위:1 ~ 100,000pps(그	고속/저속)			
		부가 기능	인칭운전, 속도동기운전, 위치동기운				
	펄스	: 캐치	50 # 8 점(P0000 ~ P0007)	10 / 4 점(P0000~P0003), 50 / 4 점 (P0004~P0007)			
		·접점 럽트	8 점 : 50 ട (P0000 ~ P0007)	10 ട 4점(P0000~P0003), 50 의 4점 (P0004~P0007)			
	입력	필터	1,3,5,10,20,70,100 ms중 선택(모듈별	<u> </u>			

4.2 각 부의 명칭 및 기능

4.3 전원 규격

기본 유닛의 전원 규격에 대해 설명합니다.

	항 목	규 격("S" 타입)		
	정격 입력 전압	DC24V		
	입력 전압 범위	DC20.4~28.8V(-15%, +20%)		
입력	돌입 전류	70APeak 이 하		
	입력 전류	1A (Typ.550 mA)		
	효 율	60% 이상		
	허용 순시 정전	10 ട이내		
	출력 전압	DC5V (±2%)		
출력 출력 전류		1.5 A		
전압 상태 표시		출력 전압 정상 시 LED On		
사용 전선	규격	0.75 ~ 2 mm ²		

		규 격 ("H" 타입)				
	항 도	<u>1</u>	XBC-DR32H(/HL),	XBC-DR64H,	XBC-DR32H/DC,	XBC-DR64H/DC,
			XBC-DN32H	XBC-DN64H	XBC-DN32H/DC	XBC-DN64H/DC
	정격 입력 건	전압				
	(UL 취득전입	ታ)	AC 100 ~ 240 V		DC 24V	
	입력 전압 병	범위	AC85~264V(-15%	, +10%)	DC19.2~28.8V(-20%	o, +20%)
입력	돌입 전류		50APeak 이 하		50A _{Peak} 이하	
	입력 전류		AC 220V : 0.5A 이하, AC 110V : 1A 이하		0.7A 이하	1A 이하
	효 월		65% 이상			
	허용 순시 정전		10 ms이나			
	エコ・テコ	DC5V	2A	3A	2A	3A
출력	정격출력	DC24V	0.4A	0.6A	-	-
	출력 전압 변동률		DC5V (±2%)			
전압	전압 상태 표시		출력 전압 정상 시 PWR LED On			
사용	전선 규격		0.75 ~ 2 mm ²			

^{*} 전원공급기의 보호를 위하여 최대 4A의 퓨즈가 장착되어 있는 전원 공급기를 사용하여 주십시오.

(1) 모듈별 소비전류 (DC 5	(단위 : mA)	
품 명	형 명	소비 전류
	XBM-DR16S	400
	XBM-DN16S	250
	XBM-DN32S	280
	XBC-DR32H(/HL)	660
	XBC-DR64H	1,040
기본 유닛	XBC-DN32H	260
	XBC-DN64H	330
	XBC-DR32H/DC	660
	XBC-DR64H/DC	1,040
	XBC-DN32H/DC	260
	XBC-DN64H/DC	330
	XBE-DC32A	50
	XBE-DC16A/B	40
	XBE-DC08A	30
	XBE-RY16A	440
	XBE-RY08A/B	240
T	XBE-TN32A	80
증설 I/O 모듈	XBE-TN16A	50
	XBE-TN08A	40
	XBE-TP32A	80
	XBE-TP16A	50
	XBE-TP08A	40
	XBE-DR16A	250
	XBF-AD04A	120
	XBF-AD08A	105
	XBF-AH04A	130
	XBF-DV04A	110
증설 특수 모듈	XBF-DC04A	110
	XBF-RD04A	100
	XBF-RD01A	100
	XBF-TC04S	100
	XBF-PD02A	500
	XBL-C21A	110
증설 통신 모듈	XBL-C41A	110
	XBL-EMTA	190

4.4 소비 전류/전력 계산 예

XGB PLC 시스템을 구성할 때 아래와 같이 소비 전류를 계산하여 기본유닛 출력 전류 용량을 초과하지 않도록 구성해 주시기 바랍니다.

(1) XGB PLC 시스템 구성 예 1

- 아래는 XGB 표준형 PLC 를 이용해서 시스템을 구성하는 경우의 소비 전류 계산 예입니다.

종 류	ਰੋਰ -	장착 대수	내부 5V 소비 전류 (단위: ™)	비고
기본 유닛	XBM-DN16S	1	250	
	XBE-DC32A	2	50	전점 On 시 (최대 소비 전류)
	XBE-TN32A	2	80	
증설 모듈	XBF-AD04A	1	120	
	XBF-DC04A	1	110	전 채널 사용 (최대 소비 전류)
	XBL-C21A	1	110	
소비 전류 850 mA				
소비 전력	4.25W			0.85A × 5V = 4.25W

위와 같이 시스템을 구성하는 경우 5V 소비전류는 총 850 ™가 되며, XGB 표준형 기본유닛의 5V 출력은 최대 1.5A 이므로 정상적인 시스템 구성이 가능합니다.

(2) XGB PLC 시스템 구성 예 2

종 류	형 명	장착 대수	내부 5V 소비 전류 (단위 : ^{mA})	비고	
기본 유닛	XBM-DR16S	1	400		
	XBE-DR16A	3	250	전점 O n 시 (최대 소비 전류)	
증설 모듈	XBE-TN32A	2	80		
05 75	XBF-AD04A	1	120	전 채널 사용	
	XBL-C21A	1	110	(최대 소비 전류)	
소비 전류	1,540				
소비 전력	7.7W			1.54A × 5V = 7.7W	

위와 같이 시스템을 구성하는 경우는 5V 소비전류가 총 1540 ™가 되어, XGB 표준형 기본유닛의 최대 5V 출력을 넘게 되므로 구성이 불가능합니다. 물론 위의 소비전류 계산 예는 모든 입출력 접점 이 동시에 ON되는 경우를 가정한 것이지만 시스템의 안정성을 위하여 이러한 경우에는 5V 출력 용 량이 표준형보다 높은 고급형 기본유닛을 사용하시기 바랍니다.

(2) XGB PLC 시스템 구성 예 3

종 류	형 명	장착 대수	내부 5V 소비 전류 (단위: mA)	비고	
기본 유닛	XBC-DR32H	1	660		
	XBE-DR16A	3	250	전점 On 시 (최대 소비 전류) 전 채널 사용	
증설 모듈	XBE-TN32A	2	80		
25 75	XBF-AD04A	1	120		
	XBL-C21A	1	110	(최대 소비 전류)	
소비 전류	1,800				
소비 전력	9W			1.8A × 5V = 9W	

위 표는 앞의 (2)에 대하여 고급형 기본유닛인 XBC-DR32H 를 이용하여 시스템을 구성한 경우의 예입니다. (2)와 다르게 XBC-DR32H 의 5V 출력은 최대 2A 이므로 정상적으로 시스템을 구성할 수 있습니다.

알아두기

위의 소비 전류 계산은 최대 소비 전류를 근거로 하여 작성 된 것입니다. 따라서 실제 시스템에서는 위의 계산보다 적은 소비 전류가 소모 됩니다.

4.5 배터리

배터리는 XGB PLC 콤팩트형 기본 유닛 H 타입(XBC-DxxxH)에만 적용되어 있습니다.

4.5.1 배터리 규격

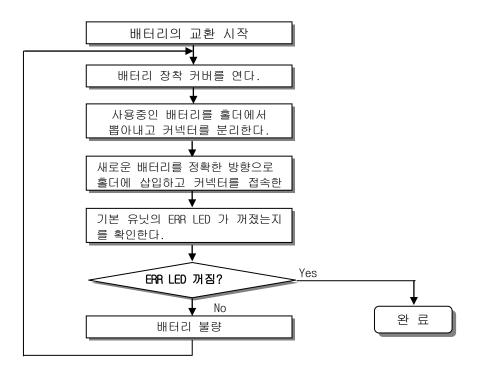
항 목	규 격
공 칭 전 압 / 전 류	DC 3V / 220 mAh
보 증 기 간	3년(상온)
용 도	프로그램 및 데이터 백업, 정전 시 RTC 운전
규 격	이산화 망간 리튬 배터리
외형치수 (mm)	ф 20 X 3.2 mm

4.5.2 사용시 주의사항

- (1) 열을 가하거나 전극에 납땜하지 마십시오.(배터리 수명 단축의 원인이 될 수 있습니다.)
- (2) 테스터기로 전압을 측정하거나 단락 시키지 마십시오.(화재의 원인이 될 수 있습니다.)
- (3) 배터리를 분해하지 마십시오.

4.5.3 배터리의 수명

배터리의 수명은 정전시간, 사용온도 조건 등에 따라서 달라집니다.


배터리의 전압이 낮아지면 기본 유닛은 '배터리 전압저하 경고'를 발생 합니다. 기본 유닛의 에러 LED와 플래그 및 XG5000의 에러 메시지를 통하여 확인 할 수 있습니다.

배터리 전압저하 경고가 발생한 후 에도 상당 시간 배터리가 정상 동작하므로 일상 점검을 하는 시스템에서는 경고 발생 후 조치를 해도 됩니다.

4.5.4 배터리 교환 방법

프로그램 및 데이터의 정전 시 백업용으로 사용되는 배터리는 정기적인 교환이 필요합니다. 배터리를 제거해도 프로그램 및 정전유지 데이터는 슈퍼 커패시터에 의해서 30분 정도는 내용이 유지 되지만 가능한 빠른 시간 내에 교환해주어야 합니다.

배터리 교환 순서는 다음과 같습니다.

4.6 데이터 백업 시간

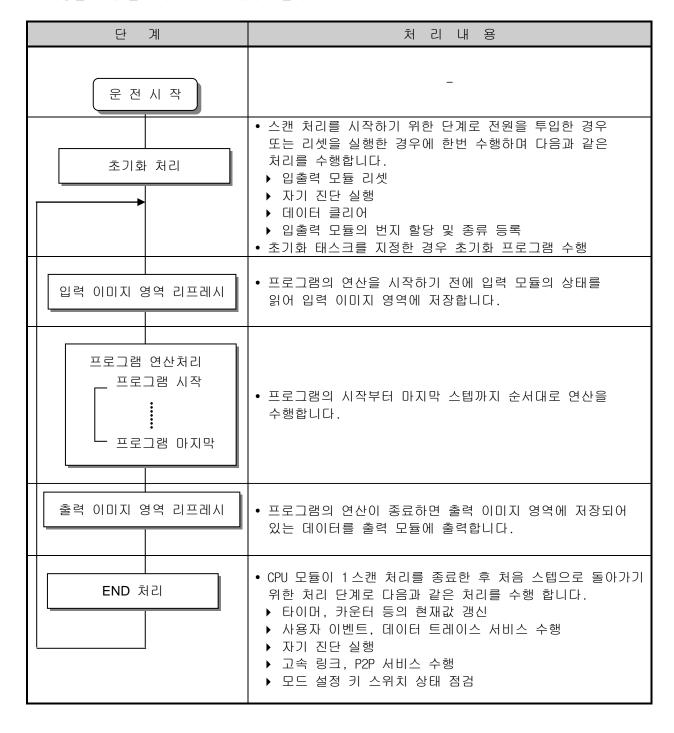
XBM 기본유닛(XBM-DR16S,XBM-DN16/32S)의 경우 캐패시터에 의해 데이터를 백업합니다. 데이터 백업시간은 다음과 같습니다.

형명	백업시간	비고
XBM-DR16S XBM-DN16/32S	10 일	상온(25℃) 사용 시

알아두기

- (1) 전원을 On 상태로 30분 이상 유지하여 캐패시터를 충분히 충전하여 주십시오
- (2) 전원 Off 후 규격 시간 이내 전원 On 시 데이터 백업 이상이 발생한 경우 기본 유닛 A/S 를 받아야 합니다.
- (3) 데이터 백업 시간은 사용 온도 조건 등에 따라 변동될 수 있습니다. (사용 온도가 높은 경우 데이터 백업 시간은 단축되니 주의하여 주십시오.)

제 5장 프로그램의 구성과 운전 방식


5.1 프로그램의 기본

5.1.1 프로그램 수행 방식

(1) 반복 연산 방식(Scan)

PLC 의 기본적인 프로그램 수행 방식으로 작성된 프로그램을 처음부터 마지막 스텝까지 반복적으로 연산이 수행되며 이 과정을 프로그램 스캔이라고 합니다. 이와 같이 수행되는 일련의 처리를 반복 연산 방식이라 합니다.

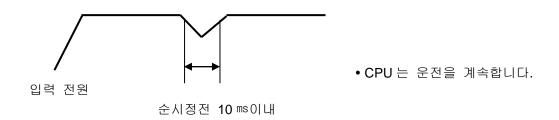
이 과정을 단계 별로 구분하면 아래와 같습니다.

PLC 프로그램의 실행 중에 긴급하게 우선 상황이 발생한 적으로 처리해야 할 경우에 수행 중인 프로그램 연산을 일시 중단하고 즉시 인터럽트 프로그램에 해당하는 연산을 처리하는 방식입니 다.

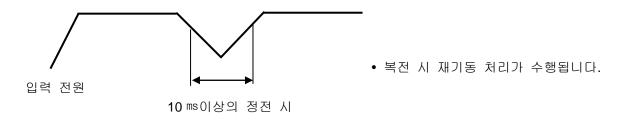
이러한 긴급 상황을 CPU 모듈에 알려주는 신호를 인터럽트 신호라 하며 정해진 시간마다 기동하는 정주기 신호와 외부 접점(P000~P007) 신호에 의해 기동하는 외부 인터럽트 신호등 2 종류의 인터럽트 연산 방식이 있습니다.

그 외에 내부의 지정된 디바이스의 상태 변화에 따라서 기동하는 내부 디바이스 기동 프로그램이 있습니다.

(3) 고정 주기 운전


스캔 프로그램을 정해진 시간마다 수행을 하는 연산 방식 입니다. 스캔 프로그램을 모두 수행한 후 잠시 대기하였다가 지정된 시간이 되면 프로그램 스캔을 재개합니다. 정주기 프로그램과의 차이는 입출력의 갱신과 동기를 맞추어 수행하는 것 입니다.

고정주기 운전에서 스캔 타임은 대기 시간을 뺀 순수 프로그램 처리시간을 표시 합니다. 스캔 타임이 설정된 '고정주기'보다 큰 경우는 F0005C(_CONSTANT_ER) 플래그가 'On'됩니다.


5.1.2 순시 정전시 연산 처리

XGB 기본 유닛의 전원부에 공급되는 입력 전원 전압이 규격보다 낮아지면 아래와 같이 처리 합니다. 10 ms 이내의 순시 정전 발생시 기본 유닛은 정상적으로 동작을 계속합니다. 그러나 10 ms 이상의 정전 시에는 동작을 멈추고 출력은 0ff 됩니다. 전원 복귀시 자동적으로 운전을 재개합니다.

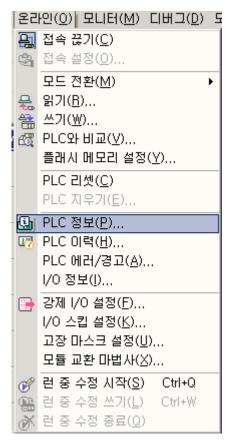
(1) 10 ms 이내의 순시정전이 발생한 경우

(2) 10 ട를 초과하는 순시정전이 발생한 경우

알아두기

1) 순시 정전

전원 조건에서 PLC가 규정하는 정전이란 공급 전원의 전압이 허용 변동 범위를 초과하여 저하된 상태를 말하며 단시간 정전을 순시 정전이라 합니다.

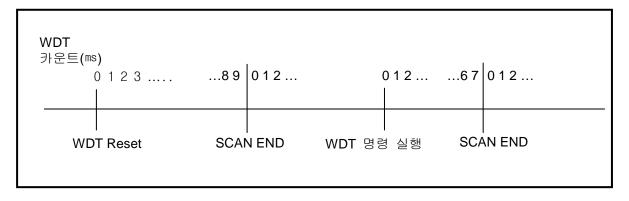

5.1.3 스캔 타임 (Scan Time)

프로그램의 0 스텝부터 다음 스캔의 0 스텝 이전까지의 처리시간을 스캔 타임이라고 합니다.

(1) 스캔 타임 계산식

스캔 타임은 사용자가 작성한 스캔 프로그램 및 인터럽트 프로그램의 처리시간과 PLC 내부처리시간의 합계이며, 다음 식에 의해서 구별할 수 있습니다.

- (a) 스캔 타임 = 스캔 프로그램 처리시간 + 인터럽트 프로그램 처리시간 + PLC 내부 처리시간
 - 스캔 프로그램 처리시간 = 인터럽트 프로그램을 제외한 사용자 프로그램의 처리시간
 - 인터럽트 프로그램 처리시간 = 1스캔 동안 처리된 인터럽트 프로그램 수행 시간의 합계
 - PLC 내부 처리시간 = 자기 진단 시간 + 입출력 리프레시 시간 + 내부 데이터 처리시간 + 통신 서비스 처리시간
- (b) 스캔 타임은 인터럽트 프로그램의 실행여부, 통신 처리 에 의해 차이가 발생합니다.
- (2) 스캔타임 모니터
 - (a) 스캔타임은 다음과 같이 『온라인』-『PLC 정보』-『성능』을 클릭하면 모니터 할 수 있습니다.



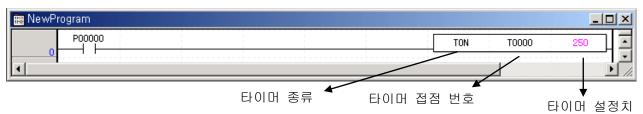
- (b) 스캔 타임은 다음과 같은 특수 릴레이(F) 영역에 저장됩니다.
 - F0050 : 스캔 타임의 최대값 (0.1 ms 단위)
 - F0051 : 스캔 타임의 최소값 (0.1 ms 단위)
 - F0052 : 스캔 타임의 현재값 (0.1 ms 단위)

5.1.4 스캔 워치독 타이머 (Scan Watchdog Timer)

WDT(Watchdog Timer)는 PLC CPU 모듈의 하드웨어나 소프트웨어 이상에 의한 프로그램 폭주를 검출하는 기능입니다.

- (1) 워치독 타이머는 사용자 프로그램 이상에 의한 연산 지연을 검출하기 위하여 사용하는 타이머 입니다. 워치독 타이머의 검출 시간은 XG5000의 기본 파라미터에서 설정합니다.
- (2) 워치독 타이머는 연산 중 스캔 경과 시간을 감시하다가, 설정된 검출 시간의 초과를 감지하면 PLC의 연산을 즉시 중지시키고 출력을 파라미터 설정에 따라 출력 유지 또는 클리어.합니다.
- (3) 사용자 프로그램 수행 도중 특정한 부분의 프로그램 처리(FOR ~ NEXT 명령,CALL 명령 등을 사용) 에서 연산 지연 감시 검출 시간 (Scan Watchdog Time)의 초과가 예상되면 'WDT' 명령을 사용하여 타이머를 클리어 하면 됩니다. 'WDT' 명령은 연산 지연 감시 타이머의 경과 시간을 초기화하여 0 부터 시간 측정을 다시 시작합니다. (WDT 명령의 상세한 사항은 명령어 편을 참조하여 주십시오.)
- (4) 워치독 에러 상태를 해제하기 위해서는 전원 재 투입, 수동 리셋 스위치의 조작 또는 STOP 모드로의 모드 전환이 있습니다.

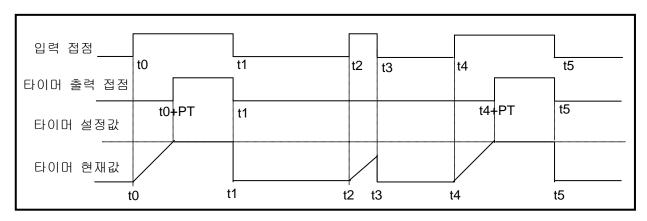
알아두기


1) 워치독 타이머의 설정 범위는 10 ~ 1000 ms (1 ms 단위) 입니다.

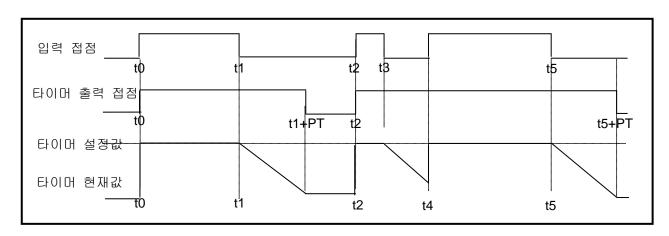
5.1.5 타이머 처리

CPU 부의 타이머는 계측 시간에 따라 현재값을 증가시키는 가산식 타이머 입니다. On 딜레이 타이머(TON), Off 딜레이 타이머(TOFF), 적산(TMR), 모노스테이블(TMON), 리트리거블(TRTG)의 5 종류가 있습니다.

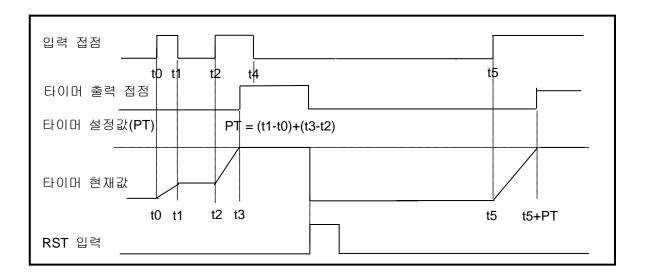
시간범위는 100 ™타이머는 0.1 초 ~ 6553.5 초, 10 ™타이머는 0.01 초 ~ 655.35 초, 1 ™타이머는 0.001 초 ~ 65.535 까지 계측할 수 있습니다.


자세한 내용은 'XG5000 사용 설명서'을 참조하여 주십시오.

(1) On 딜레이 타이머의 현재값 갱신과 접점 On/Off

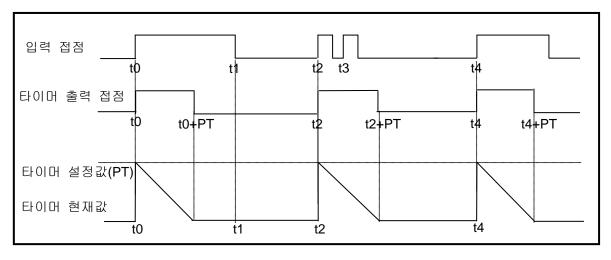

입력 접점이 On 되면 타이머의 현재값이 증가하기 시작합니다. 현재값이 설정 시간(PT)에 도달하면 (현재값 = 설정값)타이머의 출력 접점(Txxx)을 On 합니다. 현재값이 증가하는 도중에 입력 접점이 Off 되면 타이머 현재값은 0 이 됩니다.

On 딜레이 타이머의 타이밍 도는 아래와 같습니다.

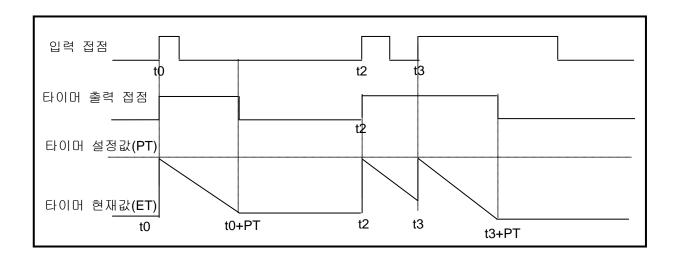

(2) Off 딜레이 타이머의 현재값 갱신과 접점 On/Off

입력 조건이 On 되면 타이머의 출력 접점(Txxx)이 On 되고 현재값은 설정값이 됩니다. 입력 접점이 Off 되면 현재값이 감소하기 시작하며, 경과 시간이 설정 시간(PT)에 도달하면 (현재값=0) 타이머 출력 접점(Txxx)을 Off 합니다. 현재값이 감소하는 도중에 입력 접점이 On 되면 타이머의 현재값은 설정값이 됩니다.Off 딜레이 타이머의 타이밍도는 다음과 같습니다.

(3) 적산 타이머의 현재값 갱신과 접점 On/Off


입력 접점이 On 된 동안만 현재값이 증가하여 그 누적값이 타이머 설정 시간(PT)에 도달하면 타이머 출력 접점을 On합니다. On 된 타이머 출력 접점은 RST 명령에 의해서 Off 될 때까지 On을 유지합니다. 적산 타이머의 타이밍 도는 아래와 같습니다.

(4) 모노스테이블 타이머의 현재값 갱신과 접점 On/Off


입력 조건이 On 되면 타이머의 출력 접점(Txxx)은 On 되고 타이머의 현재값이 설정값(PT)부터 감소하기 시작하여 "O"이 되면 출력 접점이 Off 되며 현재값이 O 에 도달하기 전에는 입력 접점의 On, Off 변화를 무시합니다.

모노스테이블 타이머의 타이밍 도는 아래와 같습니다.

(5) 리트리거블 타이머의 현재값 갱신과 접점 On/Off

입력 조건이 On 되면 타이머의 (Txxx)은 On 되고 타이머의 현재값이 설정값(PV) 부터 감소하기 시작하여 "O"이 되면 출력 접점이 Off 됩니다. 타이머의 현재값이 "O" 이 되기 전에 또다시 입력 접점이 Off→On 하면 타이머의 현재값은 초기 설정값으로 다시 갱신됩니다. 리트리거블 타이머의 타이밍도는 아래와 같습니다.

알아두기

- 1) 타이머의 오차
 - 타이머의 오차는 최대 '1 스캔 타임 + 스캔 시작에서부터 타이머 명령의 실행까지의 시간' 입니다.

5.1.6 카운터 처리

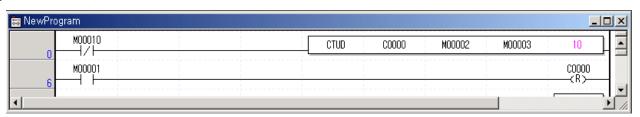
CPU 부의 카운터는 입력 신호의 상승에지(Off→On)를 검출하여 현재치를 증감시키는 카운터입니다. XGB 시리즈의 기본 유닛 카운터는 가산 카운터(CTU), 감산 카운터(CTD), 가감산 카운터(CTUD), 링 카운터(CTR)의 4종류가 있습니다.

상세한 내용은 'XGK 명령어 집'을 참조하여 주십시오.

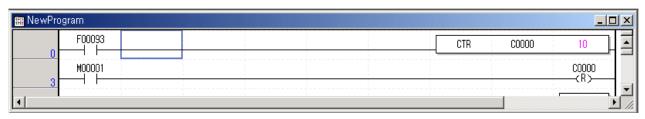
- 가산 카운터는 현재값을 증가시키는 가산식 카운터 입니다.
- 감산 카운터는 현재값을 감소시키는 감산식 카운터 입니다.
- 가감산 카운터는 2개의 입력조건의 카운트치를 비교하는 카운터 입니다.
- 링 카운터는 현재값을 증가시켜, 현재값이 설정값이 될 때마다 현재값을 "0"으로 갱신하는 카운터입니다.

(1) 카운터의 현재값 갱신과 접점 On/Off

(a) 가산 카운터


- 입력 조건의 상승 에지에서 현재값을 증가시킵니다.
- 현재값이 증가하여 설정값과 같게 되면 카운터의 출력 접점(Cxxx)을 On합니다. 리셋 신호가 On인 동안은 현재값은 "O"이 되며 출력접점(Cxxx)은 Off 됩니다.

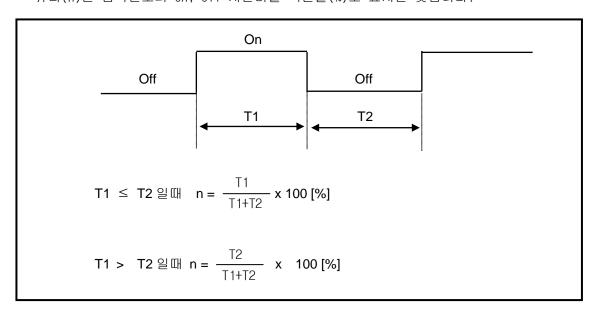
(b) 감산 카운터


- 입력 조건의 상승 에지에서 현재값을 감소시킵니다.
- 현재값이 감소하여 0 이 되면 카운터의 출력 접점(Cxxx)을 On 합니다. 리셋 신호가 On 인 동안은 현재값은 설정값이 되며 출력 접점(Cxxx)은 Off 됩니다.

(c) 가감산 카운터

- 가산 입력 조건의 상승 에지에서 현재값이 증가,감산 입력조건의 상승 에지에서 현재값은 감소됩니다. 현재값이 설정값보다 크거나 같으면 출력 접점 Cxxx 가 On 되고, 현재값이 설정 값보다 작으면 출력 접점 Cxxx 가 Off 됩니다.
- 리셋 신호 입력시 현재값은 0이 됩니다.

(d) 링 카운터


- 입력 조건의 상승 에지에서 현재값은 1증가, 현재값이 설정값에 도달한 후 다음 입력조건 의 상승 에지에서 현재값은 0이 됩니다
- 현재값이 설정값일 경우 출력 접점 Cxxx 가 On 되고 다음 번 입력 조건의 상승 에지 또는 리셋조건의 상승 에지에서 출력 접점 Cxxx 는 Off 됩니다.
- 링 카운터 계수 중, 리셋 조건이 입력되면 현재값은 0 이 됩니다.

(2) 카운터의 최대 계수 속도

카운터의 최대 계수 속도는 스캔 타임에 의해서 결정되고, 입력 조건의 On 시간과 Off 시간이 각각 스캔 타임보다 큰 경우만 카운트가 가능합니다.

최대 계수 속도
$$C_{\text{max}} = \frac{n}{100} \times (\frac{1}{t_{\text{S}}})$$
 $n: 듀티 (%)$ $t_{\text{S}}: 스캔타임 [s]$

• 듀티(n)는 입력신호의 On, Off 시간비를 백분율(%)로 표시한 것입니다.

알아두기

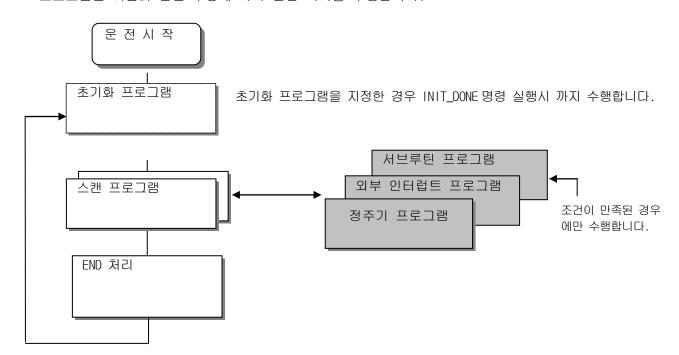
1) 고속 카운터의 사용

일반 카운터의 최대 계수 속도 보다 빠르게 입력되는 고속의 입력 펄스를 정밀하게 계수하기 위해서는 내장 고속 카운터 기능을 사용하시기 바랍니다.

5.2 프로그램 실행

5.2.1 프로그램의 구성

프로그램은 특정한 제어를 실행하는데 필요한 모든 기능 요소로 구성되며 CPU 모듈의 내장 RAM 또는 플래시 메모리에 프로그램이 저장됩니다.


이러한 기능 요소는 일반적으로 다음과 같이 분류합니다.

기 능 요 소	연 산 처 리 내 용
초기화 프로그램	• 초기화 프로그램이 지정되어 있는 INIT_DONE 명령이 실행 될 때 까지 실행하는 프로 그램으로 초기화 해야 하는 여러 가지 동작 프로그램을 작성 합니다.(INIT_DONE 명령이 실행 되면 스캔 프로그램을 실행합니다.)
스캔 프로그램	• 1 스캔마다 일정하게 반복되는 신호를 처리합니다.
정주기 인터럽트 프로그램	 다음과 같이 시간 조건 처리가 요구되는 경우에 설정된 시간 간격에 따라 프로그램을 수행합니다. ▶ 1 스캔 평균 처리 시간 보다 빠른 처리가 필요한 경우 ▶ 1 스캔 평균 처리 시간 보다 긴 시간 간격이 필요한 경우 ▶ 지정된 시간 간격으로 처리를 해야 하는 경우
외부 인터럽트 프로그램	• 외부 인터럽트 신호에 대해 신속한 처리를 수행합니다.
서브루틴 프로그램	• CALL 명령의 입력 조건이 On 인 경우만 실행되는 프로그램입니다.

5.2.2 프로그램의 수행 방식

전원을 투입하거나 CPU 모듈의 키 스위치가 RUN 상태인 경우에 실행하는 프로그램 수행 방식에 대해 설명합니다.

프로그램은 다음과 같은 구성에 따라 연산 처리를 수행합니다.

(1) 스캔 프로그램

(a) 기능

- 스캔마다 일정하게 반복되는 신호를 처리하기 위하여 프로그램이 작성된 순서대로 처음 0 부터 마지막 스텝까지 반복적으로 연산을 수행합니다.
- 스캔 프로그램의 실행 중 정주기 인터럽트 또는 인터럽트 모듈에 의한 인터럽트의 실행 조건 이 성립한 경우는 현재 실행중인 프로그램을 일단 중지하고 해당되는 인터럽트의 프로그램을 수행합니다.

(2) 인터럽트 프로그램

(a) 기능

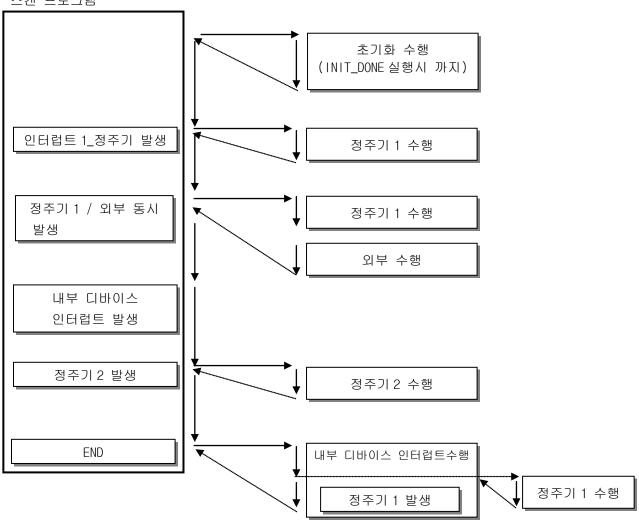
• 주기 / 비주기적으로 발생하는 내/외부 신호를 처리하기 위하여 스캔 프로그램의 연산을 일단 중지시킨 후 해당되는 기능을 우선적으로 처리합니다.

(b) 종류

- 태스크 프로그램은 다음과 같이 3종류로 구분합니다.
- 정주기 태스크 프로그램 : 최대 8개까지 사용 가능
- 내부 디바이스 태스크 프로그램 : 최대 8개까지 사용 가능
- 외부 접점 태스크 프로그램 : 8개까지 사용 가능(P000 ~ P007)
- 정주기 태스크 프로그램
- 설정된 시간 간격에 따라 프로그램을 수행합니다.
- 내부 디바이스 태스크 프로그램
- 내부 디바이스의 기동 조건 발생시 해당 프로그램을 수행합니다.
- 디바이스의 기동 조건 검출은 스캔 프로그램의 처리 후 실행합니다.
- 외부 접점 태스크 프로그램
- 입력되는 외부 신호(P000 ~ P007)에 따라 프로그램을 수행합니다.

알아두기

- (1) 인터럽트 프로그램은 짧게 작성하여 주십시오. 인터럽트 프로그램 수행이 완료 되기 전에 다시 자기 인터럽트가 반복하여 발생하는 경우 스캔 프로그램이 수행되지 않고 0/S 워치독 에러가 발생할 수 있습니다.
- (2) 우선 순위가 높은 인터럽트 실행 시 낮은 인터럽트가 여러 번 발생하여도 그 인터럽트는 한번만 실행됩니다. 우선 순위도 주의하여 설정하여 주십시오.

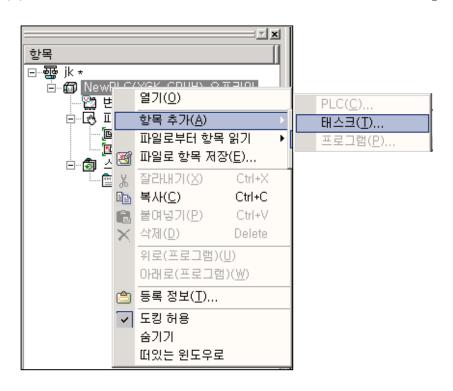

5.2.3 인터럽트

인터럽트 기능에 대한 이해를 돕기 위하여 XGB의 프로그래밍 S/W 인 XG5000의 프로그램 설정 방법에 대해서 간단히 설명합니다. 아래와 같이 인터럽트 설정시의 예를 들어 설명합니다.

• 인터럽트 설정

인터럽트 소스	인터럽트 명	우선 순위	태스크 번호	프로그램 명	비고
초기화	인터럽트 0_초기화	-	-	-	
정주기 1	인터럽트 1_정주기	2	0	정주기 1	
외부	인터럽트 2_외부	2	8	외부	
내부 디바이스	인터럽트 3_내부	3	14	내부	
정주기 2	인터럽트 4_정주기	3	1	정주기 2	

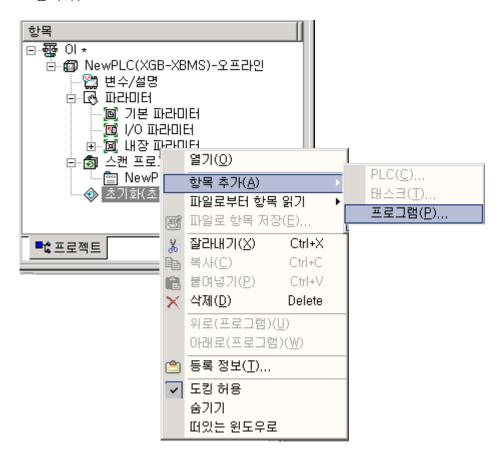
스캔 프로그램

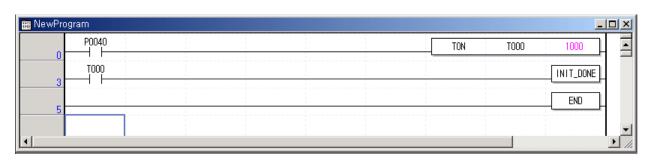

알아두기

- 정주기와 외부 접점 태스크가 동시에 발생시 위에 설정된 태스크를 먼저 수행합니다. ('인터럽트 1_정주기'와 '인터럽트 2_외부' 태스크가 동시 발생 시 '인터럽트 1_정주기'를 먼저 수행)
- 인터럽트 수행중 우선 순위가 높은 인터럽트 발생시는 우선 순위가 높은 인터럽트를 먼저 실행합니다.
- 전원 On 시 모든 인터럽트는 디세이블 상태입니다. El 명령어를 사용하여 인에이블 한 후 사용하여 주십시요.
- 내부 디바이스 인터럽트는 END 명령을 만난 다음 실행 됩니다.

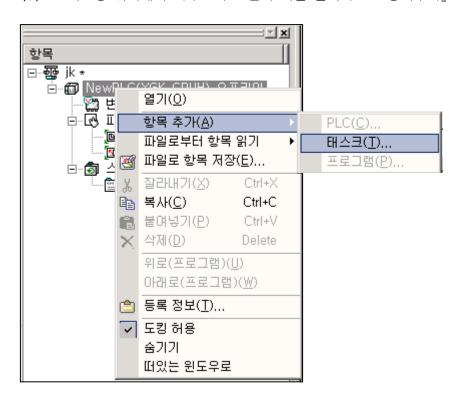
(1) 초기화 인터럽트 프로그램의 작성방법

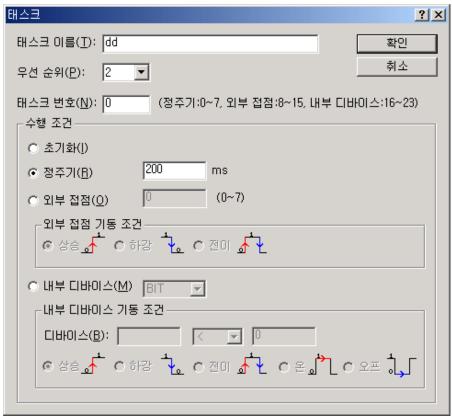
XG5000 의 프로젝트 창에서 아래와 같이 태스크를 생성하고 각 태스크에 의해서 수행될 프로그램을 추가 합니다. 자세한 방법은 XG5000 의 설명서를 참조 바랍니다. (PLC 와 접속이 안 되어 있는 경우만 추가 가능합니다)


(a) 프로젝트명 위치에서 마우스의 오른쪽 키를 클릭하고 『항목추가』-『태스크』를 클릭합니다.


(b) 태스크를 등록하는 화면이 표시됩니다. 수행 조건에서 『초기화』를 클릭하고 태스크 이름을 작성합니다.

(c) 등록된 태스크 위치에서 마우스의 오른쪽 키를 클릭하고 『항목 추가』-『프로그램』을 클릭합니다.

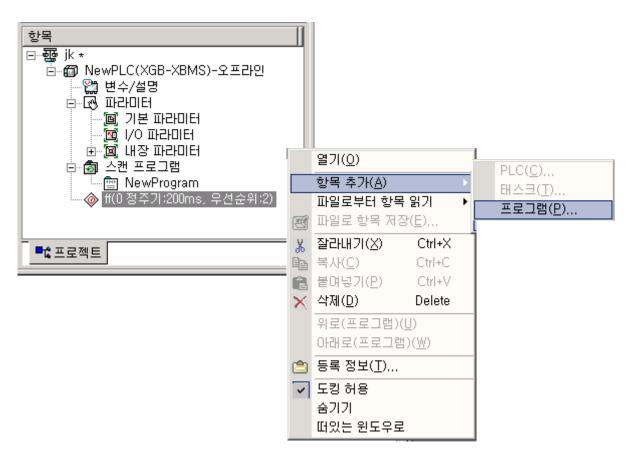

(d) 초기화 프로그램을 작성합니다. 초기화 프로그램에서는 반드시 INIT_DONE 명령을 작성하여 주십시오.(INIT_DONE의 동작 조건이 실행되면 초기화 태스크를 종료하고 스캔 프로그램이 실행됩니다.)



(2) 정주기 인터럽트 프로그램의 작성 방법

XG5000 의 프로젝트 창에서 아래와 같이 태스크를 생성하고 각 태스크에 의해서 수행될 프로그램을 추가 합니다. 자세한 방법은 XG5000 의 설명서를 참조 바랍니다. (PLC 와 접속이 안 되어 있는 경우만 추가 가능합니다)

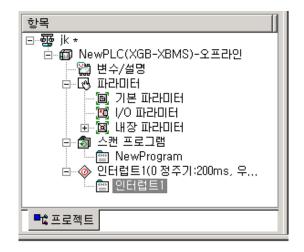
(a)프로젝트명 위치에서 마우스의 오른쪽 키를 클릭하고 『항목추가』-『태스크』를 클릭합니다.




(b) 태스크 항목 설정

	항 목	설 정	비고	
태스	스크 이름	태스크 이름을 설정합니다.	한글,영문,숫자 가능	
우선	선 순위	태스크의 우선 순위를 설정합니다.(2 ~ 7)	"2"가 가장 높은 순위 임	
태스크 번호		각 태스크의 번호를 설정합니다. • 정주기 태스크(0 ~ 7) : 8개 • 외부 접점 태스크(8 ~ 15) : 8개 • 내부 접점 태스크(16 ~ 23) : 8개		
	초기화	RUN 시 맨 먼저 수행하는 초기화 프로그램을 설정합니다.	INIT_DONE 명령 실행이 될 때까지 수행	
수	정주기	설정한 주기마다 실행하는 인터럽트를 설정합니다	0~4294967295 ms 가능	
행 조	외부접점	인터럽트 실행 외부 접점을 설정합니다.	P000 ~ P007 가능	
건	내부 디바이스	인터럽트 실행 내부 디바이스를 설정합니다. • 비트 : 상승,하강,전이, 온,오프 중 설정 • 워드 : >,>=,<,<= 중 설정		

(c) 등록된 태스크 위치에서 마우스의 오른쪽 키를 클릭하고 『항목 추가』-『프로그램』을 클릭합니다.


(d) 태스크 프로그램 이름과 설명문을 등록합니다.

(e) 태스크 프로그램을 작성할 수 있는 프로그램 창이 표시 되고 여기에 태스크 프로그램을 작성합니다.

(f) 프로젝트 창에 설정된 상황이 표시됩니다.

(3) 태스크의 종류

태스크의 종류 및 기능은 다음과 같습니다.

종류 규격	정주기 태스크 (인터벌 태스크)	외부 접점 태스크 (인터럽트 태스크)	내부 접점 태스크 (싱글 태스크)
최대 개수	8 개	8 개	8 개
기동 조건	정주기(1 ms 단위로 최대 4,294,967.295 초까지 설정 가능)	기본 유닛 P000~P007 입력 접점의 상승 또는 하강 에지	내부 디바이스의 지정 조건
검출 및 실행	설정 시간마다 주기적 으로 실행	기본 유닛 P000~P007 입력 접점의 에지 발생시 즉시 실행	스캔 프로그램 실행 완료 후 조건 검색하여 실행
검출 지연 시간	최대 1 ms 지연	최대 0.05 ms 이내	최대 스캔 타임 만큼 지연
실행 우선 순위	2 ~ 7 레벨 설정 (2 레벨이 우선 순위가 가장 높음)	좌 동	좌 동
태스크 번호	0~7의 범위에서 사용자가 중복되지 않게 지정	8~15의 범위에서 사용자가 중복되지 않게 지정	16~23의 범위에서 사용자가 중복되지 않게 지정

(4) 태스크 프로그램의 처리 방식

태스크 프로그램에 대한 공통적인 처리 방법 및 주의 사항에 대해 설명합니다.

(a) 태스크 프로그램의 특성

- 1) 태스크 프로그램은 스캔 프로그램처럼 매 스캔 반복 처리를 하지 않고, 실행 조건이 발생할 때만 실행을 합니다. 태스크 프로그램을 작성할 때는 이점을 고려하여 주십시오.
- 2) 예를 들어 10초 주기의 정주기 태스크 프로그램에 타이머와 카운터를 사용하였다면 이 타이머는 최대 10초의 오차가 발생할 수 있고, 카운터는 10초 마다 카운터의 입력 상태를 체크하므로 10초 이내에 변화한 입력은 카운트가 되지 않습니다.

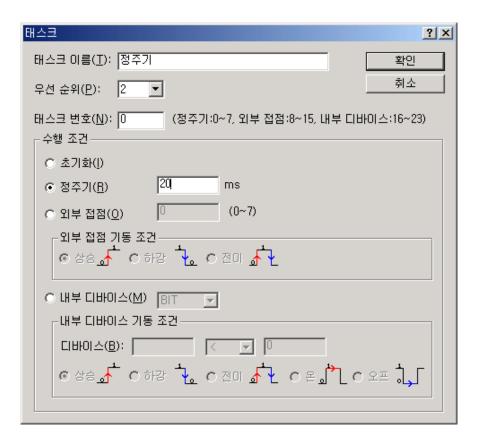
(b) 실행 우선 순위

- 1) 실행해야 할 태스크가 여러 개 대기하고 있는 경우는 우선 순위가 높은 태스크 프로그램부터 처리합니다. 우선 순위가 동일한 태스크가 대기 중일 때는 발생한 순서대로 처리합니다.
- 2) 정주기 실행 태스크와 외부 접점 태스크가 동시에 발생했을 경우는 XG5000 에서 먼저 설정된 태스크를 우선 실행합니다.
- 3) 프로그램의 특성, 중요도 및 실행 요구 발생시 긴급성을 고려하여 태스크 프로그램의 우선 순위를 설정하여 주십시오.

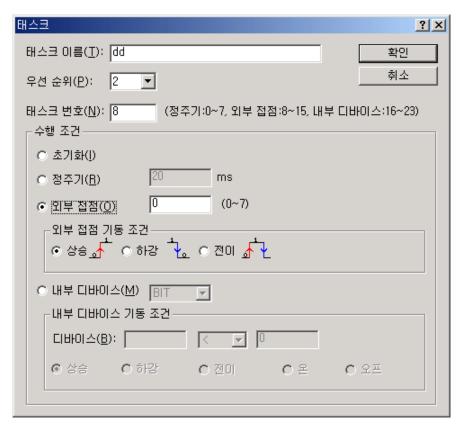
(c) 처리 지연 시간

태스크 프로그램의 처리 지연에는 다음과 같은 요인이 있습니다. 태스크 설정 및 프로그램 작성시 고려하여 주십시오.

- 1) 태스크의 검출 지연 (각 태스크의 상세 설명 참조)
- 2) 선행 태스크 프로그램 수행에 따른 프로그램 수행 지연


- (d) 초기화, 스캔 프로그램과 태스크 프로그램의 관계
 - 1) 초기화 태스크 프로그램의 수행 중에는 사용자 정의 태스크는 기동하지 않습니다.
 - 2) 스캔 프로그램은 우선 순위가 가장 낮게 설정되어 있으므로, 태스크 발생시 스캔 프로그램을 중지하고 태스크 프로그램을 우선 처리 합니다. 따라서 1스캔 중에 태스크가 빈번하게 발생하거나, 간헐적으로 집중되는 경우가 발생할 경우, 스캔 타임이 비정상적으로 늘어나는 경우가 있을 수 있습니다. 태스크는 조건 설정 시 주의가 필요합니다.
- (e) 실행중인 프로그램의 태스크 프로그램으로 부터의 보호
 - 1) 프로그램 수행 중, 우선 순위가 높은 태스크 프로그램의 수행에 의해 프로그램 수행의 연속 성을 잃을 경우 문제가 되는 부분에 대하여, 부분적으로 태스크 프로그램의 수행을 막을 수 있습니다.이때 'DI(태스크 프로그램 기동 불허), 'EI(태스크 프로그램 기동 허가)' 응용 명령에 의해 프로그램 보호를 수행할 수 있습니다.
 - 2) 보호가 필요한 부분의 시작 위치에 'DI' 응용 명령을 삽입하고, 해제할 위치에 'EI' 응용 명령을 삽입하면 됩니다. 초기화 태스크는 'DI', 'EI' 응용 명령의 영향을 받지 않습니다.
 - 3) 아래 프로그램 에서 "CALLP"명령 수행시에는 인터럽트가 발생하더라도 "CALLP"명령 수행후 인터럽트 프로그램을 실행합니다.

(5) 정주기 태스크 프로그램의 처리 방법


대스크 프로그램의 태스크(기동 조건)를 정주기로 설정한 경우의 처리 방법에 대해 설명합니다.

- (a) 태스크에 설정할 사항
 - 실행할 태스크 프로그램의 기동 조건이 되는 태스크의 실행 주기 및 우선 순위를 설정합니다. 태스크의 관리를 위한 태스크 번호를 확인합니다.
- (b) 정주기 태스크 처리 설정한 시간 간격(실행 주기) 마다 해당하는 정주기 태스크 프로그램을 실행합니다.
- (c) 정주기 태스크 프로그램 사용시 주의 사항
 - 1) 정주기 태스크 프로그램이 현재 실행 중 또는 실행 대기 중일 때, 동일한 태스크 프로그램 실행 요구가 발생되면 새로 발생된 태스크는 무시됩니다.
 - 2) 운전 모드가 RUN 모드인 동안만 정주기 태스크 프로그램의 실행 요구를 발생하는 타이머가 가동 됩니다. 정전된 시간은 모두 무시합니다.
 - 3) 정주기 태스크 프로그램의 실행 주기를 설정할 때, 동시에 여러 개의 정주기 태스크 프로그램의 실행 요구가 발생할 수 있음을 고려하여 주십시오. 만약, 주기가 2초, 4초, 10초, 20초인 4개의 정주기 태스크 프로그램을 사용하면, 20초 마다 4 개의 실행 요구가 동시에 발생하여 스캔 타임이 순간적으로 길어질 수 있습니다.

(6) 외부 접점 태스크 프로그램의 처리방법

태스크 프로그램의 태스크(기동조건)를 외부 인터럽트 접점신호로 지정한 경우의 처리 방법에 대해 설명합니다.(P000 ~ P007)

(a) 태스크에 설정할 사항

실행할 태스크 프로그램의 기동 조건이 되는 태스크에 인터럽트의 접점 번호 및 우선 순위를 설정합니다. 태스크의 관리를 위한 태스크 번호를 확인합니다.

(b) 외부 접점 태스크 처리

외부에서 인가되는 신호에 의해 기본 유닛 인터럽트가 발생하면(P000~P007), 이 접점신호를 인식하여. 신호가 발생한 접점에 의해 기동되는 태스크 프로그램을 실행합니다.

- (c) 외부 접점 태스크 프로그램 사용시 주의사항
 - 1) 기본 유닛 인터럽트에 의해 기동되는 태스크 프로그램이 현재 실행 중 이거나 실행 대기 중일 때, 동일한 입력 접점에 태스크 프로그램의 실행 요구가 발생되면 새로 발생된 태스크는 무시됩니다.
 - 2) 운전 모드가 RUN 모드인 경우만 태스크 프로그램의 실행요구를 받아들입니다. 즉 RUN 모드 운전 중 일 때 STOP 모드로 운전 모드를 전환한 후 다시 RUN 모드로 한 경우, STOP 모드로 운전한 동안에 발생한 실행 요구는 모두 무시됩니다.
- (7) 내부 디바이스 태스크 프로그램의 처리 방법

태스크 프로그램의 태스크(기동조건)를 접점에서 디바이스로 수행 범위를 확대한 내부 디바이스 태스크 프로그램의 처리 방법에 대하여 설명합니다.

(a) 태스크에 설정할 사항

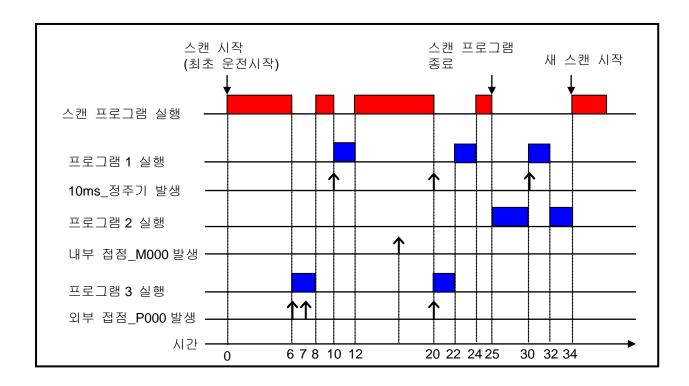
수행할 태스크 프로그램의 기동 조건이 되는 디바이스의 조건 및 우선 순위를 설정합니다. 태스크의 관리를 위한 태스크 번호를 확인합니다.

(b) 내부 디바이스 태스크 처리

CPU 모듈에서 스캔 프로그램의 실행이 완료된 후 우선 순위에 따라 내부 디바이스 태스크 프로그램의 기동 조건이 되는 디바이스들의 조건이 일치하면 실행합니다.

- (c) 내부 디바이스 태스크 프로그램 사용시 주의 사항
 - 1) 내부 디바이스 태스크 프로그램은 스캔 프로그램의 실행 완료 시점에서 실행됩니다. 따라서 스캔 프로그램 또는 태스크 프로그램(정주기, 외부 접점)에서 내부 디바이스 태스크 프로그램의 실행조건을 발생시켜도 즉시 실행되지 않고 스캔 프로그램의 실행 완료 시점에서 실행됩니다.
 - 2) 내부 디바이스 태스크 프로그램의 실행 요구는 스캔 프로그램이 실행 완료 시점에서 실행 조건을 조사합니다. 따라서 '1스캔' 동안 스캔 프로그램 또는 태스크 프로그램(정주기, 외부 접점)에 의해 내부 디바이스 태스크 실행 조건이 발생하였다가 소멸되면 실행 조건을 조사하는 시점에서는 실행조건을 검출하지 못하므로 태스크는 실행되지 않습니다.
- (8) 태스크 프로그램의 검증

태스크 프로그램의 작성 후에는 아래 내용에 유의하여 검증하시기 바랍니다.

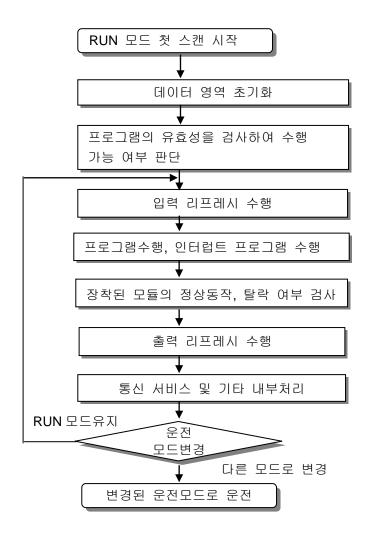

- (a) 태스크 설정은 적절히 하였는가? 태스크가 필요 이상으로 빈번히 발생하거나, 한 스캔 내에 여러 개의 태스크가 동시에 발생하면 스캔 타임이 길어지거나 불규칙하게 됩니다. 태스크의 설정을 바꿀 수 없는 경우는 최대 스캔 타임을 확인하여 주십시오.
- (b) 태스크의 우선 순위는 잘 정리되어 있는가? 우선 순위가 낮은 태스크 프로그램은 우선 순위가 높은 태스크 프로그램에 의하여 지연이 발생하여 정확한 시간에 처리가 안될 수 있으며, 경우에 따라서는 선행 태스크의 수행이 지연된 상태에서 다음 태스크가 발생하여 태스크의 충돌이 발생할 수도 있습니다. 태스크의 긴급성, 수행시간 등을 고려하여 우선 순위를 설정하여 주십시오.
- (c) 태스크 프로그램은 최대한 짧게 작성하였는가?

 태스크 프로그램의 수행 시간이 길게 되면 스캔 타임이 길어지거나, 불규칙하게 되는 원인이 됩니다. 또한 태스크 프로그램의 충돌을 유발할 수 있습니다. 가능한 수행 시간이 짧게 작성하여 주십시오.
 특히, 정주기 태스크 프로그램을 작성시에는 여러 개의 태스크 중 가장 짧은 태스크 주기의 10% 이내에 태스크 프로그램이 수행될 수 있도록 작성해 주십시오.
 예) 태스크 프로그램 수행시간이 1ms 인 경우 정주기 시간은 10ms 이상으로 작성해 주십시오.
- (d) 프로그램 수행 중 우선 순위가 높은 태스크에 대한 프로그램의 보호는 필요하지 않은가? 태스크 프로그램 수행 중에 다른 태스크가 끼어들면 수행중인 태스크를 완료한 후 대기 태스크 중 우선 순위가 높은 순으로 동작을 합니다. 스캔 프로그램에서 다른 태스크가 끼어들 면 안 되는 경우는 'DI', 'EI' 응용 명령을 사용하여 부분적으로 끼어들기를 막아 주십시오.
- (9) 프로그램의 구성과 처리 예

아래와 같이 태스크와 프로그램을 등록합니다.

인터럽트 소스	인터럽트 명	우선 순위	태스크 번호	프로그램 명	비고
정주기	10 ms_정주기	3	0	프로그램 1	
내부 접점	내부접점_M00	5	16	프로그램 2	
외부 접점	외부접점_P00	2	8	프로그램 3	

- 1) 스캔 프로그램 이름 : "스캔 프로그램"
- 2) 각 프로그램의 수행 시간 : 스캔 프로그램 = 17 ms, 프로그램 1 = 2 ms, 프로그램 2= 7 ms, 프로그램 3 = 2 ms


시간별 처리내용			
시간(ms)	처 리 내 용		
0	스캔을 시작하여 스캔 프로그램의 실행 시작		
0~6	스캔 프로그램을 실행		
6~8	외부 접점 인터럽트 실행 요구가 입력되어 스캔 프로그램 을 중단하고 프로그램 3을 실행, 7[ms]에 다시 실행 요구가 있으나 실행 중이므로 무시됨		
8~10	프로그램 3 실행을 완료하고 중단했던 스캔 프로그램을 계속 실행		
10~12	10 ms_정주기 인터럽트 실행 요구가 있어서 스캔 프로그램 을 중단하고 프로그램 1 을 실행		
12~20	프로그램 1 실행을 완료하고 중단했던 스캔 프로그램을 계속 실행		
20	10 ms_정주기 인터럽트 요구 와 외부 접점 인터럽트 실행 요구가 동시에 있으나, 외부 접점 인터럽트의 우선 순위가 높으므로 프로그램 3을 실행하고 프로그램 1는 실행대기		
20~22	스캔 프로그램 을 중단하고 프로그램 3을 실행		
22~24	프로그램 3 실행이 완료되어 대기중인 10 ms_정주기 인터럽트 프로그램 1 을 실행		
24~25	프로그램 1 실행이 완료되어 중단했던 스캔 프로그램 수행을 끝냄		
25	스캔 프로그램 완료 시점에서 P2의 내부 접점_M000 발생 인터럽트 실행요구를 체크하 여 프로그램 2를 실행		
25~30	프로그램 2 를 실행		
30~32	10 ™S_정주기 인터럽트 요구가 발생, 우선 순위가 내부 접점_MOOO 인터럽트보다 높으므로프로그램 2 를 중단하고 프로그램 1을 실행		
32~34	프로그램 1 실행이 완료되어 중단했던 프로그램 2의 수행을 끝냄		
34	새 스캔의 시작(스캔 프로그램 실행 시작)		

5.3 운전 모드

CPU 모듈의 동작 상태에는 런(RUN)모드, 스톱(STOP)모드, 디버그(DEBUG)모드 등 3 종류가 있습니다. 각 동작 모드 시 연산 처리에 대해 설명합니다.

5.3.1 런(RUN) 모드

프로그램 연산을 정상적으로 수행하는 모드입니다.

(1) 모드 변경 시 처리

시작 시에 데이터 영역의 초기화가 수행되며, 프로그램의 유효성을 검사하여 수행 가능 여부를 판단합니다.

(2) 연산 처리 내용

입출력 리프레시와 프로그램의 연산을 수행합니다.

- (a) 인터럽트 프로그램의 기동 조건을 감지하여 인터럽트 프로그램을 수행합니다.
- (b) 장착된 모듈의 정상 동작, 탈락 여부를 검사합니다.
- (c) 통신 서비스 및 기타 내부 처리를 합니다.

5.3.2 스톱(STOP)모드

프로그램 연산을 하지 않고 정지 상태인 모드입니다. 리모트 STOP 모드에서만 XG5000 을 통한 프로그램의 전송이 가능합니다.

(1) 모드 변경시의 처리

출력 이미지 영역을 소거하고 출력 리프레시를 수행합니다.

(2) 연산처리 내용

- (a) 입출력 리프레시를 수행합니다.
- (b) 장착된 모듈의 정상 동작, 탈락 여부를 검사합니다.
- (c) 통신 서비스 및 기타 내부 처리를 합니다.

5.3.3 디버그(DEBUG)모드

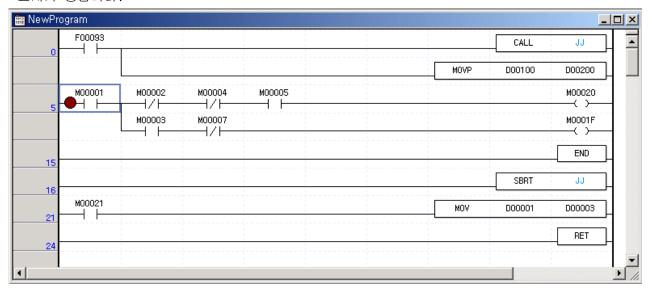
프로그램의 오류를 찾거나, 연산 과정을 추적하기 위한 모드로 이 모드로의 전환은 STOP 모드에서 만 가능합니다. 프로그램의 수행 상태와 각 데이터의 내용을 확인해 보며 프로그램을 검증할 수 있는 모드입니다.

(1) 모드 변경시의 처리

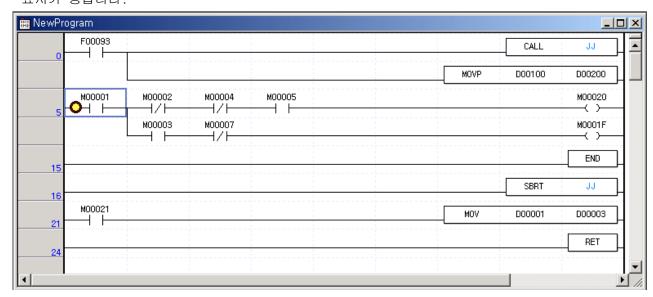
- (a) 모드 변경 초기에 데이터 영역을 초기화합니다.
- (b) 출력 이미지 영역을 소거하고, 입력 리프레시를 수행합니다.

(2) 연산처리 내용

- (a) 입출력 리프레시를 수행합니다.
- (b) 설정 상태에 따른 디버그 운전을 합니다.
- (c) 프로그램의 마지막까지 디버그 운전을 한 후, 출력 리프레시를 수행합니다.
- (d) 장착된 모듈의 정상 동작, 탈락 여부를 검사합니다.
- (e) 통신 등 기타 서비스를 수행합니다.

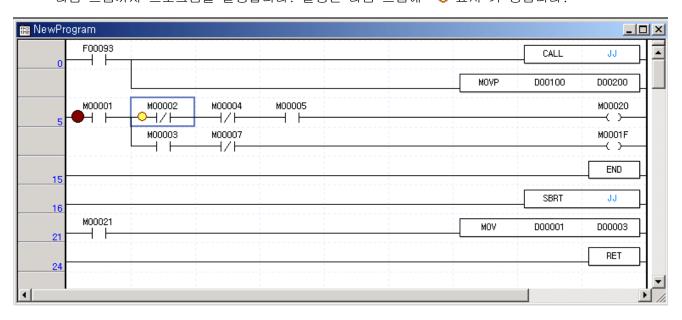

(3) 디버그 운전

다음은 디버그 메뉴와 디버그 모드에 대해 설명합니다.


디바	디버그(<u>D</u>) 도구(<u>T</u>) 창(<u>W</u>) 도움말(<u>H</u>)			
(1)	① 디버그 시작/끝(<u>D</u>)			
[]	런(<u>R</u>)	Ctrl+F9		
[]]	스텝 오버(<u>S</u>)	Ctrl+F8		
[]	스텝 인(J)	Ctrl+F7		
[]]	스텝 마웃(<u>0</u>)			
+[]	커서 위치까지 런(<u>G</u>)	Ctrl+F2		
<u>₿</u> []	브레이크 포인트 설정/해제(<u>B</u>)	Ctrl+F5		
ВЩ	브레이크 포인트 목록(<u>L</u>)			
Q1	브레이크 조건(<u>C</u>)			

항 목	설 명	비고	
디버그 시작/끝	디버그↔스톱 모드로 변경합니다		
런	디버그 운전을 시작합니다.		
스텝 오버	한 스텝씩 운전합니다.		
스텝 인	인 서브루틴 프로그램으로 들어갑니다.		
스텝 아웃	서브루틴 프로그램을 빠져 나옵니다	오버와 동일	
커서 위치까지 런	현재 커서가 있는 곳 까지 런 합니다.		
브레이크 포인트 설정/해제	현재 커서 위치를 브레이크 포인트로 설정↔ 해제 합니다.		
브레이크 포인트 목록	브레이크 포인터의 목록을 표시합니다.		
브레이크 조건	디바이스 값, 스캔 횟수를 지정합니다.		

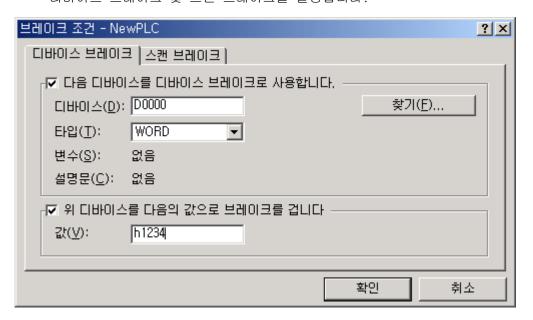
(a) 브레이크 포인트 설정/해제 현재 커서 위치에 브레이크 포인트를 설정합니다. 설정이 되면 ●고양의 브레이크 포인트 표시가 생깁니다.

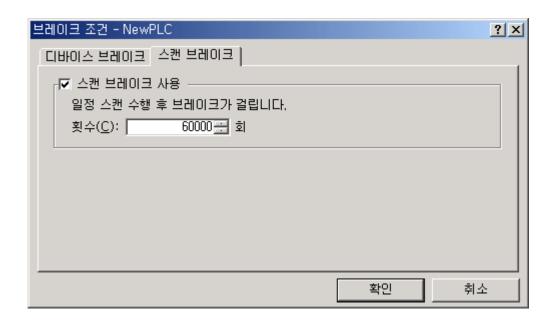


(b) 런 브레이크 포인트까지 프로그램을 런 시킵니다. 브레이크 포인터에 현재 멈춘 위치 표시인 → 표시가 생깁니다.

(c) 스텝 오버

• 다음 스텝까지 프로그램을 실행합니다. 실행된 다음 스텝에 → 표시 가 생깁니다.




(d) 브레이크 포인트 목록

■ 현재 설정되어 있는 브레이크 포인트 목록이 표시됩니다. 전체 선택,전체 해제,전체 삭제 찾아 가기 기능이 지원됩니다.

- (e) 브레이크 조건
 - 디바이스 브레이크 및 스캔 브레이크를 설정합니다.

알아두기

1) 자세한 조작 방법은 XG5000 사용 설명서 제 12 장 디버깅을 참조하여 주십시오.

5.3.4 운전 모드 변경

(1) 운전 모드의 변경 방법

운전 모드의 변경에는 다음과 같은 방법이 있습니다.

- (a) CPU 모듈의 모드 키에 의한 모드 변경
- (b) 프로그래밍 툴 (XG5000)을 CPU의 통신 포트에 접속하여 변경
- (c) CPU의 통신 포트에 접속된 XG5000으로 네트워크에 연결된 다른 CPU모듈의 운전 모드 변경
- (d) 네트워크에 연결된 XG5000, HMI, FEnet, Cnet 모듈 등을 이용하여 운전 모드 변경
- (e) 프로그램 수행 중 'STOP' 명령에 의한 변경

(2) 운전 모드의 종류

운전 모드 설정은 다음과 같습니다.

운전 모드 스위치	XG5000 지령	운전 모드
런(RUN)	X	런(RUN)
	런(RUN)	리모트 런(RUN)
스톱(STOP)	스톱(STOP)	리모트 스톱(STOP)
스탑(310F)	디버그(Debug)	디버그(Debug) 런(RUN)
	모드 변경 수행	이전 운전 모드
런(RUN) ->스톱(STOP)	-	스톱(STOP)

(a) 리모트 모드 변환은 스톱(STOP) 인 상태에서 가능 합니다.

리모트 '런(RUN)' 상태에서 스위치에 의해 '스톱(STOP)'으로 변경하고자 할 경우는 스위치를 (STOP) → RUN → STOP 으로 조작하여 주십시오.

⚠ 주 의

- 리모트 RUN 모드에서 스위치에 의해 RUN 모드로 변경되는 경우 PLC 동작은 중단 없이 연속 운전을 합니다.
- 스위치에 의한 RUN 모드에서 런 중 수정은 가능합니다만 XG5000을 통한 모드 변경 동작이 제한됩니다. 원격지에서 모드 변경을 허용하지 않을 경우에만 설정하시길 바랍니다.

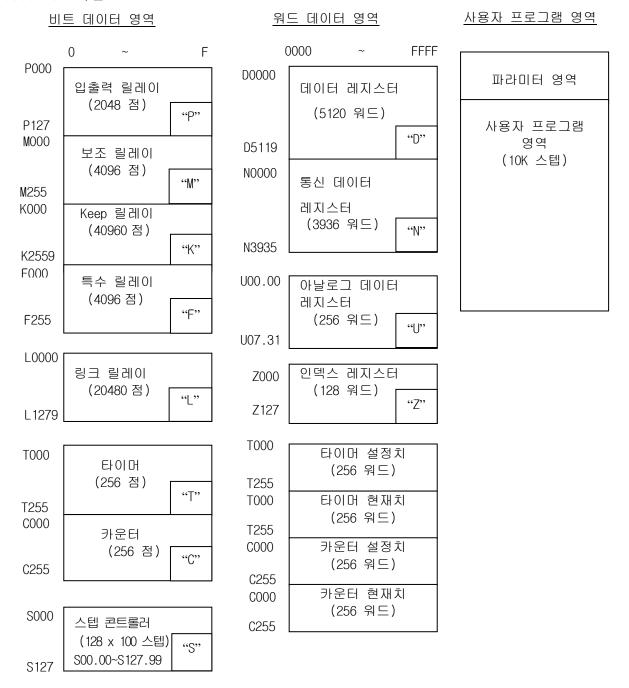
5.4 메모리

CPU 모듈에는 사용자가 사용할 수 있는 두 가지 종류의 메모리가 내장되어 있습니다. 그 중 하나는 사용자가 시스템을 구축하기 위해 작성한 사용자 프로그램을 저장하는 프로그램 메모리이고, 다른 하나는 운전 중 데이터를 저장하는 디바이스 영역을 제공하는 데이터 메모리 입니다.

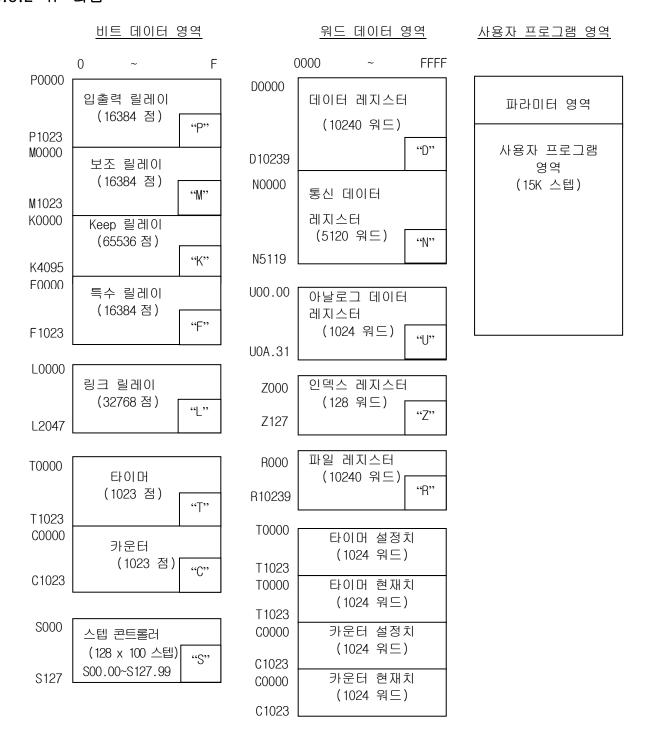
5.4.1 데이터 메모리

(1) 비트 디바이스 영역

기능 별로 다양한 Bit 디바이스가 제공 됩니다. 표기 방식은 첫 자리에 디바이스 종류를, 중간 자리는 10 진수로 워드 위치를, 마지막 자리는 16 진수로 워드내 비트 위치를 표기 합니다.


10 6 1 7 7	1	미지크 지디드 10	신우도 워드네 미드 위시글 표기 입니다. 		
디바이스 별 영역 표시		디바이스 특징	용 도		
"S" 타입	"H" 타입				
P0000 ~ P127f	P0000 ~ P1023f	입출력 접점 "P"	입출력 접점의 상태를 저장하는 이미지 영역 입니다. 입력 모듈의 상태를 읽어 해당 대응되는 P 영역에 저장하고 연산 결과가 저장된 P 영역 데이터를 출력 모듈로 저장합니다		
M0000 ~ M255f	M0000 ~ M1023f	내부 접점 "M"	프로그램에서 비트 데이터를 저장할 수 있도록 제공되는 내부 메모리 입니다.		
L0000 ~ L1279f	L0000 ~ L2047f	통신 접점 "L"	통신 모듈의 고속링크/P2P 서비스 상태정보를 표시하는 디바이스 입니다.		
K00000 ~ K2559f	K00000 ~ K4095f	정전 유지 접점 "K"	정전 시 데이터를 유지하는 디바이스 영역으로 별도로 정전 유지 파라미터를 설정하지 않고 사용할 수 있습니다. (특수 영역(K2600~2559F) 으로 쓰기 사용시는 주의하여 주십시오. 내장기능이 정상적으로 동작하지 않게 됩니다.)		
F0000 ~ F255f	F0000 ~ F1023f	특수 접점 "F"	시스템 플래그 영역으로 PLC에서 시스템 운영에 필요한 플래그를 관리하는 영역입니다.		
T0000 ~ T255	T0000 ~ T1023	타이머 접점 "T"	타이머 접점/현재값/설정값의 상태를 저장하는 영역입니다.		
C0000 ~ C255	C0000 ~ C1023	카운터 접점 "C"	카운터 접점/현재값/설정값의 상태를 저장하는 영역입니다.		
\$00.00 ~ \$127.99	\$00.00 ~ \$127.99	스텝 컨트롤러 "S" 128 x 100 스텝	스텝 제어용 릴레이 입니다.		

(2) 워드 디바이스 영역


(2) 워드 니마	이스 강력				
디바이스 별 영역 표시		디바이스 특징	용 도		
"S" 타입	"H" 타입				
D0000 ~ D5119	D0000 ~ D10239	데이터 레지스터 "D"	내부 데이터를 보관하는 영역. 비트 표현 가능.(D0000.0)		
U00.00 ~ U07.31	U00.00 ~ U0A.31	아날로그 데이터 레지스터 "U"	슬롯에 장착된 특수모듈로부터 데이터를 읽어오는데 사용되는 레지스터.(비트 표현 가능)		
N0000 ~ N3935	N0000 ~ N5119	통신 데이터 레지스터 "N"	통신 모듈의 P2P 서비스 저장 영역. 비트 표현 불가능		
Z000 ~ Z127	Z000 ~ Z127	인덱스 레지스터 "Z"	인덱스 기능 사용을 위한 전용 디바이스 비트 표현 불가능		
T0000 ~ T255	T0000 ~ T1023	타이머 현재치 레지스터 "T"	타이머의 현재값을 나타내는 영역		
C0000 ~ C255	C0000 ~ C1023	카운터 현재치 레지스터 "C"	카운터의 현재값을 나타내는 영역		
	R0000 ~ R10239	파일 레지스 터"R"	파일 저장용 레지스터		

5.5 데이터 메모리 구성도

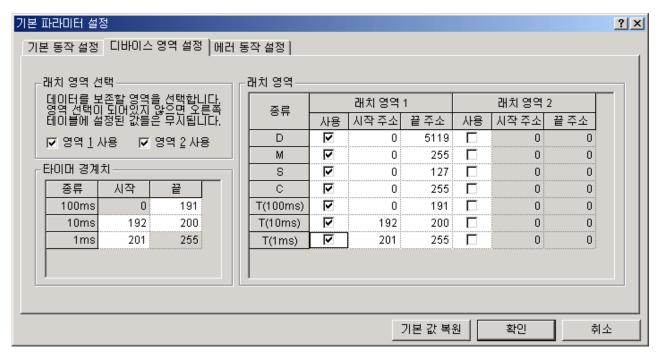
5.5.1 "S" 타입

5.5.2 "H" 타입

5.5.3 데이터 래치 영역 설정

운전에 필요한 데이터 또는 운전 중 발생한 데이터를 PLC 가 정지 후 재 기동하였을 때도 계속 유지시켜서 사용하고자 할 경우에 데이터 래치를 사용하며, 일부 데이터 디바이스의 일정 영역을 파라미터 설정에 의해서 래치 영역으로 사용 할 수 있습니다.

• 아래는 래치 가능 디바이스에 대한 특성표 입니다.

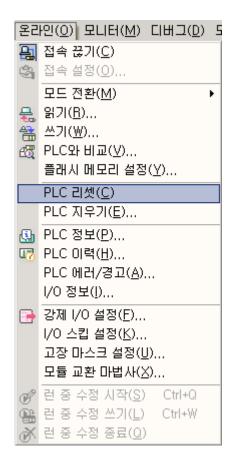

디바이스	래치영역 1	래치영역 2	특 성
Р	Χ	Χ	입출력 접점의 상태를 저장하는 이미지 영역
М	0	0	내부 접점 영역
K	Χ	Χ	정전 시 접점 상태가 유지되는 접점
F	Х	Х	시스템 플래그 영역
Т	0	0	타이머 관련 영역 (비트/워드 모두 해당)
С	0	0	카운터 관련 영역 (비트/워드 모두 해당)
S	0	0	스텝 제어용 릴레이
D	0	0	일반 워드 데이터 저장 영역
U	Х	Х	아날로그 데이터 레지스터 (래치 안 됨)
L	Х	Х	통신 모듈의 고속링크/P2P 서비스 상태 접점(래치 됨)
N	Х	Х	통신 모듈의 P2P 서비스 주소 영역(래치 됨)
Z	Х	Х	인덱스 전용 레지스터 (래치 안 됨)
R	Х	Х	파일 레지스터 (래치 됨)

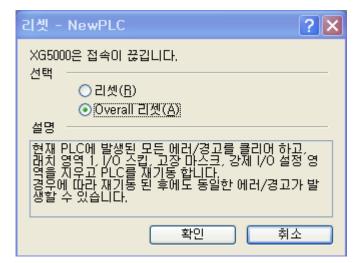
알아두기

■ K, L, N, R 디바이스들은 기본적으로 래치 됩니다.

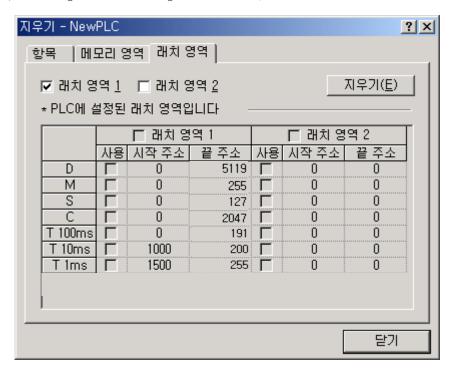
(1) 래치 영역 설정

(a) 기본 파라미터의 디바이스 영역 설정을 클릭합니다.



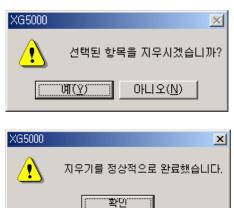

- (2) 데이터 래치 영역의 동작
 - (a) 래치된 데이터를 지우는 방법은 아래와 같습니다.
 - XG5000 으로 래치 1, 래치 2 지우기 조작
 - 프로그램으로 쓰기 (초기화 프로그램 추천)
 - XG5000 모니터 모드에서 '0' FILL 등 쓰기

PLC의 동작에 따른 래치 영역 데이터의 유지 또는 리셋(클리어) 동작은 아래 표를 참조 바랍니다.


No.	구 분	상세 동작 구분	래치 1	래치 2	비고
1	전원 온/오프	온 / 오프	유지	유지	
2	XG5000 에 의한 리셋	Overall 리셋	(리셋)	유지	
3	프로그램 쓰기 (온라인)	_	유지	유지	
	백업 데이터 깨짐	(배터리 고장 등)으로 SRAM 깨짐	(리셋)	(리셋)	
4 백		기타 이유로 데이터 깨짐	(리셋)	(리셋)	
_	V05000 Q 7101	래치 1 클리어	리셋	유지	
5	XG5000 온 라인	래치 2 클리어	리셋	리셋	

(b) 『온라인』-『PLC 리셋』-『Overall 리셋』을 클릭하면 래치 1 영역이 클리어 됩니다.

(c)『온라인』-『PLC 지우기』 래치 영역 1,2 선택 후 "지우기"를 클릭하면 클리어 됩니다



(3) 데이터 일괄 지우기

메모리 영역의 지우기를 클릭하면 모든 디바이스의 메모리는 '0'으로 지워지게 됩니다. 디바이스의 특정 영역을 일괄적으로 지우는 경우 사용하여 주십시오.

(a) 『온라인』-『PLC 지우기』-『 메모리 영역』 선택 후 지우고자 하는 영역을 설정하고 "지우기"를 클릭하면 디바이스 영역이 클리어 됩니다

제 6 장 CPU모듈의 기능

6.1 기종 설정

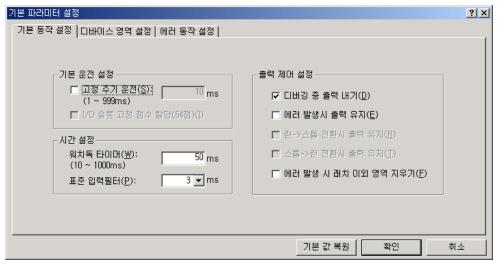
■ XGB PLC 기종 설정에 관해 설명합니다.

PLC 명	CPU 종류	설 명	비고
	XGB-DR16C3	전용화 제품	모듈러 형태
XGB	XGB-XBMS	"S" 타입 : XBM-DN16/32S , XBM-DR16S	모듈러 형태
	XGB-XBCH	"H" 타입 : XBC-DR32/64H , XBC-DN32/64H	콤팩트 형태

알아두기

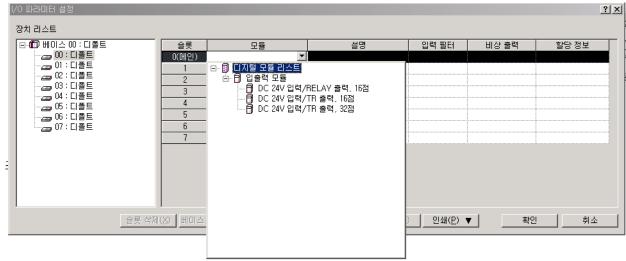

■ 기종설정이 일치하지 않을 경우 접속이 되지 않습니다.

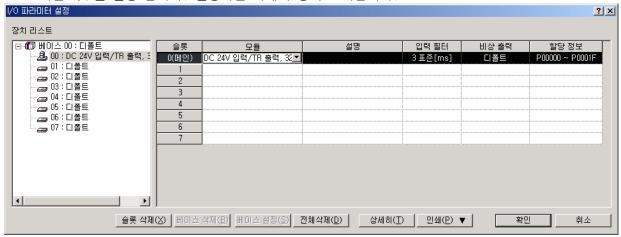
6.2 파라미터 설정


• XGB PLC 파라미터 설정에 관해 설명합니다.

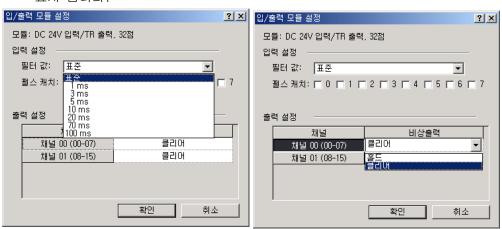
6.2.1 기본 파라미터 설정

프로젝트창의 기본 파라미터를 클릭하면 아래의 창이 표시됩니다.


• "기본 동작 설정", "디바이스 영역 설정", "에러 동작 설정"의 3가지 항목을 설정 할 수 있습니다.


분 류	항목	설 명	설정값
	고정주기 운전	고정주기 운전의 시간을 설정합니다.	1~999 ms
	워치독 타이머	스캔 워치독의 시간을 설정합니다.	10~1000 ms
	표준입력 필터	표준 입력 필터의 시간을 설정합니다.	1,3,5,10,20,70,100 ms
기본 동작	디버깅중 출력 내기	디버그 운전시 실제 출력을 허용할 것 인가를 설정합니다.	허용/금지
	에러 발생시 출력유지	에러발생시 I/O 파라미터에서 설정한 출력 홀드기능을 허가 할 것인지를 설정합니다.	허용/금지
	에러 발생시 래치 영역 외 지우기	에러 발생시 래치 영역으로 설정되지 않는 각 디바이스를 클리어 할 것인지를 설정합니다	
디바이스 영역	래치영역 선택	각 디바이스의 래치 영역을 설정합니다.	
에러 동작	연산 에러시 운전 속행	연산 에러시 운전을 중지 할것인지 속행할 것 인지를 설정합니다.	중지/속행

6.2.2 1/0 파라미터 설정


각각의 I/O 에 대한 정보를 설정,예약하는 기능입니다. 프로젝트창의 『I/O 파라미터』를 클릭하면 아래 설정 창이 표시 됩니다..

『슬롯』위치 란에서 『모듈』 항목을 클릭하면 각 모듈의 리스트가 표시되고 실제 시스템과 일치 하는 I/O를 설정 합니다. 설정하면 아래의 창이 표시됩니다.

『슬롯 위치』란에서 『상세히』버튼을 클릭하면 아래와 같이 필터, 비상출력을 설정할 수 있는 창이 표시 됩니다.

알아두기

- (1) 설정한 각각의 내용이 실제 접속된 I/O 모듈과 다를 경우 "모듈 타입 불일치 에러"가 발생하고 에러가 표시 됩니다.
- (2) 설정을 하지 않는 경우 CPU는 각 I/O 모듈의 정보를 읽어 동작 합니다.

6.3 자기 진단 기능

6.3.1 에러 이력 저장 기능

CPU 모듈은 에러 발생시 에러 이력을 기록하여 에러의 원인을 쉽게 파악하여 조치할 수 있도록 하였습니다. 『온라인』의 『에러/경고』항목을 클릭하면 현재의 에러와 에러 이력을 볼 수 있습니다.

항 목	설 명	비고
에러/경고	현재 발생된 에러/경고를 표시합니다.	
에러 이력	발생되었던 에러/경고를 표시합니다.	최근 100 개 저장

알아두기

- (1) 저장 정보는 XG5000에서 메뉴를 선택하여 "지우기"를 클릭하기 전 까지는 지워지지 않습니다.
- (2) "H" 타입은 발생 날짜 / 시간정보까지 표시 됩니다.
- (3) PLC 지우기 실행 후 PLC 로부터 열기 시 오류 및 에러가 표시됩니다.

6.3.2 고장 처리

(1) 고장의 구분

고장은 PLC의 자체 고장, 시스템 구성 상의 오류 및 연산 결과의 이상 검출 등에 의해 발생 합니다. 고장은 시스템의 안전을 위해 운전을 정지시키는 중 고장 모드와 사용자에게 고장 발생 경고를 알려주 고 운전을 속행하는 경고장 모드로 구분합니다.

PLC 시스템의 고장 발생 요인은 주로 다음과 같습니다.

- (a) PLC 하드웨어의 고장
- (b) 시스템 구성상의 오류
- (c) 사용자 프로그램 수행 중 연산 에러
- (d) 외부 기기 고장에 의한 에러 검출

(2) 고장 발생시 동작 모드

고장 발생시 PLC 시스템은 고장 내용을 플래그에 기록하고, 고장 모드에 따라 운전을 정지 하거나 속행합니다.

(a) PLC 하드웨어의 고장

CPU 모듈, 전원 모듈 등 PLC가 정상 운전을 할 수 없는 중고장이 발생한 경우 시스템은 정지 상태가 되며 경고장 발생시는 운전을 속행합니다.

(b) 사용자 프로그램 수행 중 연산 에러

사용자 프로그램 수행 중 발생하는 이상으로 수치 연산 오류의 경우 에러 플래그에 표시가 되고 시스템은 운전을 속행합니다. 연산 수행 중 연산 시간이 연산 지연 감시 설정 시간을 넘거나 장착 된 입출력 모듈이 정상적으로 제어가 안될 때는 시스템은 정지 상태가 됩니다.

(c) 외부 기기 고장에 의한 고장 검출

외부 제어 대상 기기의 고장을 PLC의 사용자 프로그램으로 검출하는 것으로, 중 고장 검출 시시스템은 정지 상태가 되고, 경고장 검출 시는 상태만을 표시하고 연산은 속행합니다.

알아두기

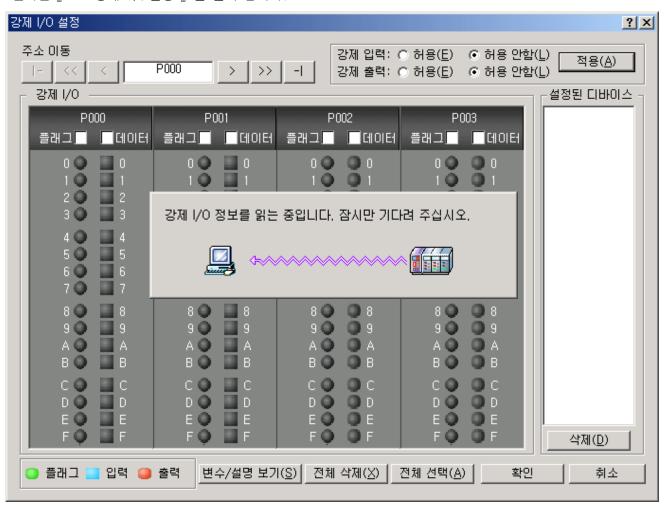
- (1) 고장이 발생한 경우 고장 번호가 특수 릴레이 F002,003 에 저장됩니다.
- (2) 플래그에 대한 자세한 내용은 부록 1 플래그 일람을 참조하여 주십시오.

6.4 리모트 기능

CPU 모듈은 모듈에 장착 된 키 스위치 외에 통신에 의한 운전 변경이 가능 합니다. 리모트로 조작을 하고자 하는 경우에는 'RUN/STOP' 스위치를 STOP 위치로 설정하여 주어야 합니다.

- (1) 리모트 운전의 종류는 아래와 같습니다.
 - (a) CPU 모듈에 장착된 USB 또는 RS-232C 포트를 통해 XG5000 을 접속하여 운전
 - (b) CPU 모듈에 XG5000 을 접속한 상태에서 PLC 의 네트워크에 연결된 타 PLC 를 조작 가능
- (2) 리모트 RUN/STOP
 - (a) 리모트 RUN/STOP은 외부에서 RUN/STOP을 수행하는 기능입니다.
 - (b) PU 모듈이 조작하기 어려운 위치에 설치되어 있거나 제어반 내의 CPU 모듈을 외부에서 RUN/STOP 하는 경우에 편리한 기능입니다.
- (3) 리모트 DEBUG
 - (a) 리모트 모드가 STOP 위치인 경우 DEBUG 조작을 수행하는 기능입니다. DEBUG 조작이란 프로그램 연산을 지정한 운전 조건에 따라 실행시키는 기능입니다.
 - (b) 시스템의 디버깅 작업 등에서 프로그램의 실행 상태나 각 데이터의 내용을 확인하는 경우에 편리한 기능입니다.
- (4) 리모트 리셋
 - (a) 모트 리셋은 에러가 발생한 경우에 원격 조작으로 CPU 모듈을 리셋 시키는 기능입니다.
 - (b) "리셋"과 "Overall 리셋"을 지원합니다.

알아두기


• 리모트 기능에 대한 조작 방법은 XG5000 사용 설명서의 '제 10 장 온라인'부를 참조 바랍니다.

6.5 입출력 강제 I/O

강제 입출력 I/O기능은 프로그램 실행 결과와는 관계없이 입출력 영역을 강제로 On/Off 할 경우 사용하는 기능입니다.

6.5.1 강제 I/0 설정 방법

『온라인 』-『 강제 I/O 설정 』을 클릭 합니다.

항 목		설 명	비고
	II	입출력 영역의 맨 처음과 끝으로 이동합니다.(P000↔P127)	
주소 이동	⟨⟨⟨⟨⟩⟩⟩	맨 좌측에 표시된 입출력 영역에 ±8 영역으로 이동합니다.	
310	< >	입출력 영역에 ±1 영역으로 이동합니다.	
적 용		강제 입력과 출력을 허용 / 허용 안함 을 설정합니다.	
개별	플래그	각 비트별 강제 입출력 허용/허용 안함을 설정합니다.	
게ㄹ	데이터	각 비트별 강제 입출력 데이터(On/Off)를 설정합니다.	
전체 선택		전 입출력 영역을 On 으로 하여 강제 입출력 허용을 설정합니다.	
전체 삭제		전 입출력 영역을 Off로 하고 강제 입출력 허용을 삭제합니다.	
설정된 [그바이스	한 개의 비트라도 설정된 입출력 영역을 표시합니다.	

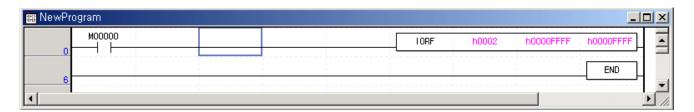
6.5.2 강제 I/O On / Off 처리 시점 및 처리 방법

(1) 강제 입력

입력은 입력 리프레시 시점에서 입력 모듈에서 읽어온 데이터 중, 강제 On/Off 로 설정된 접점의 데이터를 강제 설정된 데이터로 대치하여 입력 이미지 영역을 갱신 합니다. 따라서 사용자 프로그램은 실제 입력 데이터와, 강제 설정 영역은 강제 설정 데이터를 가지고 연산을 합니다.

(2) 강제 출력

출력은 사용자 프로그램 연산 실행 완료 후, 출력 리프레시 시점에서, 연산 결과가 들어있는 출력 이미지 영역의 데이터 중 강제 On/Off 로 설정된 접점의 데이터를 강제 설정된 데이터로 대치하여 출력모듈에 출력합니다. 출력의 경우는 입력과 달리 출력 이미지 영역의 데이터는 강제 On/Off 설정에의해 변하지 않습니다.


(3) 강제 1/0 기능 사용 시 주의 사항

- (a) 강제 데이터를 설정 후 입출력 각각의 '허용'을 설정한 시점부터 동작합니다.
- (b) 실제 입출력 모듈이 장착되어 있지 않아도 강제 입력의 설정이 가능합니다.
- (c) 전원의 Off -> On, 운전 모드의 변경 및 리셋 키에 의한 조작이 있어도 이전에 설정 되었던 On/Off 설정 데이터는 CPU 모듈 내에 보관되어 있습니다.
- (d) STOP 모드에서도 강제 입·출력 데이터는 소거 되지 않습니다.
- (e) 처음부터 새로운 데이터를 설정 하고자 할 때에는 '전체 삭제'를 이용하여 입출력 모두의 설정을 해제한 후 사용하여 주십시오.

6.6 즉시 입출력 연산기능

입출력 접점의 리프레시는 스캔 프로그램이 종료된 이후에 수행됩니다. 따라서 프로그램 수행 도중에 바뀌는 입출력 접점의 데이터는 데이터가 바뀌는 시점에서 리프레시 되지 않고, 최종적으로 END 명령이 수행된 시점에서의 입출력 데이터값으로 리프레시가 됩니다.

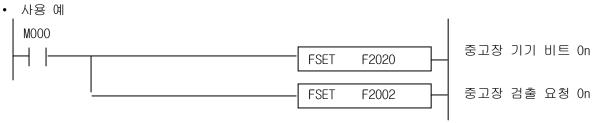
프로그램 수행 도중에 입출력 데이터를 리프레시하기 위해서는 'IORF'명령을 사용함으로써 프로그램 수행 도중에 입력 접점의 상태를 즉시 읽어 들여 연산에 사용하거나, 연산 결과를 즉시 출력 접점에 출력 할 수 있습니다.

• M00000 이 On 일 경우에 'IORF'명령이 수행되며, 첫 번째 오퍼랜드는 슬롯번호를 지정합니다. 둘째 오퍼랜드는 상위 32 비트, 셋째 오퍼랜드는 하위 32 비트의 마스크 데이터를 지정하여 리프레시 하고자 하는 비트를 '1'로 설정합니다. '0'으로 설정된 비트의 경우 리프레시를 수행하지 않습 니다.

알아두기

IORF 명령에 대한 자세한 내용은 XGK 명령어 집을 참조하여 주십시오.

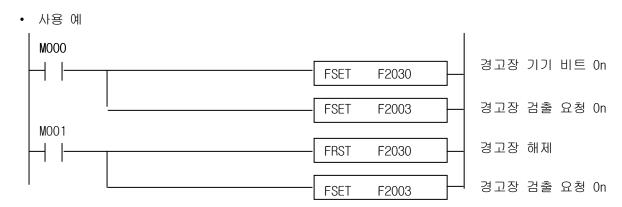
6.7 즉시 입출력 연산기능


사용자가 외부 기기의 고장을 검출하여, 시스템의 정지 및 경고를 쉽게 구현 하도록 제공되는 플래그입니다. 이 플래그를 사용하면 복잡한 프로그램을 작성하지 않고 외부 기기의 고장을 표시할 수 있으며, 특별한 장치(XG5000등) 나 소스 프로그램 없이 고장 위치를 모니터링 할 수 있습니다.

(1) 외부 기기 고장의 검출 및 분류

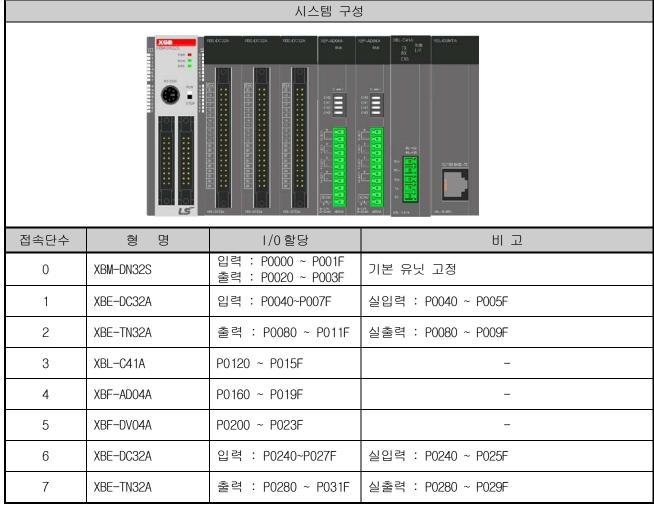
- (a) 외부 기기의 고장은 사용자 프로그램에 의해서 검출하며, 검출된 고장의 내용에 따라 PLC의 운전을 정지시켜야 하는 중고장(에러)과 PLC의 운전은 계속하고 고장 상태 만을 표시하는 경고장 (경고)으로 분류합니다.
- (b) 중고장의 경우는 "F202(_ANC_ERR) 플래그"를 사용하며, 경고장의 경우는 "F203(_ANC_WB) 플래그"를 사용합니다.
- (c) 중고장의 경우는 검출 요청 플래그는 "F2002(_CHK_ANC_ERR) 플래그"를 사용하며, 경고장의 경우는 검출요청 플래그는 "F2003(_CHK_ANC_WB) 플래그"를 사용합니다.

(2) 외부 기기 중 고장의 처리


- (a) 사용자 프로그램에서 외부 기기의 중 고장 검출 시, 시스템 플래그 'F202(_ANC_ERR)'에 사용자 가 정의한 에러의 종류를 구분하여 0을 제외한 값을 쓰고 검출 요청 플래그는 "F2002(_CHK_ANC_ERR)"를 On 하면 스캔 프로그램 완료 시점에서 체크하여 PLC는 모든 출력 모듈을 0ff 시키고 PLC 자체고장 검출과 동일한 에러 상태가 됩니다.
- (b) 고장 발생시 사용자는 XG5000을 사용하여 고장의 원인을 알 수 있으며, 또한 "F202(_ANC_ERR) 플래그"를 모니터링 하여 고장의 원인을 알 수 있습니다.

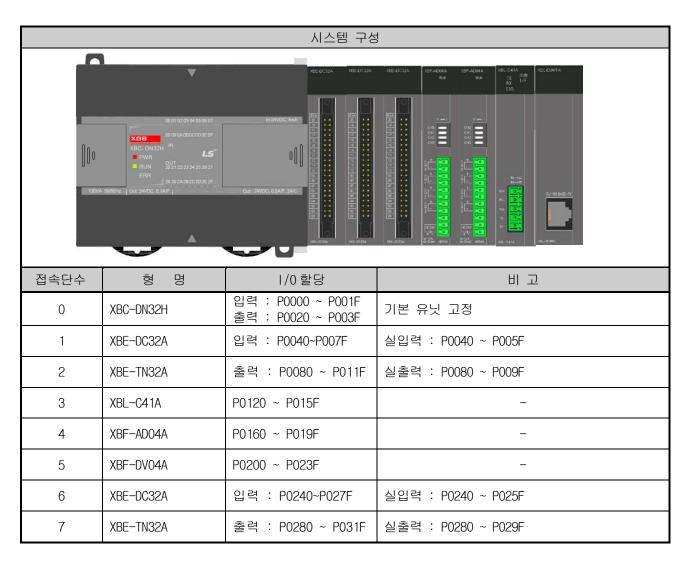
(c) 고장 발생시 CPU는 에러 상태가 되고 운전을 정지합니다. 이때 자동으로 F2020 및 F2002 플래그는 Off 됩니다. (에러 LED는 1초 주기로 점멸합니다.)

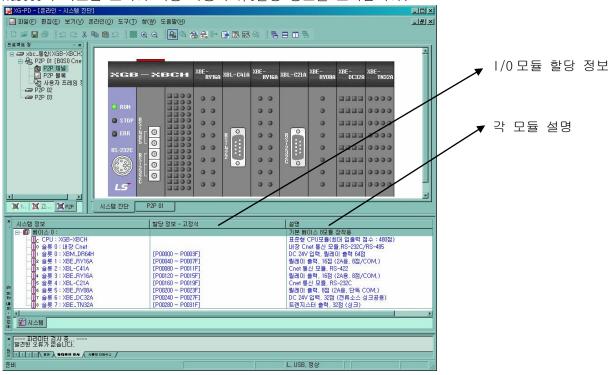
(3) 외부 기기 경 고장의 처리


- (a) 사용자 프로그램에서 외부 기기의 경고장 검출 시, 시스템 플래그 "F203(_ANC_WB)" 해당 위치의 플래그를 On 시키고 검출 요청 플래그 "F2003(_CHK_ANC_WB)" 를 On 시키면 스캔 프로그램 완료 시점에서 경고장 에러를 표시합니다. 경고장 에러 발생시 검출 요청 플래그 "F2003(_CHK_ANC_WB)" 는 자동으로 Off 됩니다.(F203 은 지워지지 않습니다.)
- (b) 경고장 에러 발생시 LED가 2초 주기로 점멸합니다.
- (c) 경고장 에러 조치후 F203의 해당 비트를 Off 하고 F2003비트를 On 하면 경고장 에러가 해제 되고 에러 LED는 Off 됩니다..

6.8 입출력 번호 할당 방법

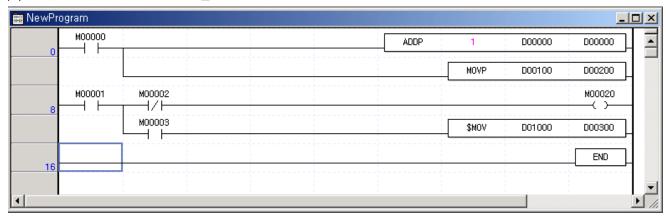
입출력 번호의 할당이란 연산 수행 시 입력 모듈로부터 데이터를 읽고 출력 모듈에 데이터를 출력하기 위해 각 모듈의 입출력 단자에 번지를 부여하는 것입니다. XGB PLC는 모든 모듈이 64점을 점유하는 방식입니다.


(1) 입출력 번호 할당 모든 모듈은 64점이 할당됩니다.(특수,통신 포함)

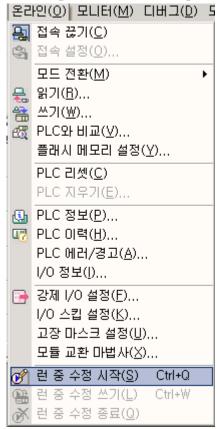

비어 있는 1/0점수는 내부 릴레이로 사용 가능 합니다.

(2) 1/0파라미터의 입출력 할당을 하는 경우 할당 정보를 표시합니다.

XG5000의 시스템 모니터 기능 사용시 I/0할당 정보를 표시합니다.

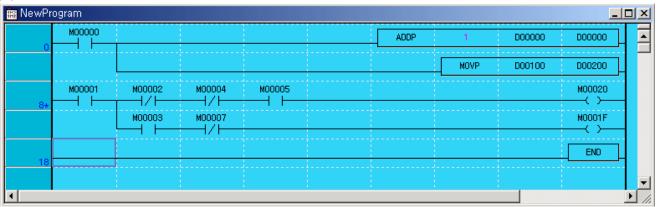


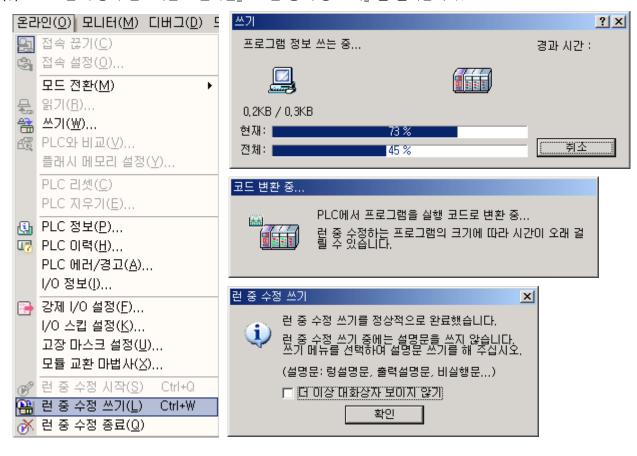
6.9 운전 중 프로그램의 수정(RUN 중 수정)


PLC의 운전 중 제어 동작을 중지하지 않고 프로그램 및 통신 파라미터의 수정이 가능합니다. 아래에 기본적인 수정방법에 대해 설명합니다. 자세한 수정 방법은 XG5000의 사용 설명서를 참조 하여 주 십시오.

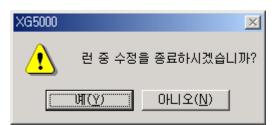
운전 중 수정이 가능한 항목은 아래와 같습니다.


- 프로그램의 수정
- 통신 파라미터의 수정
- (1) 현재 RUN 되고 있는 프로그램을 나타냅니다.

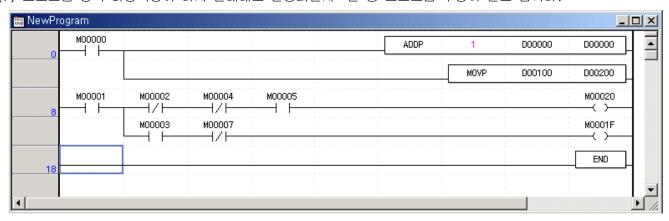

(2) 『온라인』-『런 중 수정 시작』을 클릭합니다.


(3) 프로그램 창의 바탕색상이 변경되면서 런 중 프로그램 수정 가능 모드로 변경됩니다.


(4) 프로그램을 수정합니다.

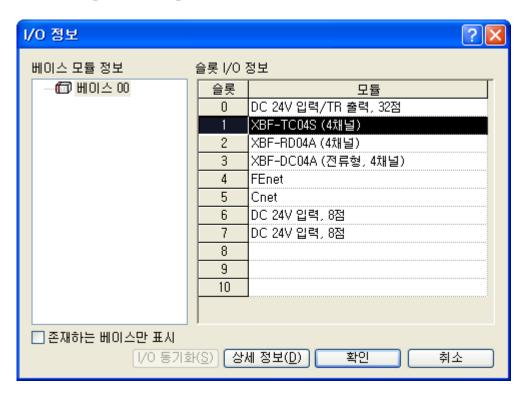


(5) 프로그램 수정이 완료되면 『온라인』-『런 중 수정 쓰기』를 클릭합니다.



(6) 프로그램 쓰기가 완료되면 『온라인』-『런 중 수정 종료』를 클릭합니다.

(7) 프로그램 창의 바탕색상이 다시 원래대로 변경되면서 런 중 프로그램 수정이 완료 됩니다.

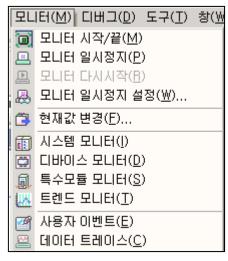

알아두기

• 런 중 통신 파라미터 변경은 XG-PD를 통해 이루어지며 『온라인』-『파라미터 쓰기』를 클릭하면 변경됩니다.

6.10 I/O 정보 읽기

XGB PLC 시스템에 구성되어 있는 각각의 모듈 정보를 모니터하는 기능입니다.

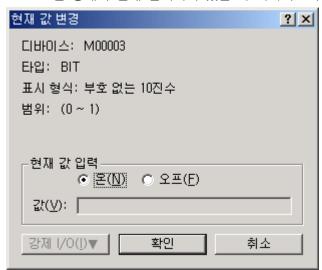
(1) 『온라인』-『I/O 정보』을 클릭합니다. 접속된 시스템의 각 모듈정보가 모니터 됩니다.

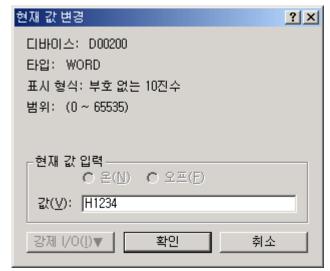

(2) 모듈 선택 후 상세정보를 클릭하면 모듈에 대한 상세 정보가 표시됩니다.

6.11 모니터 기능

XGB PLC 시스템의 제반 정보를 모니터 하는 기능입니다.

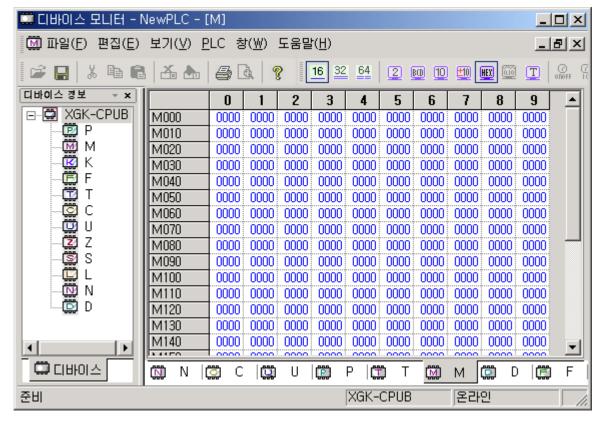
(1) 『모니터』를 클릭하면 아래와 같은 서브 메뉴가 표시됩니다.

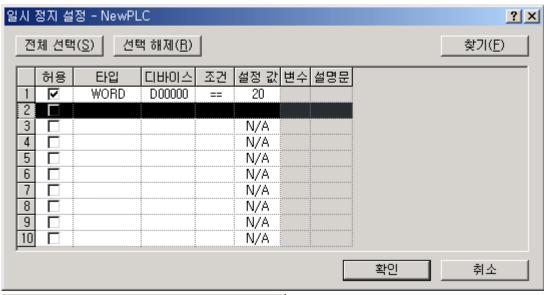


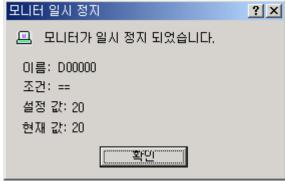

(2) 각 항목에 대해 설명합니다.

항목	설 명	비고
모니터 시작/끝	모니터의 시작과 끝을 지정합니다 .	클릭시 반전
모니터 일시 정지	모니터를 일시 정지합니다.	
모니터 다시 시작	일시정지 했던 모니터를 다시 실행합니다.	
모니터 일시 정지 설정	설정된 디바이스의 값이 조건에 일치할 경우 모 니터를 일시 중지하는 기능	모니터 다시시작 클릭시 재개
현재값 변경	현재 선택되어 있는 각 디바이스의 현재값 변경	
시스템 모니터	현재 시스템의 제반 정보를 모니터 합니다.	
디바이스 모니터	각 디바이스 별로 모니터 하는 기능입니다.	
트랜드 모니터	설정한 디바이스의 트랜드를 모니터 합니다.	TI II = I I I I I I I I I I I I I I I I
사용자 이벤트	사용자가 설정한 이벤트 발생시 설정된 디바이스 값을 모니터 합니다.	자세한 설명은 XG-5000 사용 설명서를 참조하여 주십시오.
데이터 트레이스	설정된 디바이스의 값을 트레이스 합니다.	구입시조.

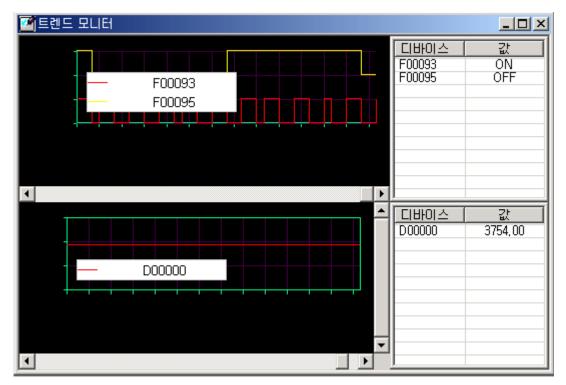
(a) 현재값 변경


프로그램 창에서 현재 선택되어 있는 각 디바이스의 현재값을 변경하는 기능입니다.

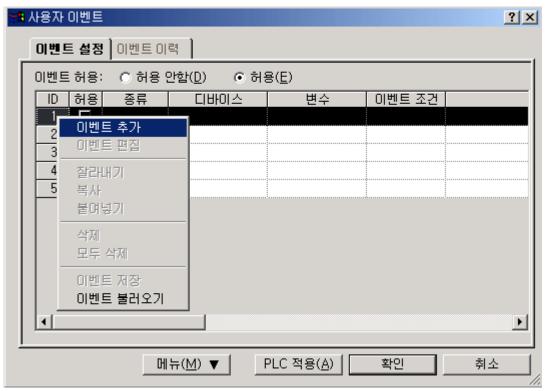


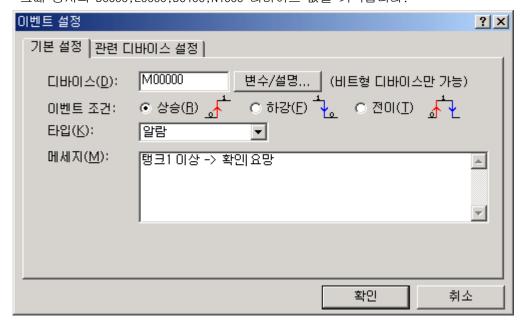

(b) 디바이스 모니터

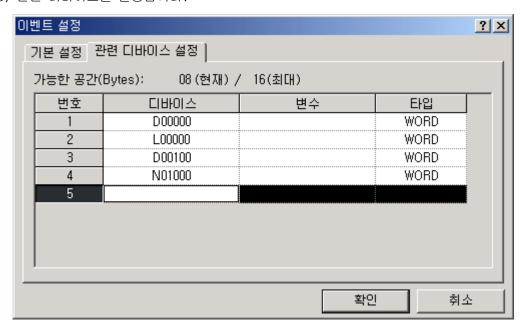
각 디바이스 별로 모니터 하는 기능입니다.

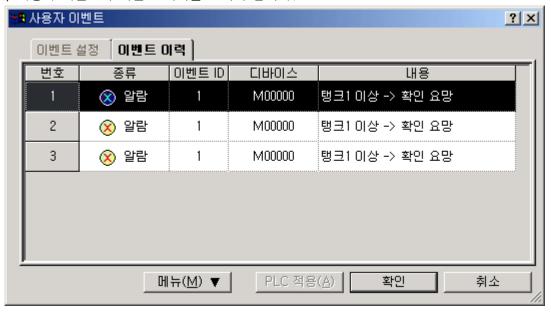


(c) 모니터 일시 정지 설정 설정한 디바이스 값이 일치할 경우 모니터를 중지하는 기능입니다.




(d) 트랜드 모니터 설정한 디바이스 값을 그래프로 표시하는 기능입니다.


- (e) 사용자 이벤트
 - 1) 사용자가 설정한 이벤트 발생시 상세 정보를 모니터 하는 기능입니다. 사용자 이벤트를 추가 등록합니다.

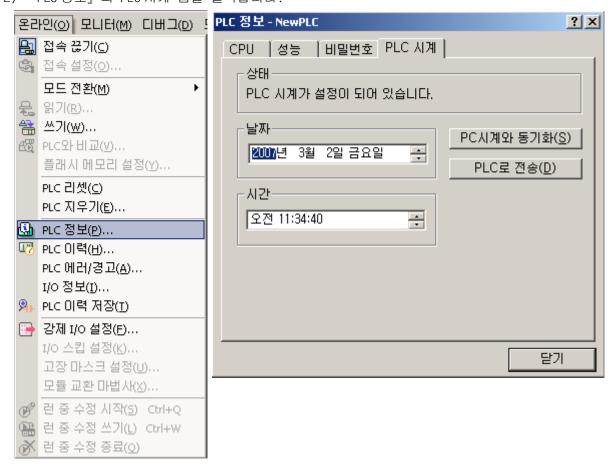

2) 기본 설정 및 관련 디바이스를 설정합니다. M0000 디바이스의 상승에지가 발생하였을 경우 알람 "탱크 1 이상-> 확인요망" 메시지를 기록하고 그때 당시의 D0000,L0000,D0100,N1000 디바이스 값을 기록합니다.

3) 관련 디바이스를 설정합니다.

4) 사용자 이벤트의 이벤트 이력을 모니터 합니다.

5) 발생 번호를 더블 클릭하면 아래와 같이 상세 내용과 발생 당시의 디바이스 상세 값이 모니터 됩니다. ("S"타입(XBM-DxxxS)에서는 날짜와 시간이 모니터 되지 않습니다.)

알아두기

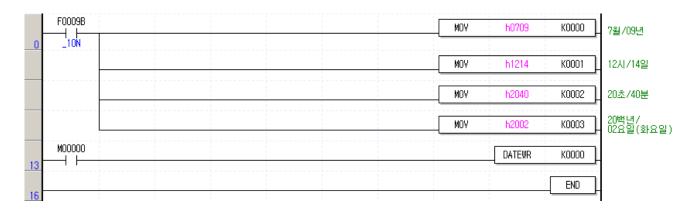

• 모니터의 상세한 사항은 XG5000 사용설명서를 참조하여 주십시오.

6.12 RTC 기능

"H"타입(XBC-DxxxH)에서는 RTC(시계)기능을 제공하여 시스템의 시간관리나 고장이력 등의 시간관리에 이용할 수 있습니다. RTC는 전원 OFF, 또는 순시 정전 시에도 시계동작을 계속합니다. RTC의 현재시각은 시스템 운전상태 정보 플래그에 의해 매 스캔마다 갱신됩니다.

6.12.1 사용 방법

- (1) 시계 데이터 읽기/설정
 - (a) XG5000 으로 부터 읽기 및 설정
 - 1) 『온라인』의『PLC 정보』를 클릭합니다.
 - 2) 『PLC 정보』의 PLC 시계 탭을 클릭합니다.



- 3) PC 상의 시간을 PLC로 전송하기를 원할 경우 PC 시계와 동기화 버튼을 클릭합니다.
- 4) 사용자가 원하는 시간을 설정하고자 할 경우에는 날짜와 시간 박스의 설정값을 변경한 후 PLC로 전송을 클릭합니다.
- (b) 특수릴레이로 읽기

특수 릴레이에 의해 아래와 같이 모니터 할 수 있습니다.

특수릴레이 영역	데이터	내 용
F053	H0709	07년 9월
F054	h1214	12일 14시
F055	H2040	20 분 40 초
F056	H2003	2000 년대,수요일

(c) 프로그램에 의한 시계데이터 수정

영 연	내 용
K0000	년,월
K0001	일,시
K0002	분,초
K0003	년대,요일

임의의 디바이스 (P,M,K,L,Z,U,D,R)에 시계 데이터를 써넣고 DATEWR 입력접점 M0000 를 On/Off합니다. (날짜와 요일이 맞지 않을 경우 Write되지 않습니다.) 위의 특수영역(F053~F056)을 모니터 하여 정확히 수정되었는지 확인합니다.

(d) 요일표현 방법

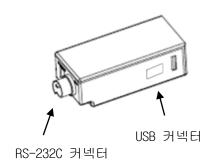
숫자	0	1	2	3	4	5	6
요일	일요일	월요일	화요일	수요일	목요일	금요일	토요일

(2) 시간오차

±2.2초 / 1일

알아두기

- (1) 제품 출하 시 시계데이터가 쓰여져 있지 않습니다.
- (2) 제품 사용 전 시계데이터를 정확하게 설정하여 주십시오.
- (3) 시계데이터 범위 이외의 데이터를 RTC에 쓴 경우는 정상적으로 동작하지 않습니다. 예) 14월 32일 25시
- (4) RTC가 정지 또는 에러가 발생한 경우 새로운 시계 데이터를 RTC에 쓰면 에러가 해제됩니다.


6.13 외장형 메모리 모듈

XGB PLC 에서 제공하는 외장형 메모리 모듈을 이용하면 사용자 프로그램을 안전하게 저장하거나 운 전중인 프로그램의 손상시 별도의 조작 없이 시스템에 장착하여 다운로드하여 사용하실 수 있습니다.

6.13.1 메모리 모듈 규격

항 목	XBO-M2MB	비고
메모리 용량	2MByte	
메모리 타입	Flash Memory	
특징	USB 제공, Program Read/Write	
표시 기능	LED 표시	 RUN WRITE READ
동작모드 설정	로터리 스위치를 이용한 모드 설정	
동작전원 공급	RS-232C 통신 커넥터, USB 커넥터	5V
용도	이동용	

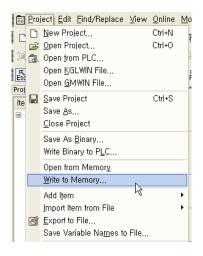
6.13.2 메모리 모듈 구조

1 번 : READ 모드 3 번 : WRITE 모드

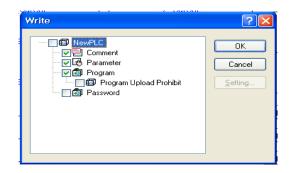
5번: PADT I/F 모드

알아두기

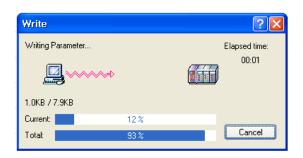
- -. 메모리 모듈은 XGB 기종에만 사용할 수 있습니다. (XGKI/R 지원 불가)
- -. 메모리 모듈을 아래 제시한 버전 이하에서는 지원되지 않습니다.


(XBMS: V2.5, XBCH: V1.8, XECH: V1.2)

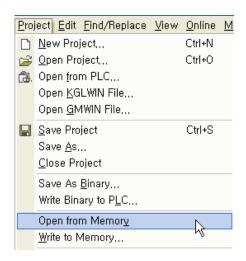
6.13.3 메모리 모듈 사용 방법


- (1) 메모리 모듈에 PLC의 프로그램, 파라미터, 통신 파라미터 저장하기
 - (a) 메모리 모듈의 스위치를 "1" 번으로 설정합니다.
 - (b) 메모리 모듈을 기본유닛의 RS-232C 포트에 장착합니다
 - 장착 후 프로그램, 파라미터(통신 포함)가 메모리 모듈로 저장되면서 READ LED가 On됩니다.
 - 프로그램 및 파라미터의 저장이 완료되면 READ LED가 Off됩니다.
 - (c) 메모리 모듈을 기본유닛으로부터 분리합니다.
- (2) 메모리 모듈의 사용자 프로그램을 기본유닛에 저장하기
 - (a) 기본유닛의 동작모드를 STOP으로 설정합니다.
 - RUN 모드에서는 기본유닛으로 프로그램 저장기능을 사용할 수 없습니다.
 - (b) 메모리 모듈의 스위치를 "3" 번으로 설정합니다.
 - (c) 메모리 모듈을 장착합니다
 - 기본 유닛의 RS-232C 포트에 장착합니다.
 - PLC 로 프로그램, 파라미터(통신 포함)가 WRITE 되면서 WRITE LED가 On됩니다.
 - 프로그램 및 파라미터의 저장이 완료되면 WRITE LED가 Off됩니다.
 - (d) PLC의 동작모드를 RUN으로 하면 메모리 모듈에 저장되어 있던 프로그램, 파라미터로 PLC가 동작을 합니다.

위와 같은 조작을 통해 사용자는 메모리 모듈에 저장되어 있던 프로그램으로 PLC를 운전할 수 있습니다.


- (3) XG5000의 프로그램을 메모리 모듈에 저장하기
 - (a) XBO-M2MB의 모드 스위치를 "5"로 설정하고 PC의 USB에 XBO-M2MB를 접속합니다.
 - (b) XG5000의 메뉴에서 Project -> Write to Memory 를 선택합니다.

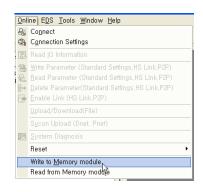
(c) 아래와 같이 Write 창이 생성됩니다.

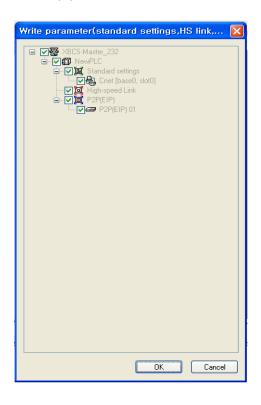


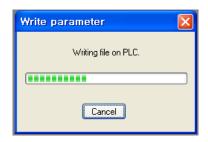
(d) 프로그램이 정상적으로 Write 되었다는 확인 창이 나타납니다.



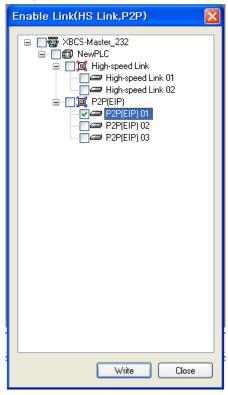
- (e) 위와 같은 방법으로 PADT 를 통해 XBO-M2MB 에 프로그램, 파라미터, 통신 파라미터를 저장합니다.
- (4) 메모리 모듈의 프로그램을 XG5000 으로 불러오기
 - (a) XBO-M2MB의 모드 스위치를 "5"로 설정하고 PC의 USB에 XBO-M2MB를 접속합니다.
 - (b) XG5000의 메뉴에서 Project -> Open from Memory 를 선택합니다.


(c) 아래와 같이 Read 창이 생성됩니다.

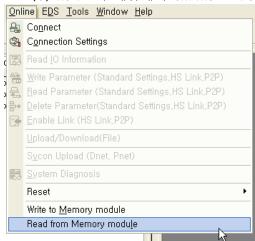

(d) 프로그램이 정상적으로 Read 되었다는 확인 창이 나타납니다.

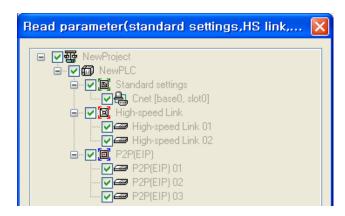


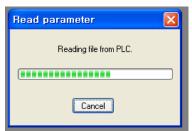
- (e) 위와 같은 방법으로 PADT 를 통해 XBO-M2MB의 프로그램, 파라미터, 통신 파라미터를 읽어옵니다.
- (5) XG-PD의 프로그램을 메모리 모듈에 저장하기
 - (a) XBO-M2MB의 모드 스위치를 "5"로 설정하고 PC의 USB에 XBO-M2MB를 접속합니다.
 - (b) XG-PD의 메뉴에서 Online -> Write to Memory module을 클릭합니다.



(c) OK 버튼을 클릭하여 각 파라미터를 메모리 모듈에 저장합니다.


(d) Enable Link 창이 나타나면 사용자 프로그램에 따라 체크 후 Write합니다.

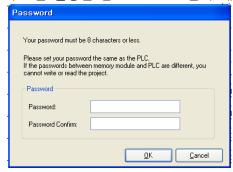

(e) Enable, Disable 되었다는 확인 창이 나타납니다.



- (6) 메모리 모듈의 프로그램을 XG-PD 에 읽어오기
 - (a) XBO-M2MB의 모드 스위치를 "5"로 설정하고 PC의 USB에 XBO-M2MB를 접속합니다.
 - (b) XG-PD의 메뉴에서 Online -> Read from Memory module을 클릭합니다.

(c) OK 버튼을 클릭하여 각 파라미터를 메모리 모듈에서 읽어옵니다.

알아두기


- -. PADT 에서 메모리 모듈로 쓰거나 읽기 메뉴는 PLC가 Off Line 인 상태에서만 활성화됩니다. 온라인 상태에서는 비활성화 상태입니다.
- -. PADT 와 접속시 접속 타입은 USB로 설정하여야 합니다.

6.13.4 프로그램 암호 설정 시 사용 방법

- (1) PADT 와 메모리 모듈 접속 시
 - (a) 프로그램에 암호 설정하여 메모리 모듈에 프로그램을 쓸 경우 별도의 암호 해제 동작 없이 로터리 스위치 동작 모드에 따라 저장됩니다.
 - 1) 프로그램을 쓸 경우 쓰기 창에 암호를 사용할지 체크 하는 부분을 체크합니다.

2) 암호를 설정한 후 OK를 누르면 설정된 암호로 프로그램이 메모리 모듈에 저장됩니다.

- (b) 암호 설정된 프로그램을 PADT로 읽어올 경우 PLC에 암호가 설정되어 있는 경우와 동일하게 화면이 나타납니다.
 - 1) 암호 입력 창이 생성됩니다.

2) 메모리 모듈에 저장된 비밀번호와 동일하게 입력하면 프로그램을 읽어 옵니다.

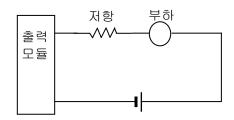
3) 비밀번호가 틀릴 경우 아래와 같이 에러 창이 나타납니다.

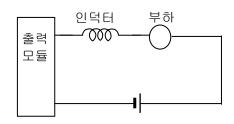
- (2) 메모리 모듈로 PLC 에 쓰기
 - (a) 메모리 모듈에 저장된 프로그램의 암호가 설정되지 않은 경우
 - 1) PLC 에 암호가 없는 경우
 - PLC에 메모리 모듈의 저장된 프로그램을 저장합니다.
 - 2) PLC 에 암호가 설정되어 있는 경우
 - 쓰기 기능을 수행하지 않습니다.
 - (b) 메모리 모듈에 저장된 프로그램에 암호가 설정된 경우
 - 1) PLC 에 암호가 없는 경우
 - PLC 에 쓰기 기능을 수행합니다.
 - 단, 메모리 모듈의 암호를 PLC로 쓰기는 수행하지 않습니다.
 - 2) PLC 에 암호가 설정되어 있는 경우
 - PLC 암호와 메모리 모듈의 암호가 일치할 경우에는 쓰기를 수행합니다. 암호가 다를 경우 쓰기는 수행하지 않습니다. (WRITE LED 점멸)
- (3) PLC 에 저장된 프로그램을 메모리 모듈로 읽기
 - (a) PLC 에 저장된 프로그램에 암호가 설정되지 않은 경우
 - 1) 메모리 모듈에 암호가 없는 경우
 - PLC 로부터 프로그램을 읽어옵니다.
 - 2) 메모리 모듈에 암호가 설정되어 있는 경우
 - 읽기 기능을 수행한 후 메모리 모듈의 암호를 클리어 합니다.
 - (b) PLC 에 저장된 프로그램에 암호가 설정된 경우
 - 1) 메모리 모듈에 암호가 없는 경우
 - 읽기 기능을 수행하지 않습니다.
 - 2) 메모리 모듈에 암호가 설정되어 있는 경우
 - PLC 암호와 메모리 모듈의 암호가 일치할 경우에는 읽기를 수행합니다. 암호가 다를 경우 읽기는 수행하지 않습니다.

(5) LED 가 점멸하는 경우

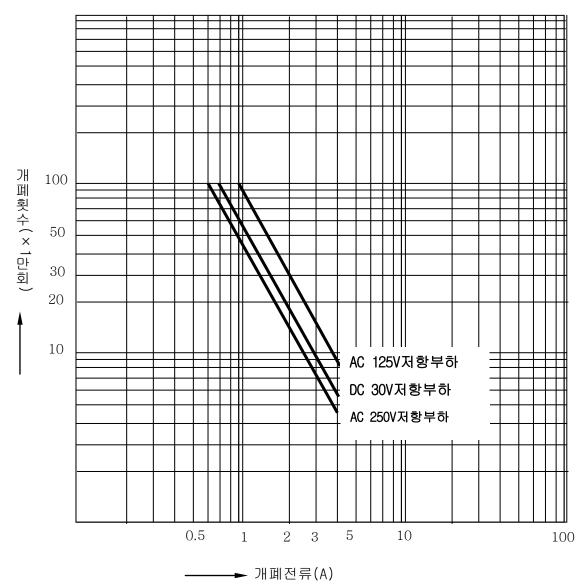
	조건	LED
1	PLC 기종이 XGB가 아닌 경우	RUN LED 점멸
2	PADT 나 PLC에 접속 중 동작모드를 변경할 경우	RUN LED 점멸
3	모드 스위치가 "1"일 때 PADT 와 접속할 경우	READ LED 점멸
4	PLC 프로그램 업로드 금지일 경우	READ LED 점멸
5	PLC 에 암호가 걸려있을 때 읽기를 실행할 경우	READ LED 점멸
	(메모리 모듈의 암호와 다를 경우)	
6	모드 스위치가 "3"일 때 PADT 와 접속할 경우	WRITE LED 점멸
7	PLC 동작모드가 RUN인 경우 메모리 모듈 쓰기 실행한 경우	WRITE LED 점멸
8	메모리 모듈에 저장된 타입과 다른 타입의 PLC에 접속할 경우	WRITE LED 점멸
9	PLC 암호와 메모리 모듈의 암호가 일치하지 않을 때 쓰기를	WRITE LED 점멸
	실행한 경우	

알아두기


- -. 메모리 모듈은 PLC의 암호를 해제하고 읽기 쓰기는 가능하지만 PLC 암호를 설정, 삭제 등의 암호를 변경하는 동작은 지원하지 않습니다.
- -. 외장형 메모리 모듈을 상시 장착한 상태로 운전하지 말아 주십시오.
- -. READ/WRITE LED가 On인 경우에 메모리 모듈을 제거하지 말아 주십시오.


제7장 입출력 규격

7.1 모듈 선정 시 주의 사항


XGB PLC 에 사용되는 디지털 입출력 모듈을 선정하는 경우의 주의 사항에 대해 설명합니다.

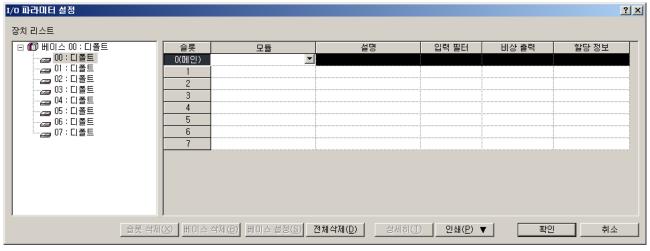
- (1) 디지털 입력의 형식은 양방향입니다. (싱크 / 소스 겸용)
- (2) 최대 동시 입력 점수는 모듈의 종류에 따라 다릅니다. 입력 전압, 주위 온도의 조건에 따라 변합니다. 적용할 입력모듈의 규격을 검토하신 후 사용하여 주십시오.
- (3) 고속입력의 응답이 요구되는 경우는 인터럽트 입력 접점을 사용하여 주십시오. 단 인터럽트 접점은 최대 8점 까지 사용할 수 있습니다.
- (4) 개폐 빈도가 높거나 유도성 부하 개폐용으로 사용하는 경우, 릴레이 출력 모듈은 수명이 단축되므로 트랜지스터 출력 모듈을 사용하여 주십시오.
- (5) 출력 모듈에 있어서, 유도성(L)부하를 구동하는 경우 최대 개폐 빈도는 1초 On, 1초 Off로 사용하여 주십시오.
- (6) 출력 모듈에 있어서, 부하로서 DC/DC 컨버터를 사용한 카운터 · 타이머 등을 사용한 경우 On 시 또는 동작 중 일정 주기에서 돌입전류가 흐를 수 있기 때문에 평균 전류로 선정하면 고장의 원인이 됩니다. 따라서 앞의 부하를 사용한 경우에는 돌입전류의 영향을 줄이기 위하여 부하에 직렬로 저항 또는 인덕터를 접속하거나 최대 부하전류의 값이 큰 모듈을 사용해 주십시오.

(7) 릴레이출력 모듈의 릴레이 수명을 아래 그림에 표시합니다.릴레이 출력부의 사용된 릴레이 수명의 최대값을 아래 그림에 표시 합니다.

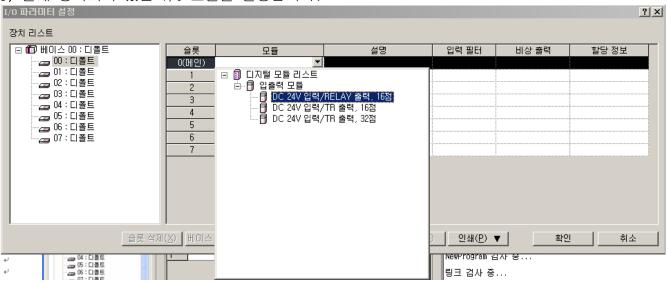
(8) XGB 시리즈 단자대에는 절연 슬리브가 부착된 압착 단자는 사용할 수 없습니다. 단자대에 접속하기에 적합한 압착 단자는 아래와 같습니다.(JOR 1.25—3:대동전자)

- (9) 단자대에 접속하는 전선의 사이즈는 연선 0.3~0.75 m², 굵기가 2.8 mm이하의 것을 사용해 주십시오. 전선은 절연 두께 등에 의해 허용 전류가 다를 수 있기 때문에 주의해 주십시오.
- (10) 모듈의 고정 나사, 단자대 나사의 조임 토크는 아래의 범위 내에서 실시해 주십시오.

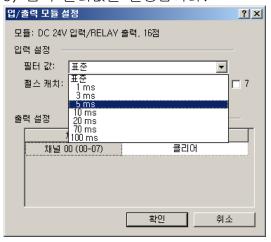
조임 부위	조임 토크 범위
입출력 모듈 단자대 나사 (M3 나사)	42 ~ 58 N·cm
입출력 모듈 단자대 고정 나사 (M3 나사)	66 ~ 89 N·cm


- (11) 릴레이 수명 곡선은 실제 사용하는 것을 근거로 작성된 것입니다. (보증치는 아님) 따라서 마진을 반드시 고려하여야 합니다. 릴레이수명은 아래와 같은 조건에 따라 규정됩니다.
 - (a) 정격 전압,부하: 300 만회: 100 만회
 - (b) 200V AC 1.5A, 240V AC 1A (COS Ø=0.7): 100 만회
 - (c) 200V AC 0.4A, 240V AC 0.3A (COS Ø=0.7): 300 만회
 - (d) 200V AC 1 A, 240V AC 0.5A (COS Ø=0.35): 100 만회
 - (e) 200V AC 0.3A, 240V AC 0.15A (COS Ø=0.35): 300 만회
 - (f) 24V DC 1A, 100V DC 0.1A (L/R=7ms): 100 만회
 - (g) 24V DC 0.3A, 100V DC 0.03A (L/R=7ms): 300 만회
- (12) 입력모듈의 경우 노이즈 등이 유입될 수 있습니다. 이러한 노이즈를 방지하기 위하여 입력 지연용 필터를 파라미터에서 설정할 수 있습니다. 사용환경을 잘 고려하시어 입력 필터 시간을 설정하여 주십시오.

입력 (ms)	필터	타임	설정	노이즈 신호 펄스 크기(ms)	비고
1				0.3	
3				1.8	초기값
5				3	
10				6	
20				12	
70				45	
100				60	


- (a) 입력 필터 설정 설정
- 1) XG5000의 프로젝트 화면에서 『I/O 파라미터』를 클릭합니다

2) 슬롯위치에서 『모듈』을 클릭합니다.


3) 실제 장착되어 있는 1/0 모듈을 설정합니다.

4) 1/0모듈을 설정하고 입력필터를 클릭합니다.

5) 입력 필터값을 설정합니다.

(b) 에러시 출력상태 설정

제 7 장 입출력 규격

1) 1/0모듈을 설정창에서 비상출력을 클릭합니다.

2) 비상출력을 클릭합니다.

비상출력을 클리어를 선택하면 출력이 Off되며, 홀드를 선택하면 출력상태를 유지합니다.

7.2 기본 유닛 디지털 입력 규격

7.2.1 XBM-DR16S 입력부 (소스/싱크 타입)

igo igo		기본 유년	ブ				
규격	>	(BM-DR16	S				
입력 점수	8 점						
절연 방식	포토 커플러 절연						
정격 입력 전압	DC24V						
정격 입력 전류	약 4 mA (접점 0~3: 약 7 mA)						
사용 전압 범위	DC20.4~28.8V (리플률 5% 이L	Н)					
On 전압 / On 전류	DC19V 이상 / 3 mA 이상						
Off 전압 / Off 전류	DC6V 이하 / 1 mA 이하						
입력 저항	약 5.6㎏ (P00~P03: 약 3.3㎏	Ω)					
응답 시간 Off On Off	1/3/5/10/20/70/100 ms (I/0 I	파라이터	로 설정	!) 초기값: 3 ms			
절연 내압	AC560Vrms / 3 사이클 (표고 2	2000m)					
절연 저항	절연 저항계로 10 ㎞ 이상						
코먼 방식	8 점 / COM						
적합 전선 사이즈	연선 0.3~0.75 m㎡ (외경 2.8 m	nm 이하)					
내부 소비 전류	180 mA (입력 전점 On 시)						
동작 표시	입력 On 시 LED 점등						
외부 접속 방식	9핀 단자대 커넥터						
중량	140g						
회 .	로 구 성	No.	접점	형 태			
		TB1	0				
		TB2	1	TB1			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	TB3	2	TB2			
TB1 R	포토커플러	TB4	3	TB3			
		TB5	4	TB4			
7 TB8 TB9	내부회로	TB6	5	TB6			
COM		TB7	6	ТВ7			
DC24V		TB8	7	TB8			
근지대단포		TB9	COM	TB9			
		1	1	l			

7.2.2 XBM-DN16S 입력부 (소스/싱크 타입)

형명	フ	l본 유년	ブ					
규격	XI	BM-DN16	iS					
입력 점수	8 점							
절연 방식	포토 커플러 절연							
정격 입력 전압	DC24V							
정격 입력 전류	약 4 mA (접점 0~3: 약	7 mA)						
사용 전압 범위	DC20.4~28.8V (리플률	5% OIL	H)					
On 전압 / On 전류	DC19V 이상 / 3 mA 이상	ļ.						
Off 전압 / Off 전류	DC6V 이하 / 1 mA 이하							
입력 저항	약 5.6 kΩ (P00~P03: º	‡ 3.3 k	∞)					
응답 시간 Off → On	1/3/5/10/20/70/100 ms	/	דו טו חו כ	그근 선	저 \ 구 -	1171. 0 mc		
On → Off	1/3/3/10/20/70/100 1113	(1/0 1	17 L7 U1 L	1 도 열	3) <u>2</u> ,	/1試・ 3 1113		
절연 내압	AC560Vrms / 3 사이클	(표고 2	2000m)					
절연 저항	절연 저항계로 10 MΩ 0	l상						
코먼 방식	8 점 / COM	3점 / COM						
적합 전선 사이즈	0.3 mm²							
내부 소비 전류	180 mA (입력 전점 On 시)							
동작 표시	입력 On 시 LED 점등	입력 On 시 LED 점등						
외부 접속 방식	20 핀 커넥터							
중량	100g							
회 로	구 성	No.	접점	No.	접점	형 태		
		B10	0	A10	NC			
		B09	1	A09	NC	F-11-1		
	⊕ ♦	B08	2	A08	NC	B10 A10 B09 A09		
0 B10 R	王 토커플러	B07	3	A07	NC	B08 A08 B07 A07		
	ਝਝ६ः┌──┴┐│	B06	4	A06	NC	B06 A06 B05 A05		
B03 S	### #################################	B05	5	A05	NC	B04 A04 B03 A03		
COM		B04	6	A04	NC	B02 - A02 B01 - A01		
DC24V커넥터번호		B03	7	A03	NC			
		B02	COM	A02	NC			
		B01	COM	A01	NC			

7.2.3 XBM-DN32S 입력부 (소스/싱크 타입)

indo indo		フ	l본 유닛	ર્			
규격		Χŧ	BM-DN32	S			
입력 점수	16 점						
절연 방식	포토 커플러 절연						
정격 입력 전압	DC24V						
정격 입력 전류	약 4 mA (접점 0~3: 약	7 mA)					
사용 전압 범위	DC20.4~28.8V (리플률	5% 이내	1)				
On 전압 / On 전류	DC19V 이상 / 3 mA 이상	=					
Off 전압 / Off 전류	DC6V 이하 / 1 mA 이하						
입력 저항	약 5.6 kΩ (P00~P03: 약	3.3 ks	2)				
응답 시간 Off → On	1/3/5/10/20/70/100 ms	/ I /O II	ו זרטו בז	그 서지	4 \ x \	71. 2 ms	
On → Off	1/3/3/10/20/70/100 1113	(1/О Д	ruuu	工 20	3) 소기	畝・3 III3	
절연 내압	AC560Vrms / 3 사이클 (표고 2	000m)				
절연 저항	절연 저항계로 10 MΩ 이	비상					
코먼 방식	16 점 / COM						
적합 전선 사이즈	0.3 mm²						
내부 소비 전류	200 mA (입력 전점 On 시	AI)					
동작 표시	입력 On 시 LED 점등	티					
외부 접속 방식	20 핀 커넥터						
중량	110g						
회 로	구 성	No.	접점	No.	접점	형 태	
		B10	0	A10	8		
	₩ ₩	B09	1	A09	9		
0 B10 R	포토커플러	B08	2	A08	А	B10 A10 B09 A09	
	B07	3	A07	В	B08 A08 B07 A07		
F A03	- 	B06	4	A06	С	B06 A06	
B02 COM		B05	5	A05	D	B04	
DC24V		B04	6	A04	Е	B02 - A02 B01 - A01	
┗──커넥터번호	B03	7	A03	F			
		B02	COM	A02	COM		
		B01	COM	A01	COM		

7.2.4 XBC-DR32H / XBC-DN32H 입력부 (소스/싱크 타입)

형 명	기본 유닛							
규격	XBC-DR32H(/DC)))	KBC-DN3	2H(/DC)		
입력 점수	16 점							
절연 방식	포토 커플러 절연							
정격 입력 전압	DC24V							
정격 입력 전류	약 4 mA (접점 0~7: 약	10 mA)						
사용 전압 범위	DC20.4~28.8V (리플률		1)					
On 전압 / On 전류	DC19V 이상 / 3 mA 이성		.,					
Off 전압 / Off 전류	DC6V 이하 / 1 mA 이하							
입력 저항	약 5.6 kΩ (P00~P07: 으	‡ 2.7 ks	5)					
응답 시간 Off → On On → Off	1/3/5/10/20/70/100 ms	(I/O I	다라미터	로 설정	병) 초기	l값: 3 ms		
절연 내압	AC560Vrms / 3 사이클	(표고 2	(1000m)					
절연 저항	절연 저항계로 10 MΩ 0	l상						
코먼 방식	16 점 / COM							
적합 전선 사이즈	0.3 mm²							
내부 소비 전류	200 mA (입력 전점 On A	(1)						
동작 표시	입력 On 시 LED 점등							
외부 접속 방식	24점 단자대 커넥터 (1	M3 X 6						
중량	600g		500)g				
회 로	구 성	No.	접점	No.	접점	형 태		
		TB2	485+	TB1	RX	RX TB1		
0 B10 R	포토커플러	TB4	485-	TB3	TX	TB2 485+ TX TB3 TB4 485- SG TB5		
R (₩ ★	TB6	00	TB5	SG	TB6 P00 P01 TB7		
B02 COM		TB8	02	TB7	01	TB10 P03 TB9		
DC24V L		TB10	04	TB9	03	TB12 P06 P07 TB13 TB14 P08 TB15		
		TB12	06	TB11	05	TB16 POA POB TB17 TB18 POC POD TB19		
		TB14	08	TB13	07	TB20 POE TB21		
		TB16	OA	TB15	09	TB24 24V • TB23		
		1510		TB17	OB			
		TB18	OC	TB19	OD			
		TB20	0E	- TB21	0F			
		TB22	СОМ	- TB23	24G			
		TB24	24V	. 220	= 1 %			

7.2.5 XBC-DR64H / XBC-DN64H 입력부 (소스/싱크 타입)

형 명	기본				
규격	XBC-DR64H(/DC)	XBC-DN64H(/DC)			
입력 점수	32 점				
절연 방식	포토 커플러 절연				
정격 입력 전압	DC24V				
정격 입력 전류	약 4 mA (접점 0~7: 약 10 mA)				
사용 전압 범위	DC20.4~28.8V (리플률 5% 이내)				
On 전압 / On 전류	DC19V 이상 / 3 mA 이상				
Off 전압 / Off 전류	전압 / Off 전류 DC6V 이하 / 1 mA 이하				
입력 저항	약 5.6 kΩ (P00~P07: 약 2.7 kΩ)				
응답 시간 Off On Off	1/3/5/10/20/70/100 ms (I/O 파라미터로 설정) 초기값: 3 ms				
절연 내압	AC560Vrms / 3 사이클 (표고 2000r	n)			
절연 저항	절연 저항계로 10 MΩ 이상				
코먼 방식	16 점 / COM				
적합 전선 사이즈	0.3 mm²	0.3 mm²			
내부 소비 전류 200 mA (입력 전점 On 시)					
동작 표시	통작 표시 입력 On 시 LED 점등				
외부 접속 방식 42 점 단자대 커넥터 (M3 X 6 나사)					
중량	900g	800g			

TE2 485+ T81 FIX TB2 485- T85 S6 T86 F60 T87	회 로 구 성	No	접점	No	접점	형 태
TB2	<u> </u>	No.	86	No.	11111	
TB4		TB2	485+	TB1	RX	TB2 4854 TB2
TBB 00 TBB2 COM TBB 02 TBB 00 TBB 0	<u>00</u> _ TB6 _ R	TB4	485-	TB3	TX	TB4 485
TB10		TD6	00	TB5	SG	TB8 P02 TB7
188 02 189 03 1814 70 70 1815 1816 70 70 70 70 70 70 70 7	TB22 COM0			TB7	01	TB10 P04 P05 TB11
TB12	DC24V	TB8	02	TB9	03	TB14 P08 P09 TB15
TB12	<u> </u>	TB10	04	TB11	05	TB18 P0C TB17
TB14	 	TB12	06			TB20 POE POF TB21
日本の	COM1	TB14	08	1613		TB24 P10 P11 TB25
TB18 OC TB19 OD TB30 P1 P1 TB31 TB32 P1 P1 TB31 TB32 P1 P1 P1 TB32 P1 P1 P1 TB31 TB32 P1 P1 P1 P1 P1 TB32 P1 TB32 P1		TB16	OA	TB15	09	TB26 P12 P13 TB27
TB20 OE TB22 COMO TB24 10 TB25 11 TB26 12 TB27 13 TB29 15 TB30 16 TB31 17 TB32 18 TB33 19 TB34 1A TB35 1B TB35 1B TB36 1C TB37 1D TB37 1D TB38 1E TB40 COM1		TB18	OC	TB17	OB	TB30 P16 TB31
TB22 COMO TB23 NC TB40 TB42 TB25 T1 TB26 T2 TB27 T3 TB27 T3 TB28 T4 TB29 T5 TB30 T6 TB31 T7 TB31 T7 TB32 T83 T9 TB33 T9 TB34 TA TB35 TB TB37 T0 TB38 TE TB39 TF TB39 TF		TR20	0E	TB19	OD	TB34 PIA TB33
TB24 10 TB25 11 TB26 12 TB27 13 TB29 15 TB30 16 TB32 18 TB33 19 TB34 1A TB35 18 TB36 1C TB36 1C TB37 1D TB38 1E TB39 1F TB39 1F TB40 COM1				TB21	0F	TB36 PIC PID TB37
TB26 12 TB28 14 TB29 15 TB30 16 TB32 18 TB33 19 TB34 1A TB35 1B TB35 1B TB36 1C TB38 1E TB40 COM1		TB22	COMO	TB23	NC	TB40 P1F TB39
TB28 14 TB29 15 TB30 16 TB31 17 TB32 18 TB33 19 TB34 1A TB35 1B TB36 1C TB37 1D TB38 1E TB39 1F TB40 COM1		TB24	10	TB25	11	. 1B42 24V
TB28 14 TB29 15 TB30 16 TB31 17 TB32 18 TB33 19 TB34 1A TB35 1B TB36 1C TB37 1D TB38 1E TB39 1F TB40 COM1		TB26	12	TB27	13	
TB30 16 TB31 17 TB32 18 TB33 19 TB36 1C TB37 1D TB39 1F TB40 COM1		TB28	14			
TB32 18 TB33 19 TB36 1C TB37 1D TB39 1F TB40 COM1		TB30	16			-
TB34 1A TB35 1B TB36 1C TB37 1D TB38 1E TB39 1F TB40 COM1		TB32	18	1831	17	-
TB36 1C TB37 1D TB38 1E TB39 1F TB40 COM1		TB34	1A	- TB33	19	-
TB38 1E TB39 1F TB40 COM1		TB36	1C	TB35	1B	
TB40 COM1 TB39 1F		TB38	1E	TB37	1D	
				TB39	1F	
TB42 24V TB41 24G				TB41	24G	

7.3 기본 유닛 디지털 출력 규격

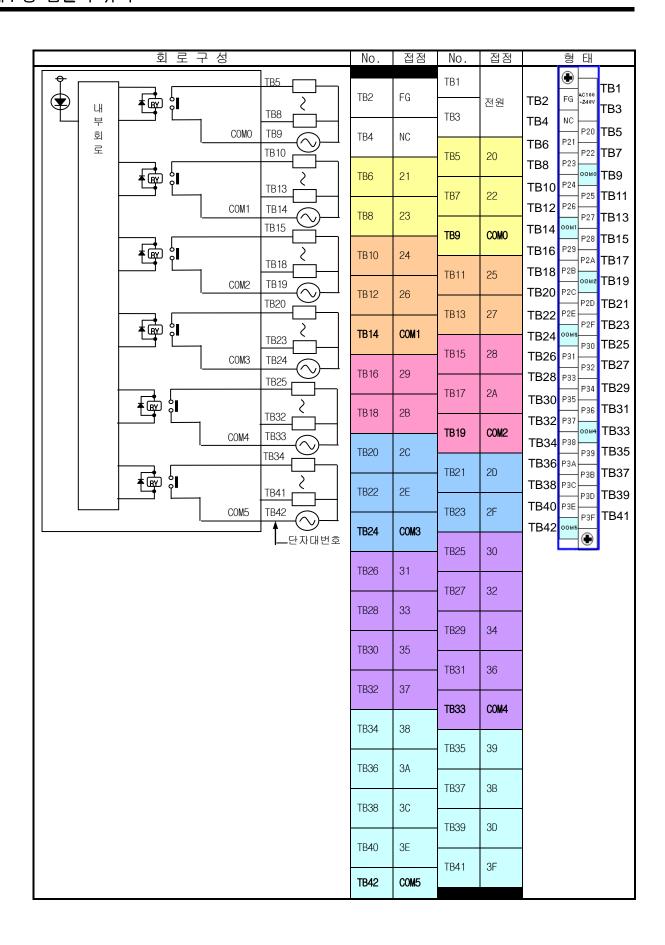
7.3.1 XBM-DR16S 릴레이 출력부

	형 명	기본 유닛						
규 격		XBM-DR16S						
출력 점수		8 점						
절연 방식		릴레이 절연						
정격 부하	전압 / 전류	DC24V 2A (자	l항부하) / AC220V	2A (COSΦ	= 1), 5A/	COM/		
최소 부하	전압 / 전류	DC5V / 1 mA						
최대 부하	전압	AC250V, DC12	25V					
0ff 시 누설	l 전류	0.1 mA (AC22	OV, 60 Hz)					
최대 개폐	빈도	3,600회 / 사	시간 -					
서지 킬러		없음						
	기계적	2,000 만회 0	기상					
		정격 부하 전	<u> 10 만회</u>	이상				
수 명	전 기 적	AC200V / 1.5	5A, AC240V / 1A (C	$\cos \Phi = 0.7$	7) 10 만회	이상		
			, AC240V / 0.5A (C					
		DC24V / 1A, DC100V / 0.1A (L / R = 7 ms) 10 만회 이상						
응답시간	Off → On	10 ms 이하						
	$0n \rightarrow 0ff$	12 ms 이하						
코먼 방식		8점 / COM	*	0.70				
적합 전선		연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)						
내부 소비	<u>선뉴</u>	360 mA (출력 전점 On 시)						
동작 표시 외부 접속	HFYI	출력 On 시 LED 점등						
최구 접속 		9핀 단자대 커넥터						
29		140g			T. T.	=1 511		
		회로구성 		No.	접점	형 태		
				TB1	20			
	DC5V			TB2	21	TD4		
	Y) 2007		TD1	TB3	22	TB1		
			TB1	TB4	23	твз		
	#부회로 * RY			TB5	24	TB4		
			TB8	TB6	25	TB6		
			TB9			TB7		
				TB7	26	TB8		
			┗—단자대번호	TB8	27	TB9		
				TB9	COM			

7.3.2 XBM-DN16S 트랜지스터 출력부 (싱크 타입)

	형 명			기본 유닛			
규 격	KBM-DN16S						
출력 점수		8 점					
절연 방식		포토 커	플러 절연				
정격 부하 전염	마 -	DC 12 /	′ 24V				
사용 부하 전염	압 범위	DC 10.2	2 ~ 26.4V				
최대 부하 전략	=	일반 출 2A/1COM	:력: 0.2A/1점, 위치 [:] M	결정용 출력	북 (P20, P2 ⁻	1): 0.1A/1 점	
Off시 누설 전	^덴 류	0.1 mA	이하				
최대 돌입 전략	 류	4A / 10) ms 이하				
On 시 최대 전	압 강하	DC 0.4V	/ 이하				
서지 킬러		제너 다	·이오드				
OCULAI.	Off → On	1 ms 0	하				
응답시간	On → Off	1 ms 0	하 (정격 부하,저항	부하)			
코먼방식	•	8점 /	COM				
적합 전선 사(기즈	0.3 mm²					
내부 소비 전략	류	180 mA	(출력 전점 On 시)				
외부공급	전 압	DC12/24	₩ ± 10% (리플 전압	4 Vp−p 0 ō	i ł)		
전원	전 류	25 mA이하 (DC24V 연결시)					
동작 표시		출력 Or	n시 LED 점등				
외부 접속 방수	<u> </u>	20 핀 커넥터					
중량		100g					
	회로	구성		No.	접점	형 태	
				B10	20		
				B09 B08	21 22	-	
→ DC5	5V			B07	23	-	
			B10	B06	24	-	
				B05	25	B10 A10	
		│ <u></u>		B04	26	B09 A09	
내부회로	내부회로 🔻 💆			B03	27	B08 A08 B07 A07	
				B02	DC12	B06 - A06	
		\rightarrow	B03	B01 A10	/24V NC	B05 A05 B04 A04	
			B01.B02	A09	NC	B03 A03	
				A08	NC	B02 - A02 B01 - A01	
			A01, A02	A07	NC		
			DC12/24V	A06	NC]	
			── ── 커넥터번호	A05	NC		
				A04	NC		
				A03	NC	-	
				A02 A01	COM		
				AU I		I	

7.3.3 XBM-DN32S 출력부 (싱크 타입)

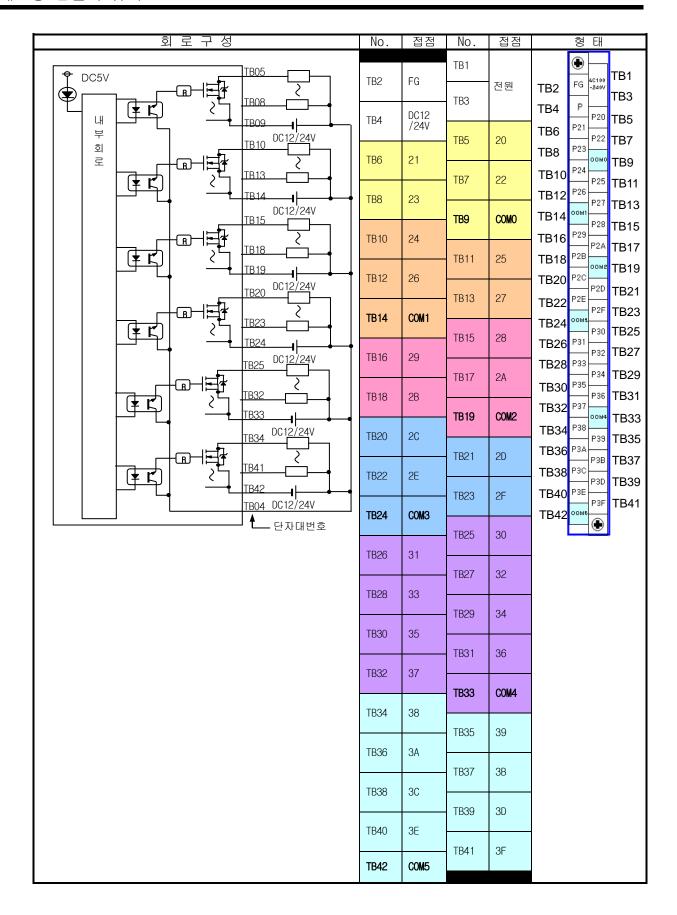

표택 점수 16 점 포토 커플러 절연 전략 시장 모토 커플러 절연 전략 시장 모듈 기를 제공 이 기를 제공 이하 기를 제공 이하 기를 이하 기를 이하 전략 전략 시상 기를 이하 전략 기를 제공 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 16 점 / COM 전략 전선 사이즈 이 기를 이하 (정격 부하, 저형 부하) 고만방식 11 전략 20 등이 (출격 진점 이 시) 전략 전선 사이즈 이 기를 전략 전설 시 VP-p 이하) 전략 전략 전설 방식 20 핀 커넥터 중량 110g 회로 구성 No. 접점 형 태 100 20 등이 21 등이 22 등이 23 등이 24 등이 24 등이 25 등이 24 등이 26 등		형 명			기본 유닛			
출력 점수 16 점 포토 커플리 절연 전략 보이 DC 12 / 24V 사용 부하 전말 범위 DC 10.2 ~ 26.4V 원대 부하 전략 일반 출력 (P20, P21): 0.1A/1점 2A/1COM OFFI AI 무설 전류 0.1 mA 이하 최대 돌입 전류 4A / 10 ms 이하 ON 시 최대 전략 강하 DC 0.4V 이하 서지 갤러 제내 다이모드 11ms 이하 (정격 부하, 저항 부하) 고만방식 16 점 / COM 점함 전선 사이즈 0.3 mm (출력 전점 On AI) 기계 전략 200 mA (출력 전점 On AI) 인부공급 전략 200 mA (출력 전점 On AI) 전략 25 mA OI하 (DC24V 연결AI) 포함 표시 출력 ON AI LED 점등 25 mA OI하 (DC24V 연결AI) 포함 표시 출력 ON AI LED 점등 20 권 기계 단 중앙 110g 전략 20 권 기계 단 20 권 기계 단 중앙 110g 전략 20 권 기계 단 20 권 기계 T 20	규 격							
절면 방식 모든 커플러 절언 정역 부하 전압 DC 12 / 24V 사용 부하 전압 범위 DC 10.2 ~ 26.4V 최대 부하 전류 일반 출력: 0.24/1점, 위치결정용 총력 (P20, P21): 0.1A/1점 2A/1C0M 하해 무한 전류 이 1 ms 이하 이하 이시 최대 전압 강하 DC 0.4V 이하 에게 된다이오드 용답시간 이해 → 011 1 ms 이하 (정역 부하, 저항 부하) 코먼방식 16 점 / C0M 절한 전선 사이즈 0.3 mm 내부 소비 전류 200 m (출력 진정 0n 시) 의무공급 전원 DC12/24V ± 10% (리플 전암 4 Vp~p 이하) 전후 25 mA이하 (DC24V 연결시) 등작 표시 출력 On 시 LED 점등 의무 전용 기업점	<u></u> 출력 점수		16 점					
정역 부하 전압 범위				 플러 절연				
사용 부하 전압 범위		 안						
최대 부하 전류 의								
Off N			일반 출	·력: 0.2A/1점, 위치	결정용 출력	북 (P20, P2	1): 0.1A/1 점	
0n 시 최대 전압 강하	Off시 누설 전	 전류						
### AIN 킬러 제너 다이오드 ST 시간	최대 돌입 전	 류	4A / 10) ms 이하				
응답시간	0n 시 최대 전	 압 강하	DC 0.4\	/ 이하				
응답시간	서지 킬러		제너 디	H이오드				
응답시간		Off → On						
코먼방식 16 점 / COM 전합 전선 사이즈 0.3 m² 내부 소비 전류 200 mA (출력 전점 On Al) 외부공급 전 압 DC12/24V ± 10% (리플 전압 4 Vp-p 이하) 전원 25 mA이하 (DC24V 연결시) 동작 표시 출력 On Al LED 점등 외부 접속 방식 20 핀 커넥터 중량 110g 지어 전점 형태 810 20 808 22 807 23 808 22 807 23 808 22 807 23 808 22 807 23 808 22 807 24 808 22 807 23 808 22 807 23 808 22 807 23 808 22 807 23 808 22 807 23 808 22 807 23 808 22 807 23 808 22 807 24 808	응답시간				부하)			
대부 소비 전류 200 mA (출력 전점 On AI) 외부공급 전 압 DC12/24V ± 10% (리플 전압 4 Vp-p 이하) 전원 전류 25 mA이하 (DC24V 연결시) 동작 표시 출력 On AI LED 점등 외부 접속 방식 20 핀 커넥터 중량 110g 회로 구성 No. 접점 형 태 B10 20 B09 21 B08 22 B07 23 B06 24 B07 23 B06 24 B07 23 B06 24 B07 23 B06 24 B07 23 B07 23 B08 22 B07 24 B08 24 B08 24 B07 24 B08	코먼방식	I						
전원 전압 DC12/24V ± 10% (리플 전압 4 Vp-p 이하) 전원 25 mA이하 (DC24V 연결시) 동작 표시 출력 이 시 LED 점등 외부 접속 방식 20 핀 커넥터 중량 110g 회로 구성 No. 접점 형 태 810 20 809 21 808 22 807 23 806 24 807 23 808 22 807 23 808 24 808 25 807 23 808 26 807 23 808 27 808 28 807 23 808 27 808 28 807 29 808 20 807 29 808 20 808 20 807 20 808 20 807 20 808 20 807 20 808 20 808 20 807 20 808 20 808 20 809 29 809 29 809 29 809 29 809 20 80	적합 전선 사(기즈	0.3 mm²					
전원 전류 25 mAOI하 (DC24V 연결시) 동작 표시 출력 On 시 LED 점등 외부 접속 방식 20 핀 커넥터 중량 1110g	내부 소비 전	 류	200 mA	(출력 전점 On 시)				
전원 전류 25 mA이하 (DC24V 연결시) 동작 표시 출력 On 시 LED 점등 외부 접속 방식 20 핀 커넥터 중량 110g	외부공급	전 압	DC12/24	4V ± 10% (리플 전압	4 Vp-p 0 ō	·		
외부 접속 방식 20 핀 커넥터 경량 110g No. 접점 형 태 B10 20 B09 21 B08 22 B07 23 B06 24 B05 25 B04 26 B03 27 B02 DC12 B08 22 B07 A09 B09 A08 A07 A06 B05 A05 A05 A05 A05 A05 A05 A05 A05 A05 A		전 류	25 mA 0					
중량 110g	동작 표시	•	출력 Or					
회로 구성 No. 접점 형 태 B10 20 B09 21 B08 22 B07 23 B06 24 B05 25 B04 26 B03 27 B02 DC12 B01 /24V A10 28 B07 A08 B07 A08 B07 B08 B08 B08 B07 B09 B09 B08 B07 B09 B09 B08 B07 B09 B09 B08 B07 B09 B09 B08 B07 B09 B09 B08 B07 B09	외부 접속 방송	<u> </u>	20 핀 커넥터					
B10 20 B09 21 B08 22 B07 23 B06 24 B05 25 B04 26 B03 27 B02 DC12 B07 A08 B08 B09 B09 B09 B09 B09 B09 B09 B09 B09 B09 B09 B09 B09 B09 B09 B00 A08 B00 A08 A08 A08 A09 29 B00 A08 A08 A09 A08 A09 A08 A09 A08 A08 A07 2B A00 A08 A00 A09 B00 B00 B00 B00 B00 B00 B00 B00 B00 B00	중량		110g					
B09 21 B08 22 B07 23 B06 24 B05 25 B04 26 B03 27 B02 DC12 B01 /24V A10 28 B05 B03 B08 B07 B09 B08 B09 B09 B09 B09 B09 B09 B09 B09 B09 B08 B07 B09 B08 B07 B01 A10 A09 B08 B07 A07 B08 B07 B08 B07 B09 B08 B07 A07 B08 B07 B08 B07 A08 A08 A09 A08 A08 A09 A08 A08 A07 2B A08 A07 2B A08 A08 A08 A07 A07 A07 A07 A08		회로	구성		No.	접점	형 태	
B08 22 B07 23 B06 24 B05 25 B04 26 B03 27 B02 DC12 B01 /24V A10 28 B05 B08 B07 B08 B09 B08 B09 B08 B07 B08 B09 B08 B07 A10 B09 B08 B07 A10 B09 B08 B07 A10 B09 B08 B07 A09 B08 B07 B08 B07 B08 B07 B08 B07 B09 B08 B07 A09 B08 B07 B08 B07 B08 B07 B08 B07 B08 B07 B08 B07 B08 B07 B08 B07 A08 B08 B07 A09 B08 B07 A08 A07 A08 B07 A08 B07 B07 B07 B07 B07 B07 B07 B07 B07 B07								
B10 B10 B06 24 B05 25 B04 26 B03 27 B02 DC12 B01 A10 28 B01 B02 A07 A06 B05 B04 A07 A08 A07 A07 A08 A07 A08 A07 A08 A07 A07 A08 A07 A08 A							_	
B10 B06 24 B05 25 B04 26 B03 27 B02 DC12 B07 B08 B08 B07 B08 B07 B08 B07 B08 B07 B08 B08 B07 B08 B08 B07 B08 B07 B08 B07 B08 B08 B07 B08 B07 B08 B07 B08 B08 B07 B08 B07 B08 B08 B08 B07 B08 B08 B08 B07 B08 B08 B08 B07 B08 B08 B07 B08 B08 B08 B07 B08 B08 B08 B07 B08	♦ DC						-	
B04 26 B03 27 B08 B07 B08 B07 B06 B05 B04 B05 B05 B04				B10			1	
B03 27 B02 DC12 B01 /24V A03 B01 /24V A10 28 A07 28 A08 2A A07 2B A08 2A A07 2B A08 2C A07 2C A08 2C A07 2C A08 2C A08 2C A07 2C A08 2C A08 2C A09 2C A01 A02 A01 A02 A02 A01 A02					B05			
H무회로			⊣ ⊑ ⋠				11 11	
A03 B01 /24V B07 B08 B07 A06 A05 A07 2B A07 2B A08 2A A05 A00 A05 A00 A00 A00 A00 A00 A00 A0	내부회로	 	7				11 11	
B01.B02 A09 29 A08 2A A07 2B A05 A04 A05 A05 A04 A05 A05 A04 A05 A05 A04 A05				\ _{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}		-1	11 11	
B01.B02 A09 29 A08 2A A03 A02 A01 A04 2E A03 2F A02 COM		_		A00			B05 A05	
A01,A02 A07 2B A06 2C A05 2D A04 2E A03 2F A02 COM				B01.B02			11 11	
A07 2B A07 2B A06 2C A05 2D A04 2E A03 2F A02 COM							B02 - A02	
커넥터번호 A05 2D A04 2E A03 2F A02 COM				 	A07		I I I I I I I I I I I I I I I I I I I	
A04 2E A03 2F A02 COM				DC12/24V			_	
A03 2F A02 COM			<u> </u>	┗━ 커넥터번호			_	
AO2 COM							_	
							_	
					A02	COM		

7.3.4

4	XBC-DR3	2H 출력부									
		형 명			J	미본 유닛	킨				
	규 격			XBC-DR32H(/DC)							
	출력 점수		16 점								
	절연 방식		릴레이	절연							
	정격 부하	전압 / 전류	DC24V 2	A (저항부하) /	' AC220'	V 2A (C	OSΦ =	1), 5A	/COM		
		전압 / 전류	DC5V /			•		• •	•		
	최대 부하			DC125V							
	0ff 시 누설	선전류	0.1 mA	(AC220V, 60 Hz)							
	최대 개폐	빈도	3,600호	1 / 시간							
	서지 킬러		없음								
		기계적	2,000 민	<u></u> 회 이상							
			정격 부	하 전압 / 전류	10 만호	회 이상					
	수 명	T. 31 T.		/ 1.5A, AC240\			= 0.7)	10 만회	이상		
		전 기 적		/ 1A, AC240V /							
				1A, DC100V /							
	0 [[]]	$Off \rightarrow On$	10 ms 0	lōŀ							
	응답시간	On → Off	12 ms 0	l하							
	코먼 방식		4점 /	COM							
	적합 전선	사이즈	연선 0.3	3~0.75 ㎜ (외경	2.8 mm	이하)					
	내부 소비	전류		(출력 전점 On /	(1)						
	동작 표시			시 LED 점등							
	외부 접속	방식		한자대 커넥터 (M3 X 6	나사)					
	중량	= =	600g		N.	T1 T1	L	T TITI		=1 51	1
		회 로	구 싱		No.	접점	No.	접점		형 태	<u> </u>
	Ŷ	¬		TB5			TB1			⊕ —	
					TB2	FG		전원	TB2	FG 40101	TB1
	내 부		-	TB8			TB3		TB4	NC -	TB3
	회		COMO	TB9	TB4	NC				P21 P20	TB5
	로			TB10			TB5	20		P23	TB7
					TB6	21			TB8	— оом	° TB9
		★☞ ╣		\\			TB7	22	TB10	P25	TB11
			7	TB13	TB8	23			TB12	P26 — P21	1
			COM1	TB14 (\(\sigma\)			TB9	COMO	TB14	оом1 Р28	1.5.0
				TB15	TB10	24			TB16	P29 —	11013
		*					TB11	25	TB18		TB17
			7	TB18	TB12	26			TB20		² TB19
			COM2	TB19			TB13	27		H-1 P2L	TB21
				TB20	TB14	COM1			TB22	1 21	TB23
				 			TB15	28	TB24	OOMS .	
				TB23	TB16	29				U	_
]				TB17	2A			
			COM3	TB24	TB18	2B					
				_ 단자대번호			TB19	COM2			
					TB20	2C		00			
							TB21	2D			
					TB22	2E	,521				
					TOLL		TB23	2F			
					TB24	COM3					

7.3.5 XBC-DR64H 출력부

· 형 명		기본 유닛				
규 격		XBC-DR64H(/DC)				
출력 점수		32 점				
절연 방식		릴레이 절연				
정격 부하	전압 / 전류	DC24V 2A (저항부하) / AC220V 2A (COSΦ = 1), 5A/COM				
최소 부하	전압 / 전류	DC5V / 1 mA				
최대 부하	전압	AC250V, DC125V				
Off시 누설	!전류	0.1 mA (AC220V, 60 Hz)				
최대 개폐	빈도	3,600회 / 시간				
서지 킬러		없음				
	기계적	2,000 만회 이상				
		정격 부하 전압 / 전류 10 만회 이상				
수 명	전 기 적	AC200V / 1.5A, AC240V / 1A (COSΦ = 0.7) 10 만회 이상				
		AC200V / 1A, AC240V / 0.5A (COSΦ = 0.35) 10 만회 이상				
		DC24V / 1A, DC100V / 0.1A (L / R = 7 ms) 10 만회 이상				
응답시간	Off → On	10 ms 이하				
	$0n \rightarrow 0ff$	12 ms 이하				
코먼 방식		4 점 / COM (COMO~COM3), 8 점 / COM (COM4~COM5)				
	사이즈	연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)				
내부 소비 전류		720 mA (출력 전점 On 시)				
동작 표시		출력 On 시 LED 점등				
외부 접속	방식	42 점 단자대 커넥터 (M3 X 6 나사)				
중량		900g				



7.3.6 XBC-DN32H 출력부 (싱크 타입)

· · · · · · · · · · · · · · · · · · ·			기본 유	니		
규 격		XBC-DN32H(/DC)				
출력 점수	 16 점	//DC	DIVOLITY	(700)		
절연 방식	포토 커플러 절연					
정격 부하 전압	DC 12 / 24V					
사용 부하 전압 범위	DC 10.2 ~ 26.4V					
되대 버린 꾸근	일반 출력: 0.5A/1점					
최대 부하 전류	위치결정용 출력 (P20), P21,	, P22, f	P23): ().1A/1 a	점, 2A/1COM
Off시 누설 전류	0.1 mA 이하					
최대 돌입 전류	4A / 10 ms 이하					
On 시 최대 전압 강하	DC 0.4V 이하					
서지 킬러	제너 다이오드					
응답시간 Off → On	1 ms 이하	TI =1	ш = 1 \			
On → Off	1 ms 이하 (정격 부하	,서양	무하)			
코먼방식	4 점 / COM 연선 0.3~0.75 mm² (외:	건	mm ∩l≟l	1		
적합 전선 사이즈			IIIII UIOI	J		
내부 소비 전류	400 mA (출력 전점 On					
외부공급 전 압	DC12/24V ± 10% (리플		4 Vp-p	이하)		
전원 전류	25 mA이하 (DC24V 연급	결시)				
동작 표시	출력 On 시 LED 점등					
외부 접속 방식	24점 단자대 커넥터	(M3 X 6 나사)				
중량	500g					
회 로 구	성	No.	접점	No.	접점	형 태
A 5051/	TB05			TB1		● —
DC5V		TB2	FG		전원	TB2 FG 4C100 FB1
	TB08			TB3		TB4 P TB3
	TB09	TB4	DC12 /24V			P20 TB5
부 회	TB10 DC12/24V		/ 241	TB5	20	TB6 P21 TB7
		TB6	21			TB8 P23 TB9
	TB13			TB7	22	TB10 P24
	TB14	TB8	23			P25 TB11
	DC12/24V			TB9	COMO	TB14 00M1 P27 TB13
	TB15	TB10	24			TB16 P29 TB15
	TD10			TB11	25	I P2A TB17
	TB18	TB12	26			TB18 P2B OOM2 TB19
	TB19			TB13	27	TB20 P20 P2D TB21
	TB20 DC12/24V	TB14	COM1			TB22 P2E P2F TB23
	. \ \ \			TB15	28	TB24 OOMS
	1 TB23	TB16	29	1510		•
	TB24			TB17	2A	
	TB04 DC12/24V	TB18	2B	1017	Liv	
	─ ∱ 단자대번호	, _ , _		TB19	COM2	
		TB20	2C	, , , , ,		
				TB21	2D	
		TB22	2E			
				TB23	2F	
		TB24	COM3			

7.3.7 XBC-DN64H 출력부 (싱크 타입)

	형 명	기본 유닛				
규 격		XBC-DN64H(/DC)				
출력 점수		32 점				
절연 방식		포토 커플러 절연				
정격 부하 전요	합	DC 12 / 24V				
사용 부하 전요	압 범위	DC 10.2 ~ 26.4V				
최대 부하 전략	41U	일반 출력: 0.5A/1 점 위치결정용 출력 (P20, P21, P22, P23): 0.1A/1 점, 2A/1COM				
Off시 누설 전	년류 -	0.1 mA 이하				
최대 돌입 전략		4A / 10 ms 0 ō				
On 시 최대 전	압 강하	DC 0.4V 이하				
서지 킬러		제너 다이오드				
응답시간	$Off \rightarrow On$	1 ms 이하				
등답시간	$0n \rightarrow 0ff$	1 ms 이하 (정격 부하,저항 부하)				
코먼방식		4점 / COM (COMO~COM3), 8점 / COM (COM4~COM5)				
적합 전선 사(기즈	연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)				
내부 소비 전형	JID	500 mA (출력 전점 On 시)				
외부공급	전 압	DC12/24V ± 10% (리플 전압 4 Vp-p 이하)				
전원 전 류		25 mA이하 (DC24V 연결시)				
동작 표시		출력 On 시 LED 점등				
외부 접속 방식	<u></u>	42 점 단자대 커넥터 (M3 X 6 나사)				
중량		800g				

7.4 디지털 입력 모듈 규격

7.4.1 8점 DC24V 입력 모듈 (소스/싱크 타입)

· · · · · · · · · · · · · · · · · · ·	DC 입력모듈					
규격	XBE-DC08A					
입력 점수	8 점					
절연 방식	포토 커플러 절연					
정격 입력 전압	DC24V					
정격 입력 전류	약 4 mA					
사용 전압 범위	DC20.4~28.8V (리플률 5%	이내)				
On 전압 / On 전류	DC19V 이상 / 3 mA 이상					
Off 전압 / Off 전류	DC6V 이하 / 1 mA 이하					
입력 저항	약 5.6 kΩ					
응답 시간 Off → On On → Off	1/3/5/10/20/70/100 ms (/	0 파라미	터로 설정) 초기값: 3 ms		
절연 내압	AC560Vrms / 3 사이클 (표	고 2000m)				
절연 저항	절연 저항계로 10 MΩ 이상					
코먼 방식	8 점 / COM					
적합 전선 사이즈	연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)					
내부 소비 전류	30 mA (입력 전점 On 시)					
동작 표시	입력 On 시 LED 점등					
외부 접속 방식	9핀 단자대 커넥터					
중량	52g					
회도	! 구 성	No.	접점	형 태		
		TB1	0			
	⊕ ⊕	TB2	1	TB1		
0 TB1 R	≖토커플러	TB3	2	TB2		
		TB4	3	TB3		
TB8	내부회로	TB5	4	TB5		
TB9		TB6	5	тв6		
DC24V CLTICIUM		TB7	6	TB7		
┗—단자대번호		TB8	7	TB9		
		TB9	COM			

7.4.2 16점 DC24V 입력 모듈 (싱크/소스 타입)

형명	DC 입력모듈				
규격	XBE-DC16A		XBE-DC16B		
입력 점수	16 점				
절연 방식	포토 커플러 절연				
정격 입력 전압	DC24V			DC12/24V	
정격 입력 전류	약 4 mA			약 4/8 mA	
사용 전압 범위	DC20.4~28.8V (리플률 5% 이내)			DC9.5V~30V (리플률 5% 이내)	
On 전압 / On 전류	DC19V 이상 / 3 mA (기상		DC9V 이상 / 3 mA 이상	
Off 전압 / Off 전류	DC6V 이하 / 1 mA 이	하		DC5V 이하 / 1 mA 이하	
입력 저항	약 5.6 kΩ			약 2.7 kΩ	
응답 시간 Off → On On → Off	1/3/5/10/20/70/100	ms (/	0 파리	·미터로 설정) 초기값:3 ms	
절연 내압	AC560Vrms / 3 사이	클 (표]	2000)m)	
절연 저항	절연 저항계로 10 MS	이상			
코먼 방식	16 점 / COM				
적합 전선 사이즈	연선 0.3~0.75 mm² (S	미경 2.8	3 mm ()	ō⊦)	
내부 소비 전류	40 mA (입력 전점 Or	ı 시)			
동작 표시	입력 On 시 LED 점등				
외부 접속 방식	8핀 단자대 커넥터	+ 10	핀 단지	l대 커넥터	
중량	53g				
회로 구성	d	No.	접점	형 태	
でである。 では、 では、 では、 では、 では、 では、 では、 では、	### 내부회로	TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10	0 1 2 3 4 5 6 7 8 9 A B C D E F COM	TB01	

7.4.3 32점 DC24V 입력 모듈 (소스/싱크 타입)

형 명 DC 입력모듈 PDE 2000A									
ਸਵੀ		XBE-DC32A							
입력 점수		32 점							
절연 방식		포토 커플러 절연							
정격 입력 전1	압	DC24V							
정격 입력 전	 류	약 4 mA							
사용 전압 범	 위	DC20.4~28.8V (리를	플률 5%	이내)					
입력 Derating		아래 Derating도	 참조						
On 전압 / On		DC19V 이상 / 3 mA							
Off 전압 / 0		DC6V 이하 / 1 mA							
입력 저항		약 5.6 kΩ	0101						
	Off → On	1 3.0 %							
응답 시간	$0n \rightarrow 0ff$	1/3/5/10/20/70/100) ms (/() 파라미	터로 설	정) 초기	기값:3 ms		
절연 내압	011 -7 011	AC560Vrms / 3 사이	⊒ (□	7 2000m)				
절연 저항		절연 저항계로 10 ¹		200011	17				
코먼 방식		32 점 / COM	WILL VIO						
	01 T								
적합 전선 사		0.3 mm²							
내부 소비 전	TT	50 mA (입력 전점 On 시)							
동작 표시		입력 On 시 LED 점등							
외부 접속 방	<u> </u>	40 핀 커넥터							
중량	=	60g		T. T.		T. T.	=1 cu		
	회로 구성		No.	접점	No.	접점	형 태		
		₩ ₩	B20 B19	00	A20 A19	10 11	-		
0B20	<u> </u>	≣커플러	B18	02	A18	12			
	R	· 	B17	03	A17	13	B20 A20		
1F	₽ (₹ 2		B16	04	A16	14	B19 A19		
A05 B02	5		B15	05	A15	15	B18 A18 A17		
COM			B14	06	A14	16	B16 • • A16		
DC24V	커넥 <u>터</u> 번호	_	B13	07	A13	17	B15 A15 A14		
입력 Derati	ng도		B12	08	A12	18	B13 A13		
100		\Box	B11	09	A11	19	B12		
90	 	 	B10	OA	A10	1A	B10 A10		
On을 70	 	DC28.8V	B09	0B	A09	1B	B09 A09 B08 A08		
(%)	 		B08	OC	A08	1C	B07 A07		
60	 		B07	OD	A07	1D	B06 A06 B05 A05		
50	 		B06	0E	A06	1E	B04 A04		
40 🗀	10 20 30	40 50 55 °C	B05	0F	A05	1F	B03 A03 B02 A02		
	주위온도		B04	NC	A04	NC	B01 H A01		
			B03	NC	A03	NC			
			B02	COM	A02	COM			
			B01	COM	A01	COM			

7.5 디지털 출력 모듈 규격

7.5.1 8점 릴레이 출력 모듈

7	형 명 /	릴레이 출력모듈					
규 격			XBE	-RY08A			
출력 점수 8점							
절연 방식		릴레이 절연					
정격 부하	전압 / 전류	DC24V 2A(スー	l항부하) / AC220V	2A (COSΦ	= 1), 5A/	COM/	
최소 부하	전압 / 전류	DC5V / 1 mA					
최대 부하	전압	AC250V, DC12	25V				
0ff시 누설	a 전류	0.1 mA (AC22	OV, 60 Hz)				
최대 개폐	빈도	3,600회 / 사	J간				
서지 킬러		음					
	기계적	2,000 만회 0	비상				
		정격 부하 전	l압 / 전류 10 만회	이상			
수 명	전 기 적	AC200V / 1.5	5A, AC240V / 1A (C	$OS\Phi = 0.7$	7) 10 만회	이상	
		AC200V / 1A	, AC240V / 0.5A (C	$OS\Phi = 0.3$	35) 10 만호	회 이상	
		DC24V / 1A,	DC100V / 0.1A (L	/R = 7 ms	s) 10 만회	이상	
응답시간	$Off \rightarrow On$	10 ms 이하					
9 a VIZ	$0n \rightarrow 0ff$	12 ms 이하					
코먼 방식		8 점 / COM					
적합 전선	사이즈	연선 0.3~0.7	5 mm² (외경 2.8 mm (이하)			
내부 소비	전류	230 mA (출력	전점 On 시)				
동작 표시		출력 On 시 L	ED 점등				
외부 접속	방식	9핀 단자대 커넥터					
중량		80g					
		회로구성		No.	접점	형 태	
				TB1	0		
	DC5V			TB2	1	TB1	
	<u>*</u>		TB1	TB3	2	TB2	
	내부회로 🔺 🖤			TB4	3	TB3	
			TB8	TB5	4	TB5	
			TB9	TB6	5	TB6	
				TB7	6	TB8	
			┗—단자대번호	TB8	7	. TB9 .	
				TB9	COM		

7.5.2 8점 릴레이 출력 모듈 (독립 접점**)**

	형 명	2	실레이 출력도	 일듈				
규 격		XBE-RY08B						
출력 점수		8 점						
절연 방식		릴레이 절연						
정격 부하	전압 / 전류	DC24V 2A (저항부하) / AC2	220V 2A (COS	$S\Phi = 1$), 2	A/COM			
최소 부하	전압 / 전류	DC5V / 1 mA						
최대 부하	전압	AC250V, DC125V						
Off 시 누설	선류	0.1 mA (AC220V, 60 Hz)						
최대 개폐	빈도	3,600회 / 시간						
서지 킬러		& 요						
	기 계 적	2,000 만회 이상						
		정격 부하 전압 / 전류 10	만회 이상					
수 명	 전 기 적	AC200V / 1.5A, AC240V /	1A (COS Φ =	0.7) 10 만호	회 이상			
	전기적	AC200V / 1A, AC240V / 0.5	$5A (COS\Phi =$	0.35) 10 만	회 이상			
		DC24V / 1A, DC100V / 0.1A	A (L / R = 7	7 ms) 10 만호	회 이상			
응답시간	Off → On	10 ms 이하						
등답시간	On → Off	12 ms 이하	12 ms 이하					
코먼 방식		1 점 / COM						
적합 전선	사이즈	연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)						
내부 소비	전류	230 mA (출력 전점 On 시)						
동작 표시		출력 On 시 LED 점등						
외부 접속	방식	9핀 단자대 커넥터 x 2개						
중량		81g						
	회	로 구성	No.	접점	형 태			
			TB1	0	TB1			
			TB2	COMO	TB1 L			
 💠	DC5V		TB3	1	- TB3 🔼			
)		TB4 TB5	COM1 2	TB4			
		TB1	TB6	COM2	TB5			
			TB7	3	TB6			
		TB2	TB8	COM3	TB8			
			TB9	NC	TB9			
	·회로 >	\geq \mid \geq	TB1	4	TD4 [17			
	71	TB7	TB2	COM4	TB1 Control TB2 Control			
			TB3	5	TB3			
	THE P	TB8	TB4	COM5	TB4			
		135	TB5	6	TB5			
			TB6	COM6	тв6			
		┗—단자대번호	TB7	7	TB7			
			TB8	COM7	TB8 Control			
			TB9	NC				

7.5.3 16점 릴레이 출력 모듈

형 명 릴레이 출력모듈							
규 격		XBE-RY16A					
출력 점수		16 점					
절연 방식		릴레이 절연					
	 전압 / 전류	DC24V 2A (저항부하) / AC	220V 2A (COS	$S\Phi = 1$), S_{Φ}	A/COM		
	전압 / 전류	DC5V / 1 mA	·				
최대 부하	 전압	AC250V, DC125V					
Off 시 누설		0.1 mA (AC220V, 60 Hz)					
최대 개폐	빈도	3,600회 / 시간					
서지 킬러		없음					
	기 계 적	2,000 만회 이상					
		정격 부하 전압 / 전류 10	만회 이상				
수 명	전 기 적	AC200V / 1.5A, AC240V /	1A (COS Φ =	0.7) 10 만호	회 이상		
	전기적	AC200V / 1A, AC240V / 0.	5A (COSΦ =	0.35) 10 만	회 이상		
		DC24V / 1A, DC100V / 0.1	A (L / R = 7	7 ms) 10 만호	회 이상		
응답시간	$Off \rightarrow On$	10 ms 이하					
0 11 11 11	On → Off	12 ms 이하					
코먼 방식		8 점 / COM					
적합 전선	사이즈	연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)					
내부 소비	전류	420 mA (출력 전점 On 시)					
동작 표시		출력 On 시 LED 점등					
외부 접속	방식	9핀 단자대 커넥터 x 2개					
중량		130g					
	회	로 구성	No.	접점	형 태		
			TB1	0	TB1		
			TB2 TB3	2	TB2		
 	DC5V		TB4	3	- TB3		
│)		TB5	4	TB4		
╽ │ ┌─┴		TB1	TB6	5	TB6		
	^{보회로} ★RP S		TB7	6	TB7		
		<u> </u>	TB8	7	TB8		
		TB8	TB9	COM	тв9		
TB9			TB1	8	TB1		
1			TB2	9	TB2		
			TB3	А	TB3		
			TB4	В	TB4		
			TB5	С	TB5		
			TB6	0	TB6		
			TB7	E F	- TB8		
			TB8	COM	- TB9 -		
			100	OOM			

7.5.4 8점 트랜지스터 출력 모듈 (싱크 타입)

	형 명	트랜지스터 출력모듈					
규 격			XBE-TN08A				
출력 점수		8 점					
절연 방식		포토 커플러 절연					
정격 부하 전	압	DC 12 / 24V					
사용 부하 전	압 범위	DC 10.2 ~ 26.4V					
최대 부하 전	류	0.5A / 1점					
Off시 누설	전류	0.1 mA 이하					
최대 돌입 전	류	4A / 10 ms 이하					
0n 시 최대 전	헌압 강하	DC 0.4V 이하					
서지 킬러		제너 다이오드					
응답시간	Off → On	1 ms 이하					
0 日 川 仁	On → Off	1 ms 이하 (정격 부하,저항	부하)				
코먼방식		8 점 / COM					
적합 전선 사	·이즈	연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)					
내부 소비 전	류	40 mA (출력 전점 On 시)					
외부공급	전 압	DC12/24V ± 10% (리플 전압 4 Vp-p 이하)					
전원	전 류	10 mA이하 (DC24V 연결시)					
동작 표시		출력 On 시 LED 점등					
외부 접속 방	식	10 핀 단자대 커넥터					
중량		52g					
	회로	^문 구성	No.	접점	형 태		
			TB01	0			
→ DC5\	/		TB02	1	TB01		
		TB01	TB03	2	TB02		
			TB04	3	TB03		
내부회로 	(<u>* r</u>)	>	TB05	4	TB04		
		TB08	TB06	5	TB06 [-		
		TB09	TB07	6	TB07		
		TB10	TB08	7	TB09		
		DĊ12/24V 단자대번호	TB09	DC12 /24V	ТВ10		
			TB10	COM			

7.5.5 16점 트랜지스터 출력 모듈 (싱크 타입)

ido ido	트랜지	기스터 출력	부모듈			
규 격		XBE-TN16A				
출력 점수	16 점					
절연 방식	포토 커플러 절연					
정격 부하 전압	DC 12 / 24V					
사용 부하 전압 범위	DC 10.2 ~ 26.4V					
최대 부하 전류	0.5A / 1 점, 2A / 1COM					
Off 시 누설 전류	0.1 mA 이하					
최대 돌입 전류	4A / 10 ms 이하					
On 시 최대 전압 강하	DC 0.4V 이하					
서지 킬러	제너 다이오드					
Off → On	1 ms 이하					
응답시간 On \rightarrow Off	1 ms 이하 (정격 부하,저항	부하)				
코먼방식	16 점 / COM					
적합 전선 사이즈	연선 0.3~0.75 m㎡ (외경 2.8	mm 이하)				
내부 소비 전류	60 mA (출력 전점 On 시)					
외부공급 전 압	DC12/24V ± 10% (리플 전압 4 Vp-p 이하)					
전원 전 류	10 mA이하 (DC24V 연결시)					
동작 표시	출력 On 시 LED 점등					
외부 접속 방식	8핀 단자대 커넥터 + 10핀 단자대 커넥터					
중량	54g					
회로	구성	No.	접점	형 태		
		TB01	0	TB01		
		TB02	1	TB02		
♦ DC5V		TB03 TB04	2	твоз		
	TB01	TB05	4	TB04		
	→	TB06	5	TB05 TB06		
내부회로 및 [**		TB07	6	TB07		
	TB08	TB08	7	твов		
		TB01	8	TB01		
	TB09	TB02	9	TB02		
	TB10	TB03 TB04	A B	TB03		
	TB05	С	TB04			
		TB06	D	TB05		
		TB07	E	TB07		
		TB08	F	твов		
		TB09	DC12 /24V	TB09		
		TB10	COM	TB10		

7.5.6 32점 트랜지스터 출력 모듈 (싱크 타입)

	형 명	<u> </u>	트랜지:	스터 출	력모듈				
규격		XBE-TN32A							
출력 점수		32 점							
절연 방식		포토 커플러 절연							
정격 부하 전압		DC 12 / 24V							
사용 부하 전압 범위		DC 10.2 ~ 26.4V							
최대 부하 전류		0.2A / 1점, 2A / 1COM							
Off 시 누설 전류		0.1 mA 이하							
최대 돌입 전류		0.7A / 10 ms 0 ō}							
On 시 최대 전압	 강하	DC 0.4V 015							
서지 킬러	0 01								
지시 일니	011 . 0-	제너 다이오드							
응답 시간	0ff → 0n	1 ms 이하	TI = 1	4 =1 \					
	On → Off	1 ms 이하 (정격 부하,	서양 두	- ot)					
코먼 방식		32 점 / COM							
적합 전선 사이즈		0.3 mm²							
내부 소비 전류	T	120 mA (출력 전점 On 시)							
외부 공급	전 압	DC12/24V ± 10% (리플 전압 4 Vp-p 이하)							
전원	전 류	20 mA이하 (DC24V 연결시)							
동작 표시		출력 On 시 LED 점등							
외부 접속 방식		40 핀 커넥터							
중량		60g							
	회로 구성		No.	접점	No.	접점		형 태	
			B20	00	A20	10			
			B19	01	A19	11			٦.
→ DC5V			B18	02	A18	12	B20	먠	A20
	_	B20	B17	03	A17	13	B19 B18	יָּיווּ	A19 A18
			B16 B15	04	A16 A15	14 15	B17	II::	A17
▋▎ ▕ ▔▔			B14	05 06	A14	16	B16 B15		A16 A15
]	B13	07	A13	17	B14		A14
		A05	B12	08	A12	18	B13 B12	::	A13 A12
			B11	09	A11	19	B11		A11
		B01.B02	B10	0A	A10	1A	B10 B09	::	A10 A09
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B09	0B	A09	1B	В08	::	A08
		A01, A02	B08	00	A08	1C	B07 B06		A07 A06
		DC12/24V	B07	OD	A07	1D	B05		A05
		┗━ 커넥터번호	B06	0E	A06	1E	B04 B03		A04 A03
			B05	0F	A05	1F	B02	lliti	A02
			B04	NC	A04	NC	B01	Щ	A01
			B03	NC	A03	NC			4
			B02	DC12/	A02	COM			
			B01	24V	A01	O O IVI			

7.5.7 8 점 트랜지스터 출력 모듈 (소스 타입)

	형 명	트랜기	지스터 출 ^력	격모듈			
규 격		XBE-TP08A					
출력 점수		8 점					
절연 방식		포토 커플러 절연					
정격 부하 전압		DC 12 / 24V					
사용 부하 전압 범위		DC 10.2 ~ 26.4V					
최대 부하 전류		0.5A / 1 점					
Off 시 ^노	r설 전류	0.1 mA 이하					
최대 돌	입 전류	4A / 10 ms 이하					
On 시 최다	세 전압 강하	DC 0.4V 이하					
서지	킬러	제너 다이오드					
응답시간	$Off \rightarrow On$	1 ms 이하					
	$On \rightarrow Off$	1 ms 이하 (정격 부하,저항 박	부하)				
코먼방식		8 점 / COM					
적합 전선 사이즈		연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)					
내부 소	ː비 전류 -	40 mA (출력 전점 On 시)					
외부공급	전 압	DC12/24V ± 10% (리플 전압 4 Vp-p 이하)					
전원 	전 류	10 mA이하 (DC24V 연결시)					
	五 八	출력 On 시 LED 점등					
외부 접속 방식		10 핀 단자대 커넥터					
중량		30g	T	T1 T1	=1 511		
	회도	^{문구성}	No.	접점	형 태		
			TB01	0			
DC5	V	TB09	TB02	1	TB01		
		<u> </u>	TB03	2	TB02		
		TB10	TB04	3	TB03		
내부회로		TB08	TB05	4	TB04		
	_		TB06	5	TB06		
	L_R-	TB01	TB07	6	TB07		
			TB08	7	TB08		
		 _{단자대번호}	TB09	СОМ	TB10		
		근지 내 근모	TB10	0V			
			1510				

7.5.8 16점 트랜지스터 출력 모듈 (소스 타입)

igo ego		트랜지술	스터 출력도	<u></u> 듇			
규 격		XBE-TP16A					
		16 점					
 절연 방식		포토 커플러 절연					
정격 부하 전압		DC 12 / 24V					
사용 부하 전압 범위		DC 10.2 ~ 26.4V					
최대 부하 전류		0.5A / 1 점, 2A / 1COM					
Off 시 누설 전류		0.1 mA 이하					
최대 돌입 전류		4A / 10 ms 이하					
On 시 최대	전압 강하	DC 0.4V 0 ō					
서지	 킬러	제너 다이오드					
0.51	$Off \to On$	1 ms 이하 1 ms 이하 (정격 부하,저항 부하)					
응답 시간	$On \rightarrow Off$						
코먼	 방식	16 점 / COM					
적합 전선 사이즈		연선 0.3~0.75 mm² (외경 2.8 mm 이하)					
내부 소비 전류		60 mA (출력 전점 On 시)					
외부 공급 전 압		DC12/24V ± 10% (리플 전압 4 Vp-p 이하)					
전원	전 류	10 mA이하 (DC24V 연결시)					
동작	표시	출력 On 시 LED 점등					
외부 접	속 방식	8 핀 단자대 커넥터 + 10 핀 단자대 커넥터					
중	 량	40g					
		- E구성	No.	접점	형 태		
			TB01	0	TB01		
			TB02	1	TB01 TB02		
DC5V			TB03	2	TB03		
		TB09	TB04	3	TB04		
		DC12/24V TB10	TB05	4	TB05		
 내부회로			TB06	5	TB06		
		TB08	TB07	6	TB07		
	-		TB08	7	TB08		
			TB01	8	TB01		
			TB02	9	TB02		
		TB01	TB03	А	TB03		
			TB04	В	TB04		
			TB05	С	TB05		
			TB06	D	TB06		
			TB07	Е	TB07		
			TB08	F	твов		
			TB09	COM	TB09		
			TB10	0V	TB10		

7.5.9 32 점 트랜지스터 출력 모듈 (소스 타입)

	형 명		트랜지	스터 출	력모듈		
규격		XBE-TP32A					
출력	점수	32 점					
절 연	방식	포토 커플러 절연					
정격 부	하 전압	DC 12 / 24V					
사용 부하	전압 범위	DC 10.2 ~ 26.4V					
최대 부	하 전류	0.2A / 1 점, 2A / 1CON	Л				
Off 시 누	·설 전류	0.1 mA 이하					
최대 돌	입 전류	4A/10 ms 이하					
On 시 최대	전압 강하	DC 0.4V 이하					
서지	킬러	제너 다이오드					
0.51.11.71	$Off \to On$	1 ms 이하					
응답시간	$On \rightarrow Off$	1 ms 이하 (정격 부하	,저항 두	르하)			
코먼	방식	32 점 / COM					
적합 전선	선 사이즈	0.3 mm²					
내부소!	비전류	120 ™ (출력 전점 O	n 시)				
외부공급	전 압	DC12/24V ± 10% (리용	플 전압	4 Vp-p	이하)		
전원	전 류	20 mA이하 (DC24V 연	[결시)				
동작	표시	출력 On 시 LED 점등					
외부 접:	속 방식	40 핀 커넥터					
중	량	60g					
	회로 구성		No.	접점	No.	접점	형 태
			B20	00	A20	10	
			B19	01	A19	11	
→ DC5V			B18 B17	02 03	A18 A17	12 13	B20 A20
	_	B02,B01	B16	03	A17	14	B19 A19 A18
		DC12/24V	B15	05	A15	15	B17
	¬	A02, A01	B14	06	A14	16	B16 A16 A15
내부회로	(* <u>[</u>	A05	B13	07	A13	17	B14 u u A14
			B12	08	A12	18	B13
			B11	09	A11	19	B11 A11
			B10	0A	A10	1A	B10 A10 B09 A09
			B09	0B	A09	1B	B08 A08
	L	B20	B08	0C	A08	1C	B07 A07 B06 A06
			B07	0D	A07	1D	B05 A05
		_ 커넥터번호	B06	0E	A06	1E	B04 • A04 B03 • A03
			B05	0F	A05	1F	B02 A02
			B04	NC	A04	NC	B01 H A01
			B03	NC	A03	NC	
			B02	СОМ	A02	0V	
			B01	COIVI	A01		

7.6 혼합 모듈 디지털 입력 규격

7.6.1 8점 DC24V 입력부 (소스/싱크 타입)

r 형 영		DC 입력	모듈		
규격	XBE-DR16A				
입력 점수	8 점				
절연 방식	포토 커플러 절연				
정격 입력 전압	DC24V				
정격 입력 전류	약 4 mA				
사용 전압 범위	DC20.4~28.8V (리플율 5%	이내)			
On 전압 / On 전류	DC19V 이상 /3 째 이상				
Off 전압 / Off 전류	DC6V 이하 / 1 mA 이하				
입력 저항	약 5.6 kΩ				
응답 시간 Off → On On → Off	1/3/5/10/20/70/100 ms(CPU	파라이터	로 설정)	초기값 : 3 ms	
절연 내압	AC560Vrms / 3Cycle (표고	2000m)			
절연 저항	절연 저항계로 10 № 이상				
코먼 방식	8 점 / COM				
적합 전선 Size	연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)				
내부 소비 전류	280 ^{mA} (입출력 전점 On 시)				
동작 표시	입력 On 시 LED 점등				
외부 접속 방식	9핀 단자대 커넥터				
중량	81g				
회로	근 구 성	No.	접점	형 태	
		TB1	0		
	⊕ ↔	TB2	1	TB1	
0 TB1 R	≖토커플러	TB3	2	TB2	
		TB4	3	TB3	
TB8	'-	TB5	4	TB5	
TB9 COM		TB6	5	тв6	
DC24V		TB7	6	TB7	
┗──단자대번호 ┃		TB8	7	TB9	
		TB9	СОМ		

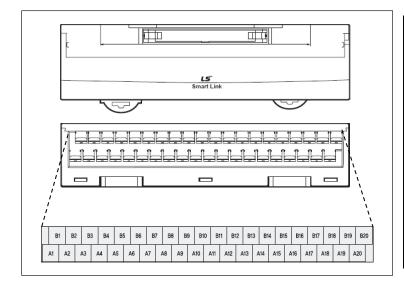
7.7 혼합 모듈 디지털 출력 규격

7.7.1 8점 릴레이 출력부

- 51	형 명	릴레(이 출력모듈	<u> </u>			
규 격		XBE-DR16A					
출력	역 점수	8 점					
절인	년 방식	릴레이 절연					
정격 부하	전압 / 전류	DC24V 2A(저항부하) / AC220V	ZA(COSΨ	= 1), 5A/C	ОМ		
최소 부하	전압 / 전류	DC5V / 1 mA					
최대 박	부하 전압	AC250V, DC125V					
Off 시	누설전류	0.1 mA (AC220V, 60 Hz)					
최대	개폐 빈도	3,600 회 / 시간					
서지] 킬러	없음					
	기계적	2,000 만회 이상					
		정격 부하 전압 / 전류 10 만호	나 이상				
수 명	전 기 적	AC200V / 1.5A, AC240V / 1A (0	$COS\Psi = 0.7$	7) 10 만회	이상		
	[전기국	AC200V / 1A, AC240V / 0.5A (0	$COS\Psi = 0.3$	85) 10 만회	이상		
		DC24V / 1A, DC100V / 0.1A (L	/R = 7 ms	10 만회 이	상		
응답시간	$Off \rightarrow On$	10 ms 이하					
등답시간	$On \rightarrow Off$	12 ms 이하					
코민	선 방식	8 점 / COM					
적합 경	전선 Size	연선 0.3~0.75 m㎡ (외경 2.8 mm 이하)					
내부 :	소비 전류	280 mA (입출력 전점 On 시)					
동작	작 표시	출력 On 시 LED 점등					
외부 집	접속 방식	9 핀 단자대 커넥터					
=	중량	81g					
		회로구성	No.	접점	형 태		
			TB1	0			
	OC5V		TB2	1			
	•	T04	TB3	2	TB1		
	#부회로 🔭	TB1	TB4	3	TB3		
	11.43.7	TB8	TB5	4	TB4		
		TB9	TB6	5	TB6		
		TLTICIIHI =	TB7	6	тва 📆		
		┗단자대번호	TB8	7	TB9		
			TB9	СОМ			

7.8 스마트 링크 보드를 이용한 입출력 결선

7.8.1 스마트 링크 보드

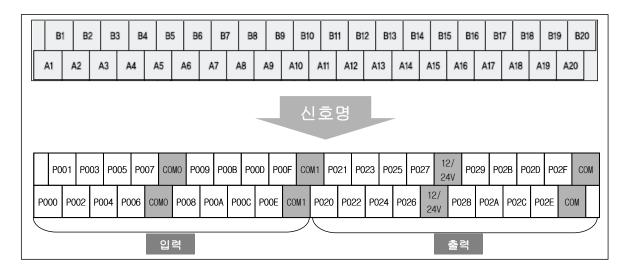

XGB PLC 를 사용할 때 입출력 커넥터와 스마트 링크 보드를 접속함으로써 손쉽게 결선이 가능합니다. XGB 각 제품별로 사용 가능한 스마트 링크 보드와 입출력 케이블은 아래와 같습니다.

XGB		스마트 링크		접속케이블				
구분	제품명	제품명	핀수	제품명	길이	내용		
기본유닛	XBM-DN32S	SLP-T40P		CLT OT101 VDM	1 m	기본유닛 접속용		
기존유닷 	XBM-DN16S	SLP-140P	40	SLT-CT101-XBM	1m	(20Pin + 20Pin)		
	XBE-DC32A	SLP-T40P	40	SLT-CT101-XBE	1m	· 증설모듈 접속용 (40Pin)		
증설모듈	5	SLP-T40P	40	SLT-CT101-XBE	1m	등실도할 접속용 (40°III)		
	XBE-TN32A	SLP-RY4A	40	SLP-CT101-XBE	1m	증설모듈 접속용 (40Pin) 릴레이 내장 SLP 타입 전용		

이 장에서는 SLP-T40P 와 SLT-CT101-XBM 을 이용하여 XGB 기본유닛과 접속하는 경우의 결선에 대하여 설명합니다.

1) SLT-T40P 단자배열

SLP-T40P의 단자 배열 및 규격은 아래 그림과 같습니다.

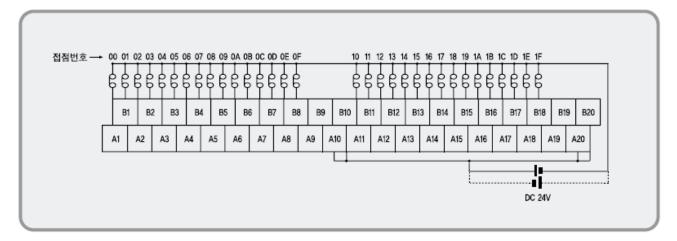


항목	규격
정격전압	AC/DC 125[V]
정격전류	최대 1[A]
내전압	600V 1분
절연저항	100 MΩ (DC500V)
전선규격	1.25[㎜] 이하
단자/스크루	M3 X 8L
토크	6.2 kgf.cm 이상
단자재질	PBT, UL94V-0
중량	186g

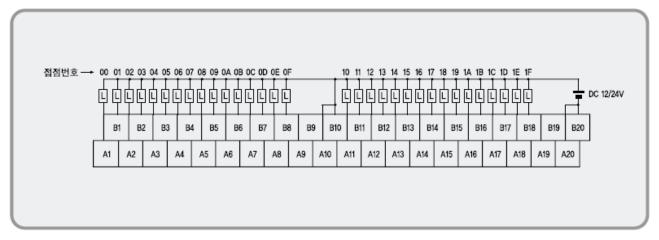
2) SLT-T40P 와 XGB 기본유닛의 결선 SLP-T40P 와 SLT-CT101-XBM을 이용한 XGB 기본유닛의 결선은 아래와 같습니다.

이 때 XGB의 입출력 신호와 스마트 링크 보드의 단자번호의 관계는 아래 그림과 같습니다. 아래 그림은 연결 케이블로 SLT-CT101-XBM 을 사용한 경우의 신호 할당입니다. 만일 직접 연결 케이블을 만드는 경우는 아래 신호와 같이 연결될 수 있도록 케이블 결선에 주의하시기 바랍니다.

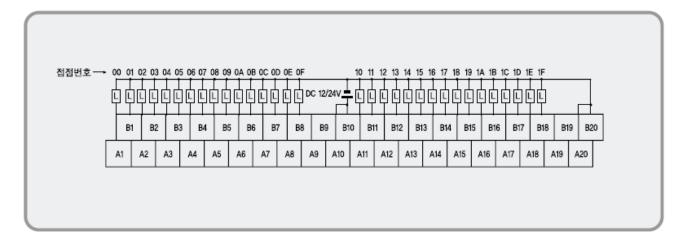
3) SLT-T40P 와 XGB 기본유닛의 결선 SLP-T40P 와 SLT-CT101-XBE 를 이용한 XGB 증설모듈의 결선은 아래와 같습니다.

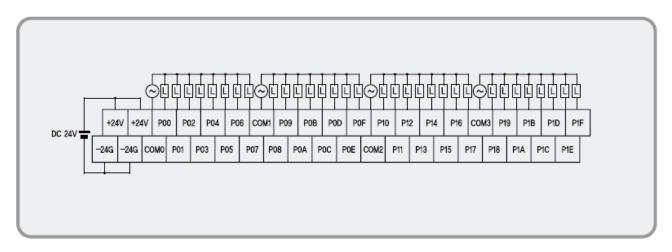


이 때 XGB의 입출력 신호와 스마트 링크 보드의 단자번호의 관계는 아래 그림과 같습니다. 아래 그림은 연결 케이블로 SLT-CT101-XBE 을 사용한 경우의 신호 할당입니다. 만일 직접 연결 케이블을 만드는 경우는 아래 신호와 같이 연결될 수 있도록 케이블 결선에 주의하시기 바랍니다.



	PLC						단자대 명판인쇄		
Pin	번호	XBE-	DC32A	XBE-1	ΓN32A	XBE-TP32A		단자대 보드 (SLP-T40P)	
B20	A20	00	10	00	10	00	10	A1	A11
B19	A19	01	11	01	11	01	11	B1	B11
B18	A18	02	12	02	12	02	12	A2	A12
B17	A17	03	13	03	13	03	13	B2	B12
B16	A16	04	14	04	14	04	14	A3	A13
B15	A15	05	15	05	15	05	15	В3	B13
B14	A14	06	16	06	16	06	16	A4	A14
B13	A13	07	17	07	17	07	17	B4	B14
B12	A12	08	18	08	18	08	18	A5	A15
B11	A11	09	19	09	19	09	19	B5	B15
B10	A10	0A	1A	0A	1A	0A	1A	A6	A16
B09	A09	0B	1B	0B	1B	0B	1B	В6	B16
B09	A08	0C	1C	0C	1C	0C	1C	A7	A17
B07	A07	0D	1D	0D	1D	0D	1D	B7	B17
B06	A06	0E	1E	0E	1E	0E	1E	A8	A18
B05	A05	0F	1F	0F	1F	0F	1F	B8	B18
B04	A04	NC	NC	NC	NC	NC	NC	A9	A19
B03	A03	NC	NC	NC	NC	NC	NC	В9	B19
B02	A02	СОМ	СОМ	DC10/04V	СОМ	СОМ	DCOV	A10	A20
B01	A01	COM	COM	DC12/24V	COM	COM	DC0V	B10	B20


- 3) 입출력 배선
- XBE-DC32A (SLP-T40P)


- XBE-TN32A (SLP-T40P)

- XBE-TP32A (SLP-T40P)

- XBE-TN32A (SLP-RY4A)

제8장 고속 카운터 기능

XGB PLC의 기본 유닛에는 고속 카운터 기능을 내장하고 있습니다.

본 장은 고속 카운터 기능에 대한 규격 및 사용 방법 등에 대하여 설명합니다.

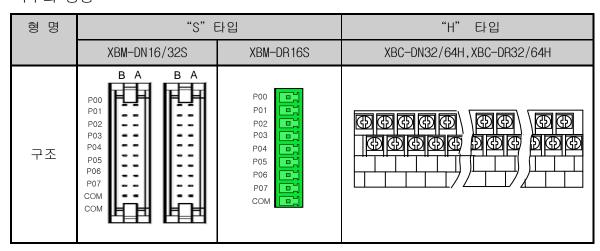
8.1 고속 카운터 규격

XGB 기본 유닛에 내장되어 있는 고속 카운터 기능의 규격, 설치 방법, 각종 기능의 사용 방법과 프로그래밍 및 외부 기기와의 배선 등에 관하여 설명합니다.

8.1.1 성능 규격

(1) 성능 규격

s		규 격				
항	목	"S" 타입	"H" 타입			
710 =	신호	A상, B상				
카운트 입력 신호	입력 방식	전압 입력(오픈 컬렉터)				
	신호 레벨	DC 24V				
최대 계	∥수 속도	20kpps	100kpps			
	1상	4 (20kpps 4채널)	8 (100kpps 4채널 / 20kpps 4채널)			
채널 수	2상	2체배일 경우: 10kpps 2	(50kpps 2채널/10kpps 2채널)			
	20	² 4체배일 경우: 8kpps	(50kpps 2채널/ 8kpps 2채널)			
계수	범위	Signed 32 Bit (-2,147,483,648 ~	2,147,483,647)			
	른 형태 .램 설정)	리니어 카운트 (32비트 범위 초과 시 캐리/바로우 발생) 카운트 값 최대/최소값 표시				
	.0 20/	링 카운트 (설정 범위 내에서 반복 카운트)				
		1상 입력				
	모드 .램 설정)	2상 입력				
(=±	. B 20)	CW/CCW 입력				
신호	형태	전압				
	1상 입력	B상 입력으로 가산/감산 동작 지정				
H /D	in 10	프로그램으로 가산/감산 동작 지정				
Up/Down 지정	2상 입력	위상 차에 의해 자동 지정				
NO.	CW/CCW	A상 입력: 가산 동작				
	GW/ GGW	B상 입력: 감산 동작				
	1상 입력	1체배				
체배 기능	2상 입력	4체 배				
	CW/CCW	1체배				
	신호	프리셋 지령 입력				
제어 입력	신호 레벨	DC 24V 입력 타입				
	신호 형태	전압				


항 목		ਜ	격		
		"S" 타입	"H" 타입		
	출력 점수	1점/채널(1채널 당) : 기본 유닛의 출력 접점 사용	2점/채널(1채널 당) : 기본 유닛의 출력 접점 사용		
외부 출력	종류	단일 비교(>, >=, =, =<, <) 또는 구간 비교 출력 (포함 혹은 제외) 선택 (프로그램 설정)			
	출력 형태	릴레이, 오픈 컬렉터 출력(Sink)			
카운트	Enable	프로그램으로 지정(Enable 상태에서만 카운트함)			
프리셋(Preset) 기능		입력 접점 또는 프로그램으로 지정			
부 가 기 능 (프로그램 설정)		래치 카운터 단위 시간(시간 설정 값: 1~60,000ms)당 카운트 수 측정			

(2) 카운터 / 프리셋(Preset) 입력 규격

항 목	규 격
입력 전압	24V DC (20.4V ~ 28.8V)
입력 전류	4mA
On 보증 전압(최소)	20.4V
Off 보증 전압(최대)	6V

8.1.2 각부의 명칭

(1) 각부의 명칭

(a) "S" 타입

단자	명	칭	용 도		
번호	1 상	2 상	1 상	2 상	
P000	ChO 카운터 입력	ChO A 상 입력	카운터 입력단자	A 상 입력단자	
P001	Ch1 카운터 입력	ChO B 상 입력	카운터 입력단자	B 상 입력단자	
P002	Ch2 카운터 입력	Ch2 A 상 입력	카운터 입력단자	A 상 입력단자	
P003	Ch3 카운터 입력	Ch2 B 상 입력	카운터 입력단자	B 상 입력단자	
P004	ChO 프리셋 24V	ChO 프리셋 24V	프리셋 입력단자	프리셋 입력단자	
P005	Ch1 프리셋 24V	_	프리셋 입력단자	미사용	
P006	Ch2 프리셋 24V	Ch2 프리셋 24V	프리셋 입력단자	프리셋 입력단자	
P007	Ch3 프리셋 24V	_	프리셋 입력단자	미사용	
COMO	입력 코먼	입력 코먼	코먼 단자	코먼 단자	

(b) "H" 타입

단자	명	칭	용 도		
번호	1 상	2 상	1 상	2 상	
P000	Ch0 카운터 입력	ChO A 상 입력	카운터 입력단자	A 상 입력단자	
P001	Ch1 카운터 입력	ChO B 상 입력	카운터 입력단자	B 상 입력단자	
P002	Ch2 카운터 입력	Ch2 A 상 입력	카운터 입력단자	A 상 입력단자	
P003	Ch3 카운터 입력	Ch2 B 상 입력	카운터 입력단자	B 상 입력단자	
P004	Ch4 카운터 입력	Ch4 A 상 입력	카운터 입력단자	A 상 입력단자	
P005	Ch5 카운터 입력	Ch4 B 상 입력	카운터 입력단자	B 상 입력단자	
P006	Ch6 카운터 입력	Ch6 A 상 입력	카운터 입력단자	A 상 입력단자	
P007	Ch7 카운터 입력	Ch6 B 상 입력	카운터 입력단자	B 상 입력단자	
P008	Ch0 프리셋 24V	Ch0 프리셋 24V	프리셋 입력단자	프리셋 입력단자	
P009	Ch1 프리셋 24V	-	프리셋 입력단자	미사용	
P00A	Ch2 프리셋 24V	Ch2 프리셋 24V	프리셋 입력단자	프리셋 입력단자	
P00B	Ch3 프리셋 24V	-	프리셋 입력단자	미사용	
POOC	Ch4 프리셋 24V	Ch4 프리셋 24V	프리셋 입력단자	프리셋 입력단자	
POOD	Ch5 프리셋 24V	_	프리셋 입력단자	미사용	
P00E	Ch6 프리셋 24V	Ch6 프리셋 24V	프리셋 입력단자	프리셋 입력단자	
P00F	Ch7 프리셋 24V	-	프리셋 입력단자	미사용	
COMO	입력 코먼	입력 코먼	코먼 단자	코먼 단자	

(2) 외부기기와의 접속 방법

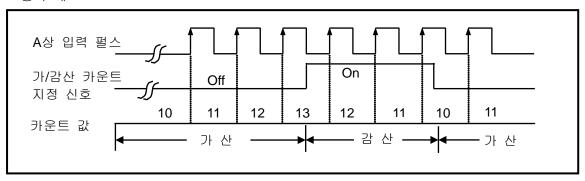
아래표는 외부기기와의 접속(Interface) 일람표입니다.

(a) "S" 타입

입/출력	II H = 2	단자	신 호 명 칭		드자	입력보증
구분	내 부 회 로	번호	1 상	2 상	동작	전압
	, 3.3 kΩ	P0000	채널 0	채널 0	0n	20.4~28.8V
	4 * * * * * * * * * *	1 0000	펄스입력	A 상입력	Off	6V 이하
		P0001	채널 1	채널 0	0n	20.4~28.8V
	3.3 kΩ	F0001	펄스입력	B 상입력	Off	6V 이하
		P0002	채널 2	채널 2	0n	20.4~28.8V
	3.3 kΩ	F0002	펄스입력	A 상입력	Off	6V 이하
	3.3 kΩ	P0003	채널 3	채널 2	On	20.4~28.8V
			펄스입력	B 상입력	Off	6V 이하
입 력		P0004	채널 0	채널 0 프리셋입력	0n	20.4~28.8V
	5.6 kΩ	F000 4	프리셋입력		Off	6V 이하
		P0005	채널 1		0n	20.4~28.8V
	5.6 kΩ	F0003	프리셋입력	_	Off	6V 이하
		P0006	채널 2	채널 2	0n	20.4~28.8V
	5.6 kΩ	1 0000	프리셋입력	프리셋입력	Off	6V 이하
		P0007	채널 3		0n	20.4~28.8V
	5.6 kΩ	1 0007	프리셋입력		Off	6V 이하
		COMO	COM(입	력 공통)		

(b) "H" 타입

입/출력		단자	신 호	명 칭		입력보증
구분	내 부 회 로	번호	1 상	2 상	동작	전압
		D0000	채널 0	채널 0	0n	20.4~28.8V
	2.7 kΩ	P0000	펄스입력	A 상입력	Off	6V 이하
		D0001	채널 1	채널 0	0n	20.4~28.8V
	4 ★ ♦ 2.7 kΩ	P0001	펄스입력	B 상입력	Off	6V 이하
		P0002	채널 2	채널 2	0n	20.4~28.8V
	2.7 kΩ	P0002	펄스입력	A 상입력	Off	6V 이하
		DOOO	채널 3	채널 2	0n	20.4~28.8V
	4 ★ 2 .7 kΩ	P0003	펄스입력	B 상입력	Off	6V 이하
		P0004	채널 4	채널 4	0n	20.4~28.8V
	4 ★ ₹ 2.7 kΩ	FUUU4	펄스입력	A 상입력	Off	6V 이하
		P0005	채널 5	채널 4	0n	20.4~28.8V
	2.7 kΩ	FUUUS	펄스입력	B 상입력	Off	6V 이하
		P0006	채널 6	채널 6	0n	20.4~28.8V
	∠ ★ \$ 2.7 kΩ	F0000	펄스입력	A 상입력	Off	6V 이하
	0.710	P0007	채널 7	채널 6	0n	20.4~28.8V
	2.7 kΩ	F0007	펄스입력	B상입력	Off	6V 이하
입 력		P0008	채널 0	채널 0	0n	20.4~28.8V
	5.6 kΩ		프리셋입력	프리셋입력	Off	6V 이하
		P0009	채널 1	_	0n	20.4~28.8V
	5.6 kΩ	1 0003	프리셋입력		Off	6V 이하
		P000A	채널 2	채널 2	0n	20.4~28.8V
	5.6 kΩ	1 000A	프리셋입력	프리셋입력	Off	6V 이하
		P000B	채널 3	_	0n	20.4~28.8V
	5.6 kΩ	1 0000	프리셋입력		Off	6V 이하
		P000C	채널 4	채널 4	0n	20.4~28.8V
	5.6 kΩ	1 0000	프리셋입력	프리셋입력	Off	6V 이하
		P000D	채널 5	_	0n	20.4~28.8V
	5.6 kΩ	1 0000	프리셋입력		Off	6V 이하
		P000E	채널 6	채널 6	0n	20.4~28.8V
	5.6 kΩ	1 000L	프리셋입력	프리셋입력	Off	6V 이하
	5.6 kΩ	P000F	채널 7	_	0n	20.4~28.8V
	7 ¥ \$ 5.0 K22	1 0001	프리셋입력		Off	6V 이하
		COMO	COM(입	력 공통)		

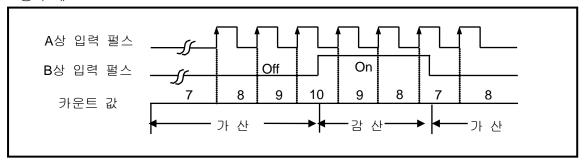

8.1.3 "S" 타입 기능

- (1) 카운터 모드
- (a) 고속 카운터 모듈은 CPU 모듈의 카운터 명령(CTU, CTD, CTUD 등)으로 처리할 수 없는 고속 펄스를 바이너리 32 비트(-2,147,483,648 ~ 2,147,483,647)까지 카운트 할 수 있습니다.
- (b) 입력은 1상 입력과 2상 입력 그리고 시계/반시계(CW/ CCW)방향 입력이 있습니다.
- (c) 카운트 가/감산 방법 지정은 아래와 같습니다.
 - 1) 1상 입력일 경우 : a) 프로그램 지정에 의한 가/감산 카운트 동작
 - b) B상 입력 신호에 의한 가/감산 카운트 동작
 - 2) 2상 입력일 때: A상과 B상의 위상차에 의한 지정
 - 3) CW/CCW 입력일 때: A상 입력 시 B상이 Low이면 가산, B상 입력 시 A상이 Low이면 감산 동작을 합니다.
- (d) 부가 기능으로 아래와 같은 기능을 제공합니다.
 - 1) 래치 카운터
 - 2) 단위 시간당 입력 회전 수 카운트 기능
- (e) 입력 모드
 - 1) 1상 카운트 모드
 - a) 프로그램 지정에 의한 가/감산 카운트 동작
 - 1상 1입력 1체배

A상 입력 펄스가 상승시에 카운트를 하며 가/감산 여부는 프로그램에 의해 결정됩니다.

가/감산 구분	A상 입력 펄스 상승	A상 입력 펄스 하강
가/감산 카운트 지정 신호 Off	가산 카운트	_
가/감산 카운트 지정 신호 On	감산 카운트	_

• 동작 예

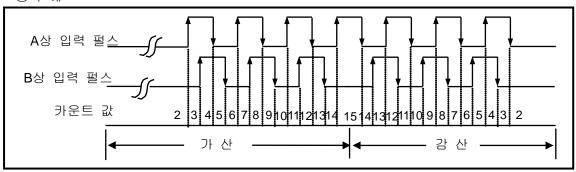


- b) B상 입력 신호에 의한 가/감산 카운트 동작
- •1상 2입력 1체배

A상 입력 펄스가 상승시에 카운트를 하며 가/감산 여부는 B상에 의해 결정 됩니다.

가/감산 구분	A상 입력 펄스 상승	A상 입력 펄스 하강
B상 입력 펄스 Off	가산 카운트	-
B상 입력 펄스 On	감산 카운트	-

• 동작 예

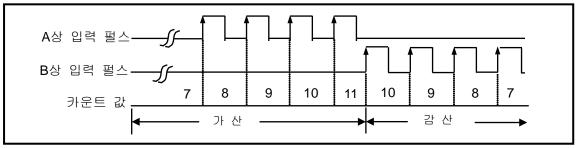


2) 2상 카운트 모드

a) 2상 4체배 동작 모드

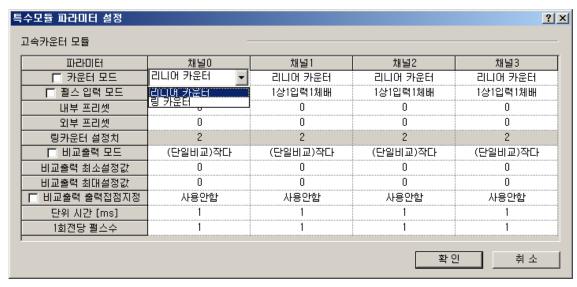
A상 입력 펄스의 상승/하강 시와 B상 입력 펄스의 상승/하강 시 카운트동작을 하며, A상이 B상보다 위상이 앞서서 입력 될때는 가산 동작을 하며, B상이 A상보다 위상이 앞서서 입력 될때는 감산 동작을 합니다.

• 동작 예



3) CW(Clockwise)/CCW(Counter Clockwise) 운전 모드

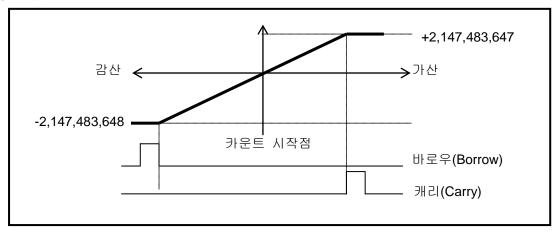
A상 입력 펄스가 상승 시, 또는 B상 입력 펄스가 상승 시 카운트 동작을 하며, B상 입력 펄스가 Low 로 입력될 때 A상 입력 펄스의 상승 시 가산동작을, A상 입력 펄스가 Low 로 입력될 때 B상 입력 펄스의 상승 시 감산동작을 합니다.


가/감산 구분	A상 입력 펄스 High	A상 입력 펄스 Low
B상 입력 펄스 High	-	감산 카운트
B상 입력 펄스 Low	가산 카운트	-

• 동작 예

(2) 카운터 종류

카운터는 기능에 따라 다음과 리니어 카운터 및 링카운터의 2종류를 선택하여 사용할 수 있습니다.


• 카운터 종류는 아래 특수 K영역에 저장됩니다.

구 분		비고*1)			
구 군	채널0	채널1	채널2	채널3	01.17
카운트 모드 설정	K300	K330	K360	K390	0 : 리니어 1 : 링

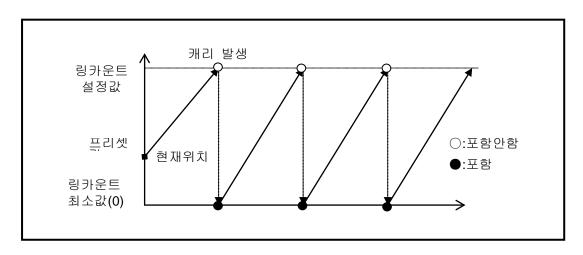
*1) 카운터 사용 시 모드 설정 값을 0,1 이외의 값으로 설정하면 에러코드 '20'이 발생합니다.

카운터는 기능에 따라 다음과 같이 2종류를 선택하여 사용할 수 있습니다.

- (a) 리니어(Linear) 카운트
 - 1) 리니어(Linear) 카운트의 범위: -2,147,483,648 ~ 2,147,483,647
 - 2) 카운트 값이 가산 중 최대값에 도달하면 캐리(Carry)가 발생되며, 감산 중 최소값에 도달하면 바로우(Borrow)가 발생됩니다.
 - 3) 캐리(Carry)가 발생하게 되면 카운트를 멈추며 더 이상 가산은 안되나 감산은 가능합니다.
 - 4) 바로우(Borrow)가 발생하게 되면 카운트를 멈추며 더 이상 감산은 안되나 가산은 가능합니다.

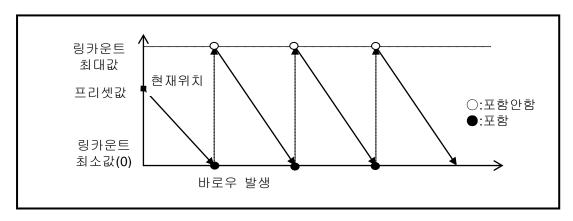
(b) 링(Ring) 카운트

- 링(Ring) 카운트의 범위: 0 ~ 사용자 설정 최대값
- 카운트 표시: 링(Ring)카운트 시 사용자 설정 링(Ring)카운트 최대값은 표시되지 않습니다.

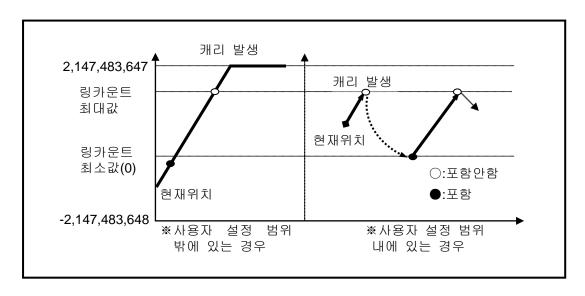


• 링 카운터의 설정값은 아래 특수 K영역에 저장됩니다.

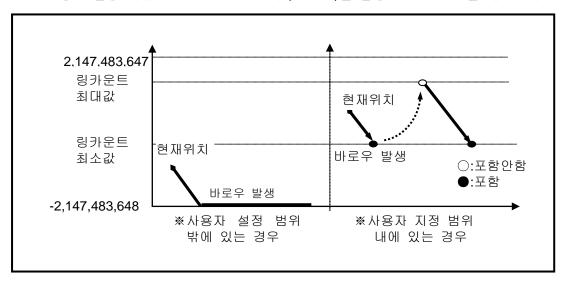
구 분		비고			
十 亡	채널0	채널1	채널2	채널3	01.72
링 카운터 설정값	K310	K340	K270	K400	


1) 가산 카운트 시

가산 카운트 중 카운트 값이 사용자 설정 최대값을 넘어도 캐리(Carry)만 발생되고 리니어 (Linear)카운트와는 달리 카운트를 멈추지 않습니다.



2) 감산 카운트 시


감산 카운트 중 카운트 값이 사용자 설정 최소값을 넘어도 바로우(Borrow)만 발생되고 리니어(Linear)카운트와는 달리 카운트를 멈추지 않습니다.

- 3) 현재 카운트 값에 따른 링(Ring)카운트 설정 시의 동작(가산 카운트 시)
 - 링(Ring) 카운트 설정 시 현재 카운트 값이 사용자 설정 범위 밖에 있는 경우
 - 에러(코드 번호 27)를 띄우고, 리니어 카운터로 동작합니다.
 - 링(Ring) 카운트 설정 시 현재 카운트 값이 사용자 설정 범위 내에 있는 경우
 - 현재 카운트 값으로부터 증가하기 시작하여 사용자 설정 최대 값까지 증가한 후 사용자 설정 최소값으로 되면서 캐리(Carry)를 발생한 후 카운트를 계속 합니다.
 - 아래 그림처럼 최대값은 표시되지 않고, 최소값 표시 후 카운트를 계속 합니다.

- 4) 현재 카운트 값에 따른 링(Ring)카운트 설정 시의 동작(감산 카운트 시)
 - 링(Ring) 카운트 설정 시 현재 카운트 값이 사용자 설정 범위 밖에 있는 경우
 - 에러(코드 번호 27)를 띄우고, 리니어 카운터로 동작합니다.
 - 링(Ring) 카운트 설정 시 현재 카운트 값이 사용자 설정 범위 내에 있는 경우
 - 현재 카운트 값으로부터 감소하기 시작하여 사용자 설정 최소 값까지 감소한 후 사용자 설정 최대값으로 되면서 바로우(Borrow)를 발생한 후 카운트를 계속합니다.

알아두기

- (1) 링(Ring)카운트 설정 시 카운트 값이 사용자가 설정한 범위 내에 있는가 아닌가에 따라 그 범위 내에서 링 카운트가 될 것인가, 에러를 발생하고 리니어 카운트로 동작할 것인가가 결정됩니다.
- (2) 카운트 값이 범위 밖에 있을 때 링(Ring)카운트가 설정되는 것은 사용자의 실수로 보고 에러를 발생하고 링 카운트가 이루어 지지 않습니다.
- (3) 링(Ring)카운트 사용 시는 프리셋 등을 사용하여 반드시 범위 내에 카운트 값을 위치시키고 사용하여 주십시오.

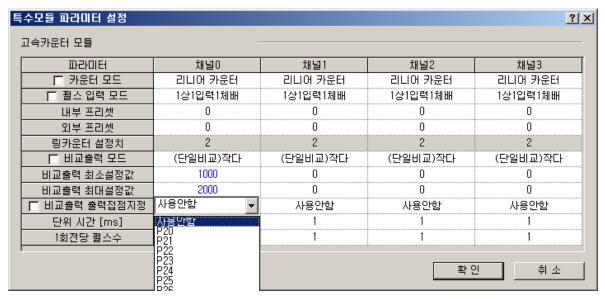
(3) 비교 출력

- (a) 고속 카운터 모듈은 현재 카운트 값과 비교 값의 대/소를 비교하여 출력하는 비교 출력 기능이 있습니다.
- (b) 비교 출력은 채널당 1개가 있으며, 각각의 출력을 독립적으로 사용할 수 있습니다.
- (c) 비교 출력 조건은 >, =, < 를 조합한 7가지 방법이 있습니다.
- (d) 파라미터 설정
 - 비교출력 모드 설정

파라미터	채널0	채널1	채널2	채널3
		—		
□ 카운터 모드	리니어 카운터	리니어 카운터	리니어 카운터	리니어 카운터
□ 펄스 입력 모드	1상1입력1체배	1상1입력1체배	1상1입력1체배	1상1입력1체배
내부 프리셋	0	0	0	0
외부 프리셋	0	0	0	0
링카운터 설정치	2	2	2	2
□ 비교출력 모드	(단일비교)작다 🔻	(단일비교)작다	(단일비교)작다	(단일비교)작다
비교출력 최소설정값	(난일비교)삭다	0	0	0
비교출력 최대설정값	(단일비교)작거나같다 (단일비교)같다	0	0	0
비교출력 출력접점지정	()한흥미교(칼레나크다	사용안함	사용안함	사용안함
단위 시간 [ms]	(단일비교)작가나같다 (단일비교)같다 (단일비교)같가나크다 (단일비교)크다 (무가비교)포함 (구가비교)제외	1	1	1
1회전당 펄스수	(구간비교)제외	1	1	1

• 상기 설정된 값은 특수 K영역에 저장됩니다.

비교 출력 조건	메모리 번지(워드)	값* ²⁾
현재값 < 비교값		"0"으로 설정
현재값 ≤ 비교값		"1"으로 설정
현재값 = 비교값] 채널0 : K302 채널1 : K332	"2"으로 설정
현재값 ≥ 비교값	채널2 : K362 채널3 : K392	"3"으로 설정
현재값 > 비교값		"4"으로 설정
비교값1 ≤카운트 값 ≤비교값2		"5"으로 설정
카운트 값 ≤비교값1, 카운트 값 ≥비교값2		"6"으로 설정

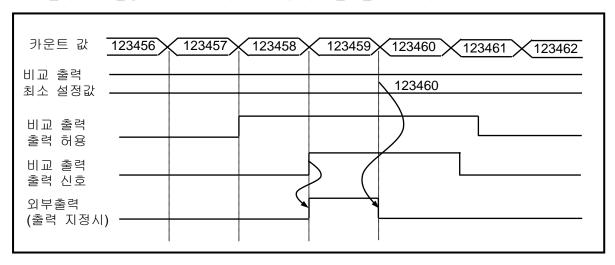

- *2) 카운터 사용 시 비교 출력 모드 설정 값을 0~6 이외의 값으로 설정하면 에러코드 '23'이 발생합니다.
- 비교 출력 신호를 출력하기 위해서는 비교 출력 조건을 설정 후 비교 출력 출력 허용 플래그를 허용으로 설정합니다.

구 분	채널별 영역				동작	
<u>구</u> 군	채널0	채널1	채널2	채널3	6 6	
카운트 사용	K2600	K2700	K2800	K2900	0: 사용안함, 1: 사용	
비교출력 출력 허용	K2604	K2704	K2804	K2904	0: 금지, 1: 허용	

• 외부 출력을 내보내기 위해서는 비교출력 출력접점(P20 ~ P27)을 지정하여야 합니다. XG5000상의 특수 모듈 파라 미터 설정 창에서 비교출력 출력 접점 지정을 "사용안함"으로 선택한 경우 비교 출력 출력신호(내부 디바이스)만 출력됩니다

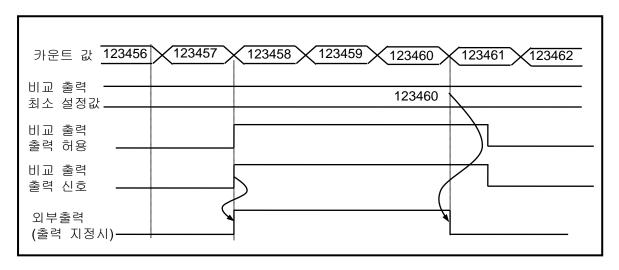
구 분		채널별	동작		
T E	채널0	채널1	채널2	채널3	90 T
비교출력 출력 신호	K2612	K2712	K2812	K2912	0: 비교 불일치 1: 비교 일치

• 비교출력 출력접점(P20 ~ P27) 지정 설정



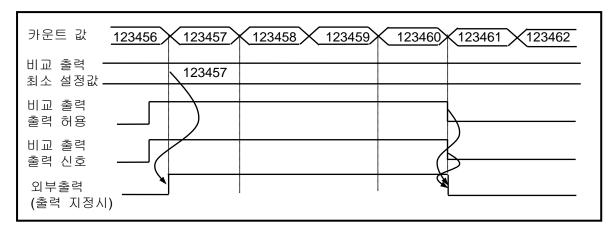
(e) 비교출력 상세 설명

아래 비교 출력에 대해 상세히 설명합니다.

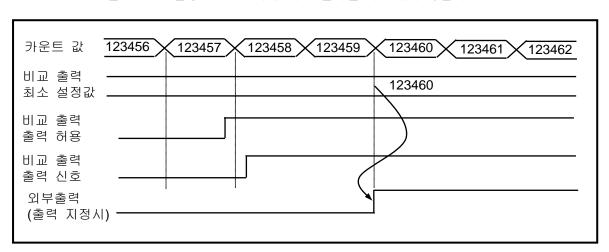

1) 모드0 (현재값 < 비교값)

카운트된 현재 값이 비교출력 최소 설정값 보다 작은 경우 출력을 On 하고 현재값이 증가하여 비교출력 최소 설정값과 같아 지거나 커지게 되면 출력을 Off 합니다.

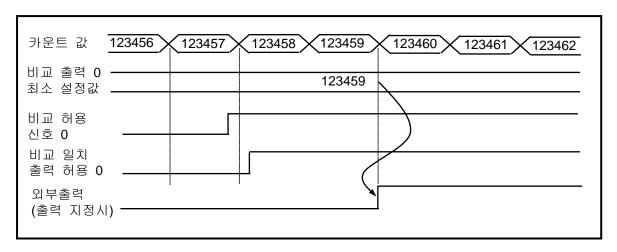
2) 모드1 (현재값 ≤비교값)


현재 카운트 값이 비교출력 최소 설정값 보다 작거나 같은 경우 출력을 내보내며 카운트 값이 증가하여 비교출력 최소 설정값 보다 커지게 되면 출력을 내보내지 않습니다.

3) 모드2 (현재값 = 비교값)


현재 카운트 값이 비교출력 최소 설정값과 같은 경우 출력을 On합니다.

출력을 Off 시키기 위해서는 비교 허용 신호 또는 비교 일치 출력 허용 신호를 Off시켜야 합니다.

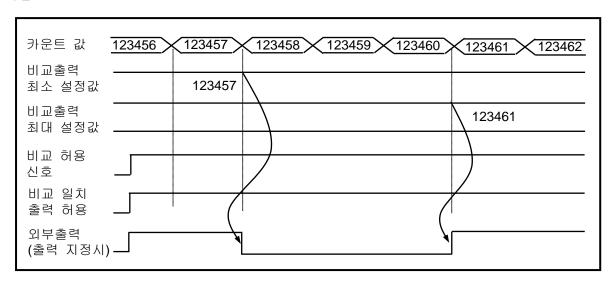

4) 모드3 (현재값 ≥비교값)

현재 카운트 값이 비교출력 최소 설정값 보다 크거나 같은 경우 출력을 내보내며 카운트 값이 감소하여 비교출력 최소 설정값 보다 작게 되면 출력을 내보내지 않습니다.

5) 모드4 (카운트 값 > 비교값)

현재 카운트 값이 비교출력 최소 설정값 보다 큰 경우 출력을 내보내며 카운트 값이 감소하여 비교 출력 최소 설정값 보다 작게 되면 출력을 내보내지 않습니다.

6) 모드5(구간 비교 : 비교출력 최소 설정값 ≤카운트 값 ≤비교출력 최대 설정값)


현재 카운트 값이 비교출력 최소 설정값 보다 크거나 같고 비교출력 최대 설정값 보다 작거나 같은 경우 출력을 내보내며 카운트 값이 증가/감소하여 비교값의 범위를 벗어나게 되면 출력을 내보내지 않습니다.

7) 모드6(구간 비교 : 카운트 값 ≤ 비교출력 최소 설정값 또는

카운트 값 ≥ 비교출력 최대 설정값)

현재 카운트 값이 비교출력 최소 설정값 보다 작거나 같고 비교출력 최대 설정값 보다 크거나 같은 경우 출력을 내보내며 카운트 값이 증가/감소하여 비교값의 범위를 벗어나게 되면 출력을 내보내지 않습니다.

(4) 캐리(Carry) 신호

- (a) 캐리(Carry) 신호가 발생하는 경우
 - 1) 리니어(Linear) 카운트 시 카운트 범위 최대값 2,147,483,647 에 도달 할 경우.
 - 2) 링(Ring) 카운트 시 사용자 설정 링(Ring)카운트 최대값에서 최소값으로 값이 변할 경우.
- (b) 캐리(Carry) 신호 발생시의 카운트
 - 1) 리니어(Linear) 카운트 시 캐리(Carry)가 발생하면 카운트를 멈춤.
 - 2) 링(Ring) 카운트 시 캐리(Carry)가 발생해도 카운트를 멈추지 않음.
- (c) 캐리(Carry) 리셋
 - 1) 발생된 캐리(Carry)는 프로그램에서 해당 디바이스 영역을 리셋 명령을 사용하여 해제합니다.

구 분	채널별 디바이스 영역			
十 正	채널0	채널1	채널2	채널3
캐리 신호	K2610	K2710	K2810	K2910

(5) 바로우(Borrow) 신호

- (a) 바로우(Borrow) 신호가 발생하는 경우
 - 1) 리니어(Linear) 카운트 시 카운트 범위 최소값 -2,147,483,648 에 도달 할 때.
 - 2) 링(Ring) 카운트 시 사용자 설정 링(Ring)카운트 최소값에서 최대값으로 값이 변할 때.
- (b) 바로우(Borrow) 신호 발생시의 카운트
 - 1) 리니어(Linear) 카운트 시 바로우(Borrow)가 발생하면 카운트를 멈춤.
 - 2) 링(Ring) 카운트 시 바로우(Borrow) 발생해도 카운트를 멈추지 않음.
- (c) 바로우(Borrow) 리셋
 - 1) 발생된 바로우(Borrow) 는 프로그램에서 해당 디바이스 영역을 리셋 명령을 사용하여 해제합니다.

구 분	채널별 디바이스 영역				
구 군	채널0	채널1	채널2	채널3	
바로우 신호	K2611	K2711	K2811	K2911	

(6) 단위 시간당 회전수 기능

단위 시간당 회전수 플래그가 On 되어 있는 동안 설정한 시간 동안 입력 된 펄스 수를 카운트 하는 기능입니다

- (a) 설정 방법
 - 1) 단위 시간 및 1회전당 펄스 수를 설정해야 합니다.

파라미터	채널0	채널1	채널2	채널3
□ 카운터 모드	리니어 카운터	리니어 카운터	리니어 카운터	리니어 카운터
┌ 펄스 입력 모드	1상1입력1체배	1상1입력1체배	1상1입력1체배	1상1입력1체배
내부 프리셋	0	0	0	0
외부 프리셋	0	0	0	0
링카운터 설정치	2	2	2	2
🗀 비교출력 모드	(단일비교)작다	(단일비교)작다	(단일비교)작다	(단일비교)작다
비교출력 최소설정값	1000	0	0	0
비교출력 최대설정값	2000	0	0	0
□ 비교출력 출력접점지정	사용안함	사용안함	사용안함	사용안함
단위 시간 [ms]	1000	1	1	1
1회전당 펄스수	500	1	1	1

설정값은 아래 특수 K영역에 저장되며 사용자가 직접 K영역에 지정 가능합니다.

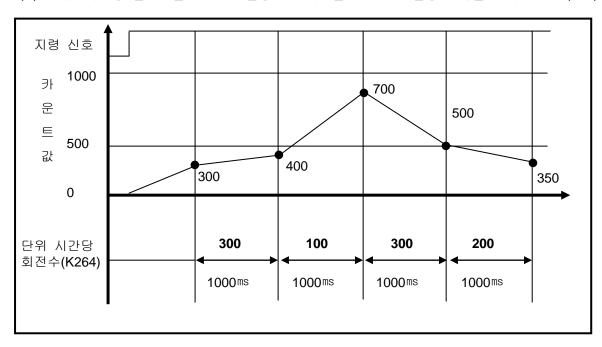
7 🖽	채널별 디바이스 영역				
十 正	채널0	채널1	채널2	채널3	
단위 시간(1~60000ms) ^{*3)}	K322	K352	K382	K412	

^{*3)} 카운터 사용 시 단위 시간당 회전 수를 사용으로 하고 단위시간을 1~60000MS 이외의 값을 입력하면 에러코드 '34'가 발생합니다.

2) 1회전당 펄스 수 입력을 설정해야 합니다.

7 ⊌	채널별 디바이스 영역			
十 正	채널0	채널1	채널2	채널3
1회전당 펄스수 (1~60000)* ⁴⁾	K323	K353	K383	K413

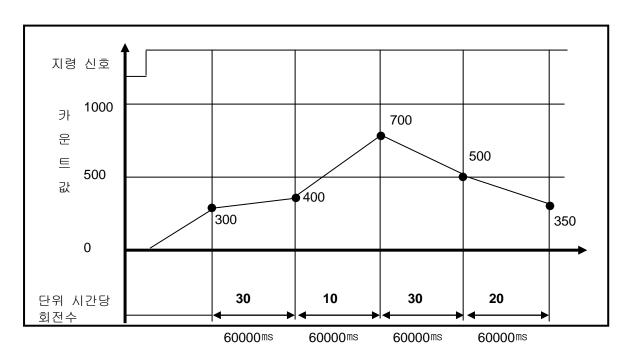
^{*4)} 카운터 사용 시 단위 시간당 회전 수를 사용으로 하고 1회전당 펄스수를 1~60000 이외의 값을 입력하면 에러코드 '35'가 발생합니다.


3) 단위 시간당 회전수 기능을 사용할 경우 사용 지령 신호를 "On"으로 설정해야 합니다.

¬ ⊔	채널별 디바이스 영역				
十 正	채널0	채널1	채널2	채널3	
단위 시간당 회전수 지령	K2605	K2705	K2805	K2905	

- (b) 단위 시간당 회전 수 카운트 기능은 지령 신호가 On 되어 있는 동안 설정한 시간 동안 펄스 수를 카운트를 합니다.
- (c) 설정된 시간 마다 갱신되어 표시되는 펄스 수와 1회전당 펄스 수를 입력하여 단위 시간당 회


전수를 카운트 할 수 있습니다.


- (d) 1회전당 펄스 수를 값을 입력하고 시간 설정을 1초(1000™s)로 설정하면 1초당 회전수값이 표시됩니다. 분당 회전수(RPM)로 표시하기 위해서는 프로그램에서 연산을 수행하여야 합니다.
- (e) 아래 1회전당 펄스수를 "1"로 설정하고 시간을 1000ms로 설정한 예를 표시합니다.(Ch0)

(f) 분당 회전수(RPM)로 표시하기 위해서는 아래와 같이 프로그램에서 연산을 수행하여야 합니다. 이때 DMUL 연산의 경우 RPM값이 D100~D103로 64Bit로 저장됩니다. 계산된 RPM값을 사용시 사용 시스템(RPM값이 적은 경우)에 따라 워드 또는 더블워드로 사용 가능합니다.

D100(RPM교) = K264(초당 회전수) X 60(초)					
F0099			DMUL	K0264	60	D0100
상시 ON						

(7) 래치 카운터 기능

- (a) 래치 카운터 지정 신호가 On 될 때 현재 카운트 값을 래치하는 기능 입니다.
- (b) 설정 방법

현재 카운터 값을 래치시킬 경우 래치 카운터를 사용으로 설정해야 합니다.

차널별 디바이스 영역 구 분				
T E	채널0	채널1	채널2	채널3
래치 카운터 지령	K2606	K2706	K2806	K2906

(c) 래치 카운터 기능은 래치 카운터 지정 신호가 On 된 경우 카운트 값을 래치합니다.

즉, 전원 Off=>On시, 모드 변경시 카운터 값을 Clear하지 않고 이전값에 이어서 카운터 합니다.

(d) 래치 카운터로 지정한 경우 현재값을 Clear하기 위해서는 내부 또는 외부 프리셋 기능을 사용해야 합니다.

(8) 프리셋 기능

현재 카운터 값을 설정한 프리셋 값으로 변경하는 기능입니다. 내부 프리셋 과 외부 프리셋 기능이 있으며 외부 프리셋 기능은 입력 접점으로 고정 되어 있습니다.

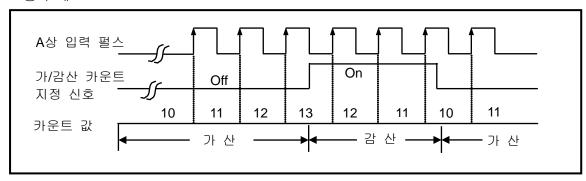
1속카운터 모듈	-			
파라미터	채널0	채널1	채널2	채널3
□ 카운터 모드	리니어 카운터	리니어 카운터	리니어 카운터	리니어 카운터
□ 펄스 입력 모드	1상1입력1체배	1상1입력1체배	1상1입력1체배	1상1입력1체배
내부 프리셋	1000	0	0	0
외부 프리셋	2000	0	0	0
링카운터 설정치	2	2	2	2
□ 비교출력 모드	(단일비교)작다	(단일비교)작다	(단일비교)작다	(단일비교)작다
비교출력 최소설정값	1000	0	0	0
비교출력 최대설정값	2000	0	0	0
□ 비교출력 출력접점지정	사용안함	사용안함	사용안함	사용안함
단위 시간 [ms]	1000	1	1	1
1회전당 펄스수	500	1	1	1

• 프리셋 설정값은 아래 특수 K영역에 저장됩니다.

ר ⊎	급 채널별 영역(더블워드)			비고	
구 군	채널0	채널1	채널2	채널3	01.17
내부 프리셋 설정값	K304	K334	K364	K394	
외부 프리셋 설정값	K306	K336	K366	K396	

• 프리셋 지령은 내부 프리셋은 아래 특수 K영역으로 지정되고 외부 프리셋은 허용 비트를 On한 후 지정된 입력 접점으로 실행됩니다.

구 분	채널별 영역(비트)				비고
十 正	채널0	채널1	채널2	채널3	01.77
내부 프리셋 지령	K2601	K2701	K2801	K2901	
외부 프리셋 허용	K2602	K2702	K2802	K2902	
외부 프리셋 지령	P008	P009	P00A	P00B	

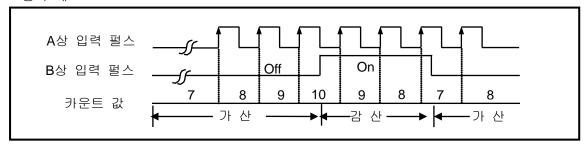

8.1.4 "H" 타입 기능

- (1) 카운터 모드
- (a) 고속 카운터 모듈은 CPU 모듈의 카운터 명령(CTU, CTD, CTUD 등)으로 처리할 수 없는 고속 펄스를 바이너리 32 비트(-2,147,483,648 ~ 2,147,483,647)까지 카운트 할 수 있습니다.
- (b) 입력은 1상 입력과 2상 입력 그리고 시계/반시계(CW/ CCW)방향 입력이 있습니다.
- (c) 카운트 가/감산 방법 지정은 아래와 같습니다.
 - 1) 1상 입력일 경우 : a) 프로그램 지정에 의한 가/감산 카운트 동작
 - b) B상 입력 신호에 의한 가/감산 카운트 동작
 - 2) 2상 입력일 때: A상과 B상의 위상차에 의한 지정
 - 3) CW/CCW 입력일 때: A상 입력 시 B상이 Low이면 가산, B상 입력 시 A상이 Low이면 감산 동작을 합니다.
- (d) 부가 기능으로 아래와 같은 기능을 제공합니다.
 - 1) 래치 카운터
 - 2) 단위 시간당 입력 회전 수 카운트 기능
- (e) 입력 모드
 - 1) 1상 카운트 모드
 - a)프로그램 지정에 의한 가/감산 카운트 동작
 - 1상 1입력 1체배

A상 입력 펄스가 상승시에 카운트를 하며 가/감산 여부는 프로그램에 의해 결정됩니다.

가/감산 구분	A상 입력 펄스 상승	A상 입력 펄스 하강
가/감산 카운트 지정 신호 Off	가산 카운트	_
가/감산 카운트 지정 신호 On	감산 카운트	-

• 동작 예

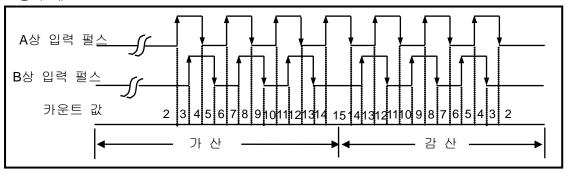


- b) B상 입력 신호에 의한 가/감산 카운트 동작
 - 1상 2입력 1체배

A상 입력 펄스가 상승시에 카운트를 하며 가/감산 여부는 B상에 의해 결정 됩니다.

가/감산 구분	A상 입력 펄스 상승	A상 입력 펄스 하강
B상 입력 펄스 Off	가산 카운트	-
B상 입력 펄스 On	감산 카운트	-

• 동작 예

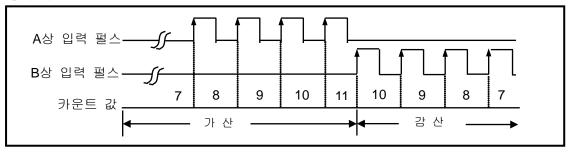


2) 2상 카운트 모드

a) 2상 4체배 동작 모드

A상 입력 펄스의 상승/하강 시와 B상 입력 펄스의 상승/하강 시 카운트동작을 하며, A상이 B상보다 위상이 앞서서 입력 될때는 가산 동작을 하며, B상이 A상보다 위상이 앞서서 입력 될때는 감산 동작을 합니다.

• 동작 예



3) CW(Clockwise)/CCW(Counter Clockwise) 운전 모드

A상 입력 펄스가 상승 시, 또는 B상 입력 펄스가 상승 시 카운트 동작을 하며, B상 입력 펄스가 Low 로 입력될 때 A상 입력 펄스의 상승 시 가산동작을, A상 입력 펄스가 Low 로 입력될 때 B상 입력 펄스의 상승 시 감산동작을 합니다.


가/감산 구분	A상 입력 펄스 High	A상 입력 펄스 Low
B상 입력 펄스 High	_	감산 카운트
B상 입력 펄스 Low	가산 카운트	-

• 동작 예

(2) 카운터 종류

카운터는 기능에 따라 다음과 리니어 카운터 및 링카운터의 2종류를 선택하여 사용할 수 있습니다.



• 카운터 종류는 아래 특수 K영역에 저장됩니다.

구 분	채널별 영역(워드)								비고	
	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	미끄	
카운트	K300	K300 K330	K360	K390	K2220	K2250	K2280	K2310	0 : 리니어	
모드 설정									1 : 링	

(a) 리니어(Linear) 카운트

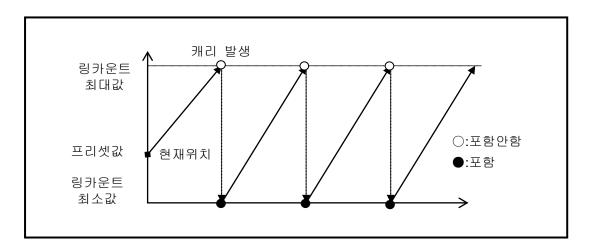
- 리니어(Linear) 카운트의 범위: -2,147,483,648 ~ 2,147,483,647
- 카운트 값이 가산 중 최대값에 도달하면 캐리(Carry)가 발생되며, 감산 중 최소값에 도달하면 바로우(Borrow)가 발생됩니다.
- 캐리(Carry)가 발생하게 되면 카운트를 멈추며 더 이상 가산은 안되나 감산은 가능합니다.
- 바로우(Borrow)가 발생하게 되면 카운트를 멈추며 더 이상 감산은 안되나 가산은 가능합니다.

(b) 링(Ring) 카운트

링 카운터의 최대값,최소값을 설정합니다.

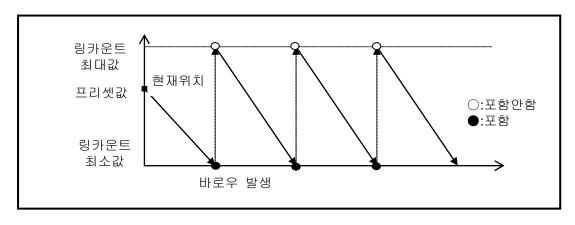
프리셋 값 및 비교 설정값은 링 카운터 최대/최소값의 범위 이내로 설정되어야 합니다.

파라미터	채널0	채널1	채널2	채널3
🗆 카운터 모드	링 카운터 ▼	리니어 카운터	리니어 카운터	리니어 카운터
🗆 펄스 입력 모드	1상2입력1체배	1상1입력1체배	1상1입력1체배	1상1입력1체배
내부 프리셋	0	0	0	0
외부 프리셋	0	0	0	0
링카운터 최소값	0	0	0	0
링카운터 최대값	300	0	0	0
□ 비교출력0 모드	(단일비교)작다	(단일비교)작다	(단일비교)작다	(단일비교)작다
□ 비교출력1 모드	(단일비교)작다	(단일비교)작다	(단일비교)작다	(단일비교)작다
비교출력0 최소설정값	0	0	0	0
비교출력0최대설정값	0	0	0	0
비교출력1 최소설정값	0	0	0	0
비교출력1 최대설정값	0	0	0	0
비교출력0 출력접점지정	사용안함	사용안함	사용안함	사용안함
비교출력1 출력접점지정	사용안함	사용안함	사용안함	사용안함
단위 시간 [ms]	1	1	1	1
1회전당 펄스수	1	1	1	1

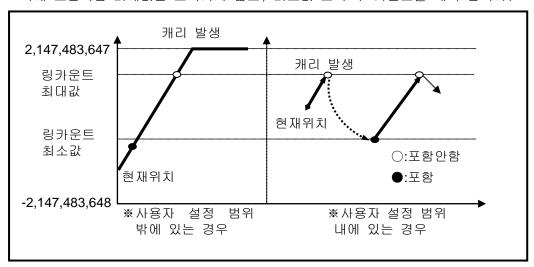

링 카운터의 최소,최대값은 아래 특수 K영역에 저장됩니다.

구분	채널별 영역(더블워드)								비고
	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	미끄
링 카운터 최소설정값	K308	K338	K368	K398	K2228	K2258	K2288	K2318	
링 카운터 최대설정값	K310	K340	K270	K400	K2230	K2260	K2290	K2320	

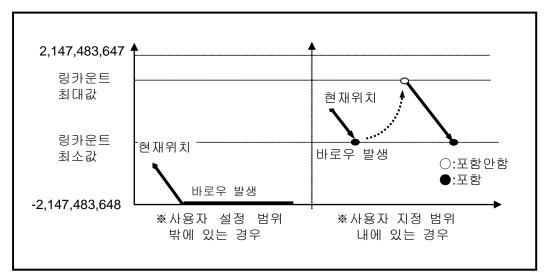
- 링(Ring) 카운트의 범위: 사용자 설정 최소값 ~ 사용자 설정 최대값
- 카운트 표시: 링(Ring)카운트 시 사용자 설정 링(Ring)카운트 최대값은 표시되지 않습니다.


1) 가산 카운트 시

가산 카운트 중 카운트 값이 사용자 설정 최대값을 넘어도 캐리(Carry)만 발생되고 리니어(Linear)카운트와는 달리 카운트를 멈추지 않습니다.



2) 감산 카운트 시


감산 카운트 중 카운트 값이 사용자 설정 최소값을 넘어도 바로우(Borrow)만 발생되고 리니어(Linear)카운트와는 달리 카운트를 멈추지 않습니다.

- 3) 현재 카운트 값에 따른 링(Ring)카운트 설정 시의 동작(가산 카운트 시)
 - 링(Ring) 카운트 설정 시 현재 카운트 값이 사용자 설정 범위 밖에 있는 경우
 - 에러(코드 번호 27)를 띄우고, 리니어 카운터로 동작합니다.
 - 링(Ring) 카운트 설정 시 현재 카운트 값이 사용자 설정 범위 내에 있는 경우
 - 현재 카운트 값으로부터 증가하기 시작하여 사용자 설정 최대 값까지 증가한 후 사용자 설정 최소값으로 되면서 캐리(Carry)를 발생한 후 카운트를 계속 합니다.
 - 아래 그림처럼 최대값은 표시되지 않고, 최소값 표시 후 카운트를 계속 합니다.

- 4) 현재 카운트 값에 따른 링(Ring)카운트 설정 시의 동작(감산 카운트 시)
 - 링(Ring) 카운트 설정 시 현재 카운트 값이 사용자 설정 범위 밖에 있는 경우
 - 에러(코드 번호 27)를 띄우고, 리니어 카운터로 동작합니다.
- 링(Ring) 카운트 설정 시 현재 카운트 값이 사용자 설정 범위 내에 있는 경우
 - 현재 카운트 값으로부터 감소하기 시작하여 사용자 설정 최소 값까지 감소한 후 사용자 설정 최대값으로 되면서 바로우(Borrow)를 발생한 후 카운트를 계속합니다.

알아두기

- (1) 링(Ring)카운트 설정 시 카운트 값이 사용자가 설정한 범위 내에 있는가 아닌가에 따라 그 범위 내에서 링 카운트가 될 것인가, 에러를 발생하고 리니어 카운트로 동작할 것인가가 결정됩니다.
- (2) 카운트 값이 범위 밖에 있을 때 링(Ring)카운트가 설정되는 것은 사용자의 실수로 보고 에러를 발생하고 링 카운트가 이루어 지지 않습니다.
- (3) 링(Ring)카운트 사용 시는 프리셋 등을 사용하여 반드시 범위 내에 카운트 값을 위치시키고 사용하여 주십시오.

(3) 비교 출력

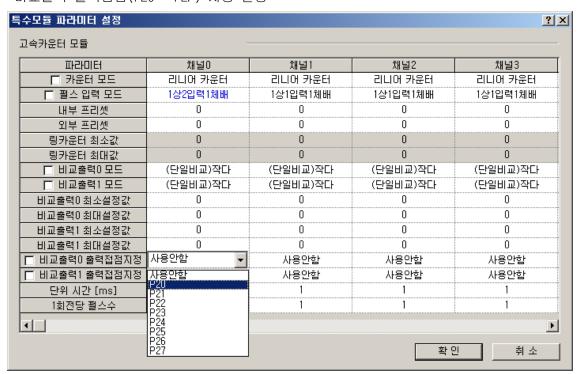
- (a) 고속 카운터 모듈은 현재 카운트 값과 비교 값의 대/소를 비교하여 출력하는 비교 출력 기능이 있습니다.
- (b) 비교 출력은 채널당 2개가 있으며, 각각의 출력을 독립적으로 사용할 수 있습니다.
- (c) 비교 출력 조건은 >, =, < 를 조합한 7가지 방법이 있습니다.
- (d) 파라미터 설정
 - 비교출력 모드 설정

파라미터	채널0	채널1	채널2	채널3
□ 카운터 모드	리니어 카운터	리니어 카운터	리니어 카운터	리니어 카운터
┌ 펄스 입력 모드	1상2입력1체배	1상1입력1체배	1상1입력1체배	1상1입력1체배
내부 프리셋	0	0	0	0
외부 프리셋	0	0	0	0
링카운터 최소값	0	0	0	0
링카운터 최대값	0	0	0	0
□ 비교출력0 모드	(구간비교)포함 🔻	(단일비교)작다	(단일비교)작다	(단일비교)작다
□ 비교출력1 모드	(단일비교)작다 (단일비교)작거나같다 (단일비교)같다 (단일비교)같다 (단일비교) 그다 (무간비교) 포함 (무간비교) 제외	(단일비교)작다	(단일비교)작다	(단일비교)작다
비교출력0 최소설정값	(단일비교)작거나같다 (단일비교)같다	0	0	0
비교출력0최대설정값	(닭일비굨)칼컨나크다	0	0	0
비교출력1 최소설정값	(민물미교)그다 (무간비교)포함	0	0	0
비교출력1 최대설정값	(구간비교)제외	0	0	0
비교출력0 출력접점지정	사용안함	사용안함	사용안함	사용안함
비교출력1 출력접점지정	사용안함	사용안함	사용안함	사용안함
단위 시간 [ms]	1	1	1	1
1회전당 펄스수	1	1	1	1
del				

• 상기 설정된 값은 특수 K영역에 저장됩니다.

비교 출력 조건	메모리 번	!지(워드)	IJ.* ²⁾
미교 물럭 소신	비교출력 0	비교출력 1	땂
현재값 < 비교값			"0"으로 설정
현재값 ≤ 비교값	채널0: K302 채널1: K332	채널0: K303 채널1: K333	"1"으로 설정
현재값 = 비교값	채널2: K362	채널2: K363	"2"으로 설정
현재값 ≥ 비교값	채널3: K392 채널4: K2222	채널3: K393 채널4: K2223	"3"으로 설정
현재값 > 비교값	채널5: K2252 채널6: K2282	채널5: K2253 채널6: K2283	"4"으로 설정
비교값1 ≤카운트 값 ≤비교값2	채널7: K2312	채널7: K2313	"5"으로 설정
카운트 값 ≤비교값1, 카운트 값 ≥비교값2			"6"으로 설정

*2) 카운터 사용 시 비교 출력 모드 설정 값을 0~6 이외의 값으로 설정하면 에러코드 '23'이 발생합니다.

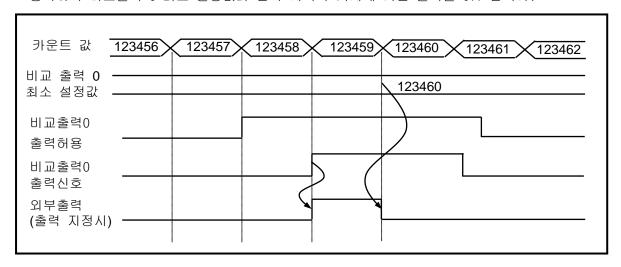

• 비교 출력 신호를 출력하기 위해서는 비교 출력 조건을 설정 후 비교 출력 허용 플래그를 허용('1')으로 설정합니다.

구 분				채널별	영역(비트	≣)			동작
十 亡	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	0 7
카운트 사용	K2600	K2700	K2800	K2900	K21800	K21900	K22000	K22100	0:사용안함 1: 사용
비교출력0 출력허용	K2604	K2704	K2804	K2904	K21804	K21904	K22004	K22104	0 : 금지 1 : 허용
비교출력1 출력허용	K2607	K2707	K2807	K2907	K21807	K21907	K22007	K22107	0 : 금지 1 : 허용

• 외부 출력을 내보내기 위해서는 비교출력 출력접점(P20 ~ P2F)을 지정하여야 합니다. XG5000상의 특수 모듈 파라 미터 설정 창에서 비교출력 출력 접점 지정을 "사용안함"으로 선택한 경우 비교 출력 출력신호(내부 디바이스)만 출력됩니다.

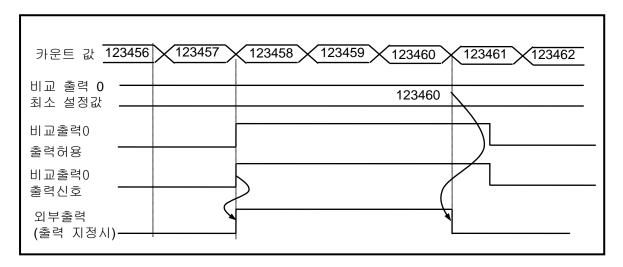
구 분				채널별	영역(비트	≣)			동작
구 군	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	5 7
비교출력0 출력신호	K2612	K2712	K2812	K2912	K21812	K21912	K22012	K22112	0: 비교 불일치 1: 비교 일치
비교출력0 출력신호	K2613	K2713	K2813	K2913	K21813	K21913	K22013	K22113	0: 비교 불일치 1: 비교 일치

• 비교출력 출력접점(P20 ~ P2F) 지정 설정

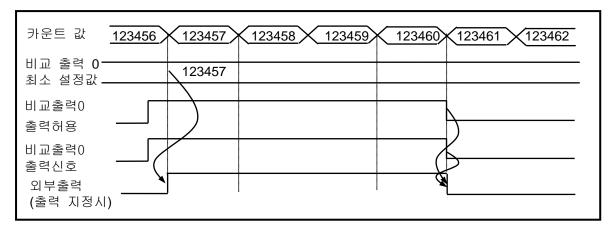


(e) 비교출력 상세 설명

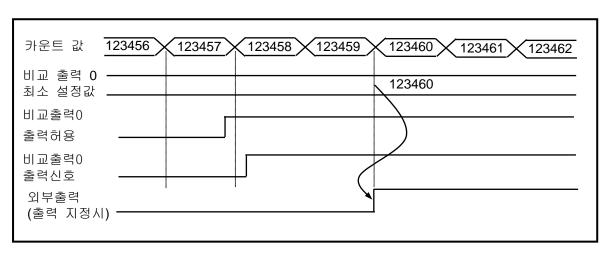
아래 비교 출력에 대해 상세히 설명합니다.(비교출력 0 모드 기준)


1) 모드0 (현재값 < 비교값)

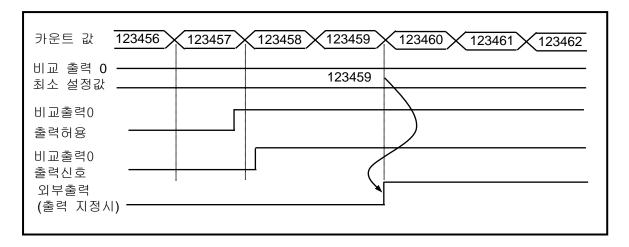
카운트된 현재 값이 비교출력 0 최소 설정값 보다 작은 경우 출력을 On 하고 현재값이 증가하여 비교출력 0 최소 설정값과 같아 지거나 커지게 되면 출력을 Off 합니다.


2) 모드1 (현재값 ≤비교값)

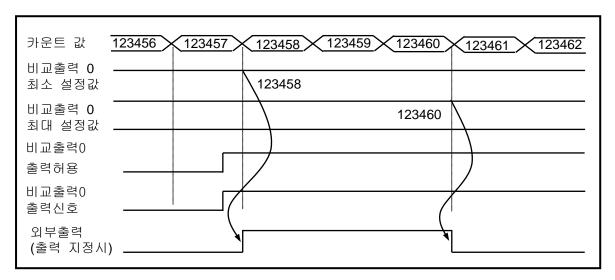
현재 카운트 값이 비교출력 0 최소 설정값 보다 작거나 같은 경우 출력을 내보내며 카운트 값이 증가하여 비교출력 0 최소 설정값 보다 커지게 되면 출력을 내보내지 않습니다.


3) 모드2 (현재값 = 비교값)

현재 카운트 값이 비교출력 0 최소 설정값과 같은 경우 출력을 On합니다. 출력을 Off 시키기 위해서는 비교 허용 신호0 또는 비교 일치 출력 허용 신호 0을 Off시켜야 합니다.

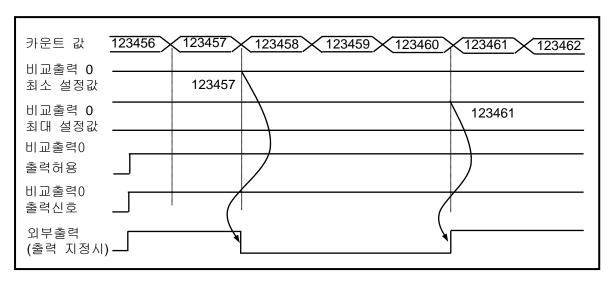

4) 모드3 (현재값 ≥비교값)

현재 카운트 값이 비교출력 0 최소 설정값 보다 크거나 같은 경우 출력을 내보내며 카운트 값이 감소하여 비교출력 0 최소 설정값 보다 작게 되면 출력을 내보내지 않습니다.



5) 모드4 (카운트 값 > 비교값)

현재 카운트 값이 비교출력 0 최소 설정값 보다 큰 경우 출력을 내보내며 카운트 값이 감소하여 비교출력 0 최소 설정값 보다 작게 되면 출력을 내보내지 않습니다.



6) 모드5 (구간 비교 : 비교출력 0 최소 설정값 ≤카운트 값 ≤비교출력 0 최대 설정값) 현재 카운트 값이 비교출력 0 최소 설정값 보다 크거나 같고 비교출력 0 최대 설정값 보다 작거나 같은 경우 출력을 내보내며 카운트 값이 증가/감소하여 비교값의 범위를 벗어나게 되면 출력을 내보내지 않습니다.

7) 모드6 (구간 비교 : 카운트 값 ≤ 비교출력 0 최소 설정값 또는 카운트 값 ≥ 비교출력 0 최대 설정값)

현재 카운트 값이 비교출력 0 최소 설정값 보다 작거나 같고 비교출력 0 최대 설정값 보다 크거나 같은 경우 출력을 내보내며 카운트 값이 증가/감소하여 비교값의 범위를 벗어나게 되면 출력을 내보내지 않습니다.

(4) 캐리(Carry) 신호

- (a) 캐리(Carry) 신호가 발생하는 경우
 - 1) 리니어(Linear) 카운트 시 카운트 범위 최대값 2,147,483,647 에 도달 할 경우.
 - 2) 링(Ring) 카운트 시 사용자 설정 링(Ring)카운트 최대값에서 최소값으로 값이 변할 경우.
- (b) 캐리(Carry) 신호 발생시의 카운트
 - 1) 리니어(Linear) 카운트 시 캐리(Carry)가 발생하면 카운트를 멈춤.
 - 2) 링(Ring) 카운트 시 캐리(Carry)가 발생해도 카운트를 멈추지 않음.
- (c) 캐리(Carry) 리셋
 - 1) 발생된 캐리(Carry)는 프로그램에서 해당 디바이스 영역을 리셋 명령을 사용하여 해제합니다.

구 분	채널별 영역(비트)							비고	
一 一 正	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	01.12
캐리 신호	K2610	K2710	K2810	K2910	K21810	K21910	K22010	K22110	

(5) 바로우(Borrow) 신호

- (a) 바로우(Borrow) 신호가 발생하는 경우
 - 1) 리니어(Linear) 카운트 시 카운트 범위 최소값 -2,147,483.648 에 도달 할 때.
 - 1) 링(Ring) 카운트 시 사용자 설정 링(Ring)카운트 최소값에서 최대값으로 값이 변할 때.
- (b) 바로우(Borrow) 신호 발생시의 카운트
 - 1) 리니어(Linear) 카운트 시 바로우(Borrow)가 발생하면 카운트를 멈춤.
 - 2) 링(Ring) 카운트 시 바로우(Borrow) 발생해도 카운트를 멈추지 않음.
- (c) 바로우(Borrow) 리셋
 - 1) 발생된 바로우(Borrow) 는 프로그램에서 해당 디바이스 영역을 리셋 명령을 사용하여 해제합니다.

구 분		채널별 영역(비트)							шП
一	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	비고
바로우 신호	K2611	K2711	K2811	K2911	K21811	K21911	K22011	K22111	

(6) 단위 시간당 회전수 기능

단위 시간당 회전수 플래그가 On 되어 있는 동안 설정한 시간 동안 입력 된 펄스 수를 카운트 하는 기능입니다

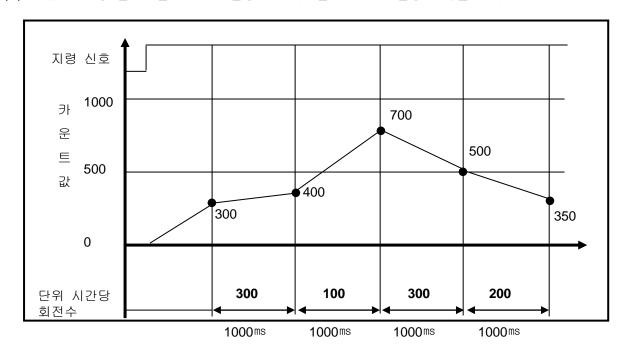
(a) 설정 방법

1) 단위 시간 및 1회전당 펄스 수를 설정해야 합니다.

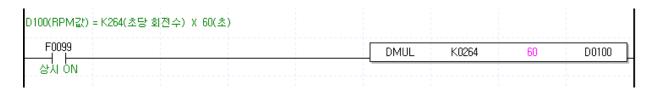
파라미터	채널0	채널1	채널2	채널3
□ 카운터 모드	리니어 카운터	리니어 카운터	리니어 카운터	리니어 카운터
□ 펄스 입력 모드	1상2입력1체배	1상1입력1체배	1상1입력1체배	1상1입력1체배
내부 프리셋	0	0	0	0
외부 프리셋	0	0	0	0
링카운터 최소값	0	0	0	0
링카운터 최대값	0	0	0	0
□ 비교출력0 모드	(단일비교)작다	(단일비교)작다	(단일비교)작다	(단일비교)작다
□ 비교출력1 모드	(단일비교)작다	(단일비교)작다	(단일비교)작다	(단일비교)작다
비교출력0 최소설정값	0	0	0	0
비교출력이최대설정값	0	0	0	0
비교출력1 최소설정값	0	0	0	0
비교출력1 최대설정값	0	0	0	0
비교출력0 출력접점지정	사용안함	사용안함	사용안함	사용안함
비교출력1 출력접점지정	사용안함	사용안함	사용안함	사용안함
단위 시간 [ms]	1000	1	1	1
1회전당 펄스수	500	1	1	1

설정값은 아래 특수 K영역에 저장되며 사용자가 직접 K영역에 지정 가능합니다.

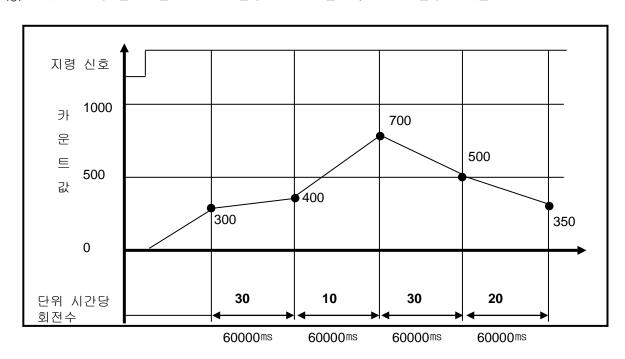
7 8				채널별 영	· 명역(워드))			설정범위
구 분	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	설성임위
단위 시간	K322	K352	K382	K412	K2242	K2272	K2302	K2332	1~60000ms
1회전당 펄스수	K323	K353	K383	K413	K2243	K2273	K2303	K2333	1~60000


2) 단위 시간당 회전수 기능을 사용할 경우 사용 지령 신호를 "허용"으로 설정해야 합니다.

구 분				채널별 영	병역(비트)				동작
十 正	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	5 7
단위 시간당 회전수 지령	K2605	K2705	K2805	K2905	K21805	K21905	K22005	K22105	0: 금지 1: 허용


3) 단위 시간당 회전수는 아래 특수 K영역에 저장됩니다.

구 분			채	널별 영역	!(더블워드	Ξ)			비고
구 군	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	01.77
단위 시간당 회전수	K264	K274	K284	K294	K2184	K2194	K2204	K2214	


- (b) 단위 시간당 회전 수 카운트 기능은 지령 신호가 On 되어 있는 동안 설정한 시간 동안 펄스수를 카운트를 합니다.
- (c) 설정된 시간 마다 갱신되어 표시되는 펄스 수와 1회전당 펄스 수를 입력하여 단위 시간당 회전수를 카운트 할 수 있습니다.
- (d) 1회전당 펄스 수를 값을 입력하고 시간 설정을 1초(1000ms)로 설정하면 1초당 회전수 값이 표시됩니다. 분당 회전수(RPM)로 표시하기 위해서는 프로그램에서 연산을 수행하여야 합니다.
- (e) 아래 1회전당 펄스수를 "1"로 설정하고 시간을 1000™로 설정한 예를 표시합니다.

(f) 분당 회전수(RPM)로 표시하기 위해서는 아래와 같이 프로그램에서 연산을 수행하여야 합니다. 이때, DMUL 연산의 경우 RPM값이 D100~D103로 64Bit로 저장됩니다. 계산된 RPM값을 사용시 사용 시스템(RPM값이 적은 경우)에 따라 워드 또는 더블워드로 사용 가능합니다.

(g) 아래 1회전당 펄스수를 "10"로 설정하고 시간을 60,000ms로 설정한 예를 표시합니다.

(7) 래치 카운터 기능

래치 카운터 지정 신호가 On 될 때 현재 카운트 값을 래치하는 기능 입니다.

• 설정 방법

현재 카운터 값을 래치시킬 경우 래치 카운터를 사용으로 설정해야 합니다.

7 🖰				채널별 영	영역(비트)				두자
구 분	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	동작
래치 카운터	K2606	K2706	K2806	K2906	K21806	K21906	K22006	K22106	0: 금지
지령	NZUUU	N2/00	N2000	N2900	NZ 1000	NZ 1900	NZZUU0	NZZ 100	1: 허용

- 래치 카운터 기능은 래치 카운터 지정 신호가 On 된 경우 카운트 값을 래치합니다.
- 즉, 전원 Off=>On시, 모드 변경시 카운터 값을 Clear하지 않고 이전값에 이어서 카운터 합니다.
- 래치 카운터로 지정한 경우 현재값을 Clear하기 위해서는 내부 또는 외부 프리셋 기능을 사용해야 합니다.

(8) 프리셋 기능

현재 카운터 값을 설정한 프리셋 값으로 변경하는 기능입니다.

내부 프리셋 과 외부 프리셋 기능이 있으며 외부 프리셋 기능은 입력 접점으로 고정 되어 있습니다.

파라미터	채널0	채널1	채널2	채널3
□ 카운터 모드	리니어 카운터	리니어 카운터	리니어 카운터	리니어 카운터
┌ 펄스 입력 모드	1상2입력1체배	1상1입력1체배	1상1입력1체배	1상1입력1체배
내부 프리셋	100	0	0	0
외부 프리셋	200	0	0	0
링카운터 최소값	0	0	0	0
링카운터 최대값	300	0	0	0
□ 비교출력0 모드	(단일비교)작다	(단일비교)작다	(단일비교)작다	(단일비교)작다
□ 비교출력1 모드	(단일비교)작다	(단일비교)작다	(단일비교)작다	(단일비교)작다
비교출력0 최소설정값	0	0	0	0
비교출력0 최대설정값	0	0	0	0
비교출력1 최소설정값	0	0	0	0
비교출력1 최대설정값	0	0	0	0
비교출력0 출력접점지정	사용안함	사용안함	사용안함	사용안함
비교출력1 출력접점지정	사용안함	사용안함	사용안함	사용안함
단위 시간 [ms]	1	1	1	1
1회전당 펄스수	1	1	1	1

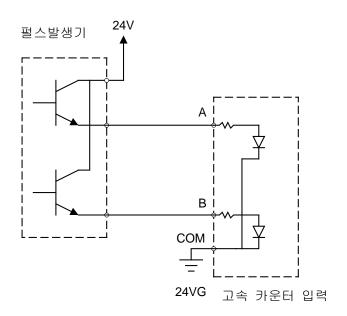
• 프리셋 설정값은 아래 특수 K영역에 저장됩니다.

П		채널별 영역(더블워드)										
구 분	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	비고			
내부 프리셋 설정값	K304	K334	K364	K394	K2224	K2254	K2284	K2314				
외부 프리셋 설정값	K306	K336	K366	K396	K2226	K2256	K2286	K2316				

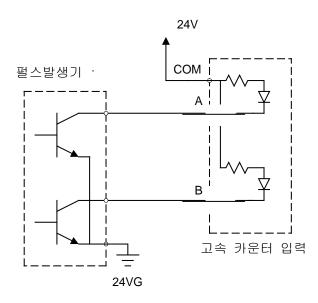
• 프리셋 지령은 내부 프리셋은 아래 특수 K영역으로 지정되고 외부 프리셋은 허용 비트를 On한 후 지정된 입력 접점으로 실행됩니다.

구 분		채널별 영역(비트)									
구 군	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	비고		
내부 프리셋 지령	K2601	K2701	K2801	K2901	K21801	K21901	K22001	K22101			
외부 프리셋 허용	K2602	K2702	K2802	K2902	K21802	K21902	K22002	K22102			
외부 프리셋 지령	P008	P009	P00A	P00B	P00C	POOD	P00E	P00F			

8.2 설치 및 배선


8.2.1 배선상의 주의사항

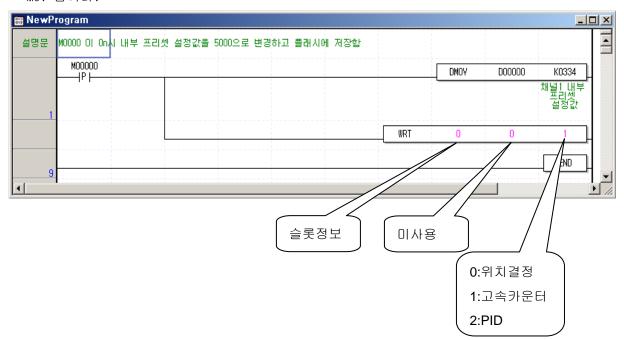
고속 펄스 입력은 배선시 노이즈(Noise) 대책에 주의하여 주십시오.


- (1) 배선은 반드시 트위스티드 페어 실드선을 사용하시고 접지는3종접지를 실시하여 주십시오.
- (2) 노이즈가 많이 발생하는 동력선, 입출력선과는 분리하여 설치하시고 배선 거리는 가능한 짧게 하여 주십시오.
- (3) 엔코더용 전원은 가능한 입출력용 전원과 구분된 별도의 안정화 전원을 사용하십시오. 1상 입력의 경우는 입력 신호를 A상에만 접속하시고, 2상 입력의 경우는 A상, B상에 접속 하여 주십시오.

8.2.2 배선 예

(1) 펄스 발생기 (엔코더)가 전압 출력인 경우

(2) 펄스 발생기가 오픈 컬렉터 출력 타입인 경우



8.3 내부 메모리

8.3.1 고속 카운터용 특수 영역

내장 고속 카운터의 파라미터와 동작 지령 영역은 특수 K 디바이스를 사용하고 있습니다. 파라미터에서 설정된 값을 프로그램에서 변경한 경우 변경된 값으로 동작합니다. 이 경우 변경된 설정을 플래시에 저장하기 위해서는 WRT명령어를 사용하여 플래시에 저장하여야 합니다. 플래시에 저장되지 않은 경우 전원 Off => On 시, 모드 변경시 변경된 설정값을 유지할 수 없습니다.

- 아래는 파라미터에서 설정한 채널1의 내부 프리셋값을 프로그램으로 변경하고, 플래시에 저장하는 예제입니다.
 - 지령명령(M000)을 받으면 새로운 내부 프리셋값(5000)을 채널 1 내부 프리셋 영역(K334)에 MOV 합니다.

- 변경된 설정값을 플래시에 저장하기 위해 WRT명령을 사용합니다. 이때, 슬롯정보는 내장기능의 경우 '0'으로 설정합니다.

알아두기

- (1) WRT 명령어를 사용하여 플래시메모리에 저장하는 경우 약 200~300ms의 처리 시간이 필요합니다.
- (2) 플래시메모리에 쓰기 동작 중 PLC 전원을 Off하거나, WRT 명령어를 반복하여 사용시 플래시메모리가 손상될 수 있으므로 사용에 주의하시기 바랍니다.
- (3) WRT 명령어는 명령어 실행 접점이 On상태일 때 동작하므로 반드시 양변환 검출 접점을 이용하여 동작시키기 바랍니다.

(1) "S" 타입

(a) 파라미터 설정 영역

항목		내용	채!	널 별 디	바이스 영	J역	비고
0	값	설정	채널0	채널1	채널2	채널3	OI I
카운터 종류	h0000	리니어 카운트 설정	K300	K330	K360	K390	워드
선택	h0001	링 카운터 설정	N300	N330	N300	N390	저그
	h0000	1상 1입력 1체배					
펄스 입력	h0001	1상 2입력 1체배	1/001	1/001	1/061	1/001	워드
모드 설정	h0002	CW / CCW	K301	K331	K361	K391	쳐느
	h0003	2상 4체배					
	h0000	(단일비교) 작다					
	h0001	(단일비교) 작거나 같다					
비교출력	h0002	(단일비교) 같다					
모드 종류	h0003	(단일비교) 같거나 크다	K302	K332	K362	K392	워드
설정	h0004	(단일비교) 크다					
	h0005	(구간비교) 포함					
	h0006	(구간비교) 제외					
내부 프리셋 값 설정	-2,147,48	3,648 ~ 2,147,483,647	K304	K334	K364	K394	더블 워드
외부 프리셋 값 설정	-2,147,48	3,648 ~ 2,147,483,647	K306	K336	K366	K396	더블 워드

항 목		내용	채'	널 별 디	바이스 영	형역	비고
0 7	값	설정	설정 채널0 채널1 채널2 채널3		0 Y		
링 카운터 최대 값 설정	-2,147,483	3,648 ~ 2,147,483,647	K310	K340	K370	K400	더블 워드
비교 출력 최소값 설정	-2,147,48	3,648 ~ 2,147,483,647	K312	K342	K372	K402	더블 워드
비교 출력 최대값 설정	-2,147,48	3,648 ~ 2,147,483,647	K314	K344	K374	K404	더블 워드
비교 출력 출력 접점 지정	HFFFF h0000 h0001 h0002 h0003 h0004 h0005 h0006	P0020 P0021 P0022 P0023 P0024 P0025 P0026 P0027	K320	K350	K380	K410	워드
단위 시간당 회전수 설정		1 ~ 60,000		K352	K382	K412	더블 워드
1회전당 펄스 수 설정		1 ~ 60,000	K323	K353	K383	K413	더블 워드

(b) 동작 지령

구 분		채널 별 (기바이스 영역	
デ 正	채널0	채널1	채널2	채널3
카운터 사용 허용	K2600	K2700	K2800	K2900
카운터 내부 프리셋 지정	K2601	K2701	K2801	K2901
카운터 외부 프리셋 허용	K2602	K2702	K2802	K2902
감산 카운터 지정	K2603	K2703	K2803	K2903
비교 출력 허용	K2604	K2704	K2804	K2904
단위 시간당 회전수 허용	K2605	K2705	K2805	K2905
래치 카운터 지정	K2606	K2706	K2806	K2906
캐리 신호(Bit)	K2610	K2710	K2810	K2910
바로우 신호	K2611	K2711	K2811	K2911
비교 출력 출력 신호	K2612	K2712	K2812	K2912

(c) 모니터 영역

구 분		비고			
T T	채널0	채널1	채널2	채널3	미끄
현재 카운터 값	K262	K272	K282	K292	더블워드
단위 시간당 회전수	K264	K274	K284	K294	더블워드

(2) **"H"** 타입

(a) 파라미터 설정 영역

	내용				바이스 영	병역	
항목	71	설정	채널0	채널1	채널2	채널3	비고
	값	(70 (20 (20	채널4	채널5	채널6	채널7	
카운터 종류	h0000	리니어 카운트 설정	K300	K330	K360	K390	<u>د</u> ا
선택	h0001	링 카운터 설정	K2220	K2250	K2280	K2310	워드
	h0000	1상 1입력 1체배	1/001	1/001	1/001	1/001	o L
펄스 입력	h0001	1상 2입력 1체배	- K301	K331	K361	K391	워드
모드 설정	h0002	CW / CCW	140004	1,002.4	1,0001	1,0011	2
	h0003	2상 4체배	K2221	K2251	K2281	K2311	워드
	h0000	(단일비교) 작다					
	h0001	(단일비교) 작거나 같다	1/000	1,000	1/000	1,000	
=	h0002	(단일비교) 같다	K302	K332	K362	K392	
비교출력()	h0003	(단일비교) 같거나 크다					워드
모드 설정	h0004	(단일비교) 크다					
	h0005	(구간비교) 포함	K2222	K2252	K2282	K2312	
	h0006	(구간비교) 제외					
	h0000	(단일비교) 작다					
	h0001	(단일비교) 작거나 같다	K303	K333	K363	K393	
비교출력1	h0002	(단일비교) 같다	1000	Nooo	1,000	11090	
모드 설정	h0003	(단일비교) 같거나 크다					워드
	h0004	(단일비교) 크다	_				
	h0005	(구간비교) 포함	K2223	K2253	K2283	K2313	
	h0006	(구간비교) 제외					
내부 프리셋	_2 1 <u>4</u> 7 48	3,648 ~ 2,147,483,647	K304	K334	K364	K394	더블
값 설정	<i>L</i> , 177,70	C, C 10	K2224	K2254	K2284	K2314	워드
외부 프리셋	0 147 40	0 640 . 0 147 400 647	K306	K336	K366	K396	더블
값 설정		3,648 ~ 2,147,483,647	K2226	K2256	K2286	K2316	워드

		내용	채	널 별 디	바이스 영	· 영역	
항 목	71	<i>1</i> . T.	채널0	채널1	채널2	채널3	비고
	값	설정	채널4	채널5	채널6	채널7	
링 카운터 최소	0 117 10	0.040 0.447 400 045	K308	K338	K368	K398	더블
값 설정	-2,147,48	3,648 ~ 2,147,483,645	K2228	K2258	K2288	K2318	워드
링 카운터 최대	0 147 40	0 646 0 147 400 647	K310	K340	K370	K400	더블
값 설정	-2,147,40	3,646 2,147,483,647	K2230	K2260	K2290	K2320	워드
비교 출력	0 147 40	0.447.400.0400.447.400.047		K342	K372	K402	더블
최소값 설정	-2, 147,40	2,147,483,648 ~ 2,147,483,647		K2262	K2292	K2322	워드
비교 출력	0 147 40	0 040 0 147 400 047	K314	K344	K374	K404	더블
최대값 설정	-2,147,48	3,648 ~ 2,147,483,647	K2234	K2264	K2294	K2324	워드
	HFFFF	미사용					
	h0000	P0020					
	h0001	P0021					
	h0002	P0022					
	h0003	P0023	K320	K350	K380	K410	
	h0004	P0024					
	h0005	P0025					
비교 출력0	h0006	P0026					
출력 접점 지정	h0007	P0027					워드
	h0008	P0028					
	h0009	P0029					
	h000A	P002A				0 K410	
	h000B	P002B	K2240	K2270	K2300		
	h000C	P002C	112210	NEET 0	112000	TIEGO0	
	h000D	P002D	-				
	h000E	P002E	_				
	h000F	P002F					

		내용	채'	널 별 디	바이스 영	형역	
항 목	٦١	서저	채널0	채널1	채널2	채널3	비고
	값	설정	채널4	채널5	채널6	채널7	
	HFFFF	미사용					
	h0000	P0020					
	h0001	P0021					
	h0002	P0022					
	h0003	P0023	K321	K351	K381	K411	
	h0004	P0024					
	h0005	P0025					
비교 출력1 출력 접점 지정	h0006	P0026					
	h0007	P0027					워드
물약 접점 시정	h0008	P0028					
	h0009	P0029					
	h000A	P002A					
	h000B	P002B	1/0041	1/0071	1/0001	1/0001	
	h000C	P002C	K2241	K2271	K2301	K2331	
	h000D	P002D					
	h000E	P002E					
	h000F	P002F					
단위 시간당		4 00 000	K322	K352	K382	K412	G L
회전수 설정		1 ~ 60,000		K2272	K2302	K2332	워드
1회전당 펄스		1 ~ 60,000		K353	K383	K413	워드
수 설정		1 00,000	K2243	K2273	K2303	K2333	커

(b) 동작 지령

П 🗓			채널 병	별 디바0	l스 영역	(비트)		
구 분	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7
카운터 사용 허용	K2600	K2700	K2800	K2900	K21800	K21900	K22000	K22100
카운터 내부 프리셋 지정	K2601	K2701	K2801	K2901	K21801	K21901	K22001	K22101
카운터 외부 프리셋 허용	K2602	K2702	K2802	K2902	K21802	K21902	K22002	K22102
감산 카운터 지정	K2603	K2703	K2803	K2903	K21803	K21903	K22003	K22103
비교 출력0 출력 허용	K2604	K2704	K2804	K2904	K21804	K21904	K22004	K22104
비교 출력1 출력 허용	K2607	K2707	K2807	K2907	K21807	K21907	K22007	K22107
단위 시간당 회전수 사용 허용	K2605	K2705	K2805	K2905	K21805	K21905	K22005	K22105
래치 카운터 사용 허용	K2606	K2706	K2806	K2906	K21806	K21906	K22006	K22100
캐리 신호	K2610	K2710	K2810	K29100	K21810	K21910	K22010	K22110
바로우 신호	K2611	K2711	K2811	K29101	K21811	K21911	K22011	K22111
비교 출력0 출력 신호	K2612	K2712	K2812	K29102	K21812	K21912	K22012	K22112
비교 출력1 출력 신호	K2613	K2713	K2813	K29103	K21813	K21913	K22013	K22113

(c) 모니터 영역

7 H		채널 별 디바이스 영역(더블워드)							
구분	채널0	채널1	채널2	채널3	채널4	채널5	채널6	채널7	
현재 카운터 값	K262	K272	K282	K292	K2182	K2192	K2202	K2212	
단위 시간당 회전수	K264	K274	K284	K294	K2184	K2194	K2204	K2214	

8.3.2 에러 코드

내장 고속 카운터의 에러에 대하여 설명합니다.

• 발생한 에러는 아래 영역에 저장합니다.

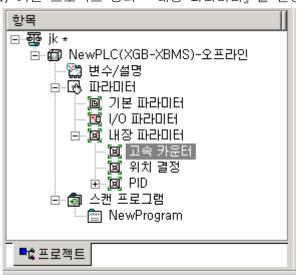
구 분		채널 별 디바이스 영역									
十 亡	채널0	채널0 채널1 채널2 채널3 채널4 채널5 채널6 채널7							비고		
에러 코드	K266	K276	K286	K296	K2186	K2196	K2206	K2216	워드		

• 발생한 에러 코드를 설명합니다.

에러 코드 (10진수)	에 러 내 용	비고
20	카운터 종류 범위 외 설정 에러	
21	펄스 입력 종류 범위 외 설정 에러	
22	0(2,4,6)번 채널 2상 동작 중에 1(3,5,7)번 채널 런 요청시	
	* 0(2,4,6)번 채널 2상 동작 시 1(3,5,7)번 채널 사용은 불가합니다.	
23	비교 출력 종류 범위 외 설정 에러	
25	카운터 범위 외 내부 프리셋 값 설정 에러	
26	카운터 범위 외 외부 프리셋 값 설정 에러	
27	링 카운터 설정 값 설정 에러	
	* 링 카운터 설정 값은 2보다 같거나 크게 설정 가능합니다.	
28	최대 입력 범위 외 비교 출력 최소 값 설정 에러	
29	최대 입력 범위 외 비교 출력 최대 값 설정 에러	
30	비교 출력 최소 값>비교 출력 최대 값 설정 에러	
31	비교 출력 출력 접점 지정값 설정 에러	
34	단위시간 설정값 범위 외 설정 에러	
35	1회전당 펄스 값 범위 외 설정 에러	
36	최대 입력 범위 외 비교 출력 최소 값 설정 에러 (비교 출력 1)	"H" 타입
37	최대 입력 범위 외 비교 출력 최대 값 설정 에러 (비교 출력 1)	"H" 타입
38	비교 출력 최소 값>비교 출력 최대 값 설정 에러 (비교 출력 1)	"H" 타입
39	비교 출력 출력 접점 지정값 설정 에러 (비교 출력 1)	"H" 타입

알아두기

두 가지 이상의 에러가 발생한 경우, 모듈은 가장 늦게 발생한 에러 코드를 저장하며 먼저 발생된 에러가 제거됩니다.


8.4 고속 카운터 사용 예

고속 카운터 사용예에 대해 아래에 설명합니다.

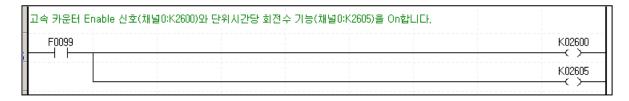
(1) 고속 카운터 파라미터 설정

고속 카운터 동작을 위한 각종 파라미터 설정방법을 아래에 나타냅니다.

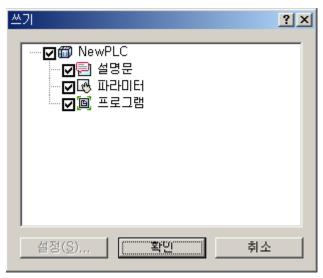
(a) 기본 프로젝트 창의 『내장 파라미터』를 설정 합니다.

(b) 고속카운터를 선택하면 아래와 같이 고속 카운터 파라미터 설정창이 표시됩니다. 각각 파라미터의 상세 설정 내용은 8.1~ 8.3절을 참조하여 주십시오.

(모든 파라미터 설정내용은 특수 K 디바이스 영역에 저장됩니다.)


특수모듈 파라미터 설정 ? × 고속카운터 모듈 파라미터 채널이 채널1 채널2 채널3 □ 카운터 모드 리니어 카운터 리니어 카운터 리니어 카운터 리니어 카운터 1상1입력1체배 1상1입력1체배 □ 펄스 입력 모드 1상1입력1체배 1상1입력1체배 0 내부 프리셋 0 0 0 0 0 0 외부 프리셋 0 링카운터 설정치 2 2 □ 비교출력 모드 (단일비교)작다 (단일비교)작다 (단일비교)작다 (단일비교)작다 비교출력 최소설정값 Π 0 0 0 0 0 비교출력 최대설정값 사용안함 사용안함 □ 비교출력 출력접점지정 사용안함 사용안함 단위 시간 [ms] 1 1 1 1 1 1회전당 펄스수 확인 취소

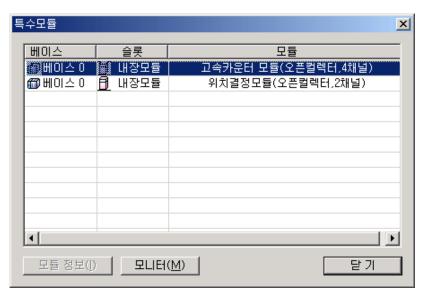
(c) 프로그램에서 고속카운터 Enable 신호(채널0:K2600)를 On 합니다.



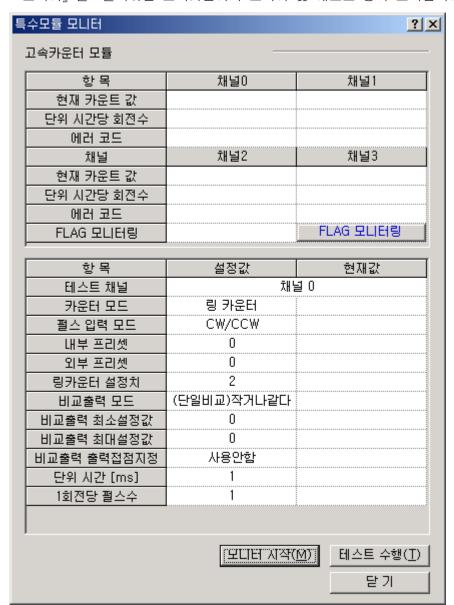
(d) 고속 카운터 각각의 부가기능을 사용하기 위해서는 동작 지령의 허용 플래그를 On 시켜야 합니다. [8.3.1 고속 카운터 용 특수 K영역] 의 2) 동작지령 참조

예를 들어 부가기능중 단위시간당 회전수 기능을 사용하는 경우 K2605 비트를 On 시킵니다.

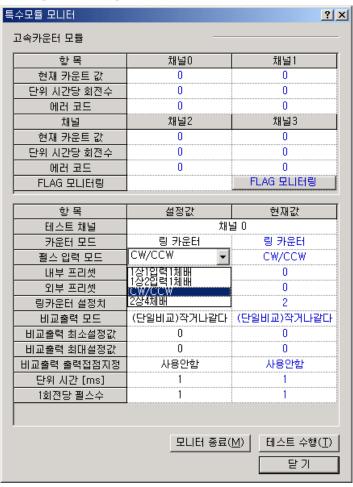
(e) 설정이 완료 되면 프로그램과 파라미터를 PLC로 다운로드 합니다.



(2) 모니터링 및 설정 지령


고속카운터의 모니터링 및 지령 설정 방법을 아래에 나타냅니다.

(a) 모니터를 시작하고 특수모듈 모니터를 클릭하면 아래의 창이 표시됩니다.



(b) 『모니터』를 클릭하면 고속카운터의 모니터 및 테스트 창이 표시됩니다.

항 목	내 용	비고
플래그 모니터링	고속카운터 플래그 모니터링 및 지령 창 표시	
모니터 시작	각 항목을 모니터를 시작합니다.(특수 K 디바이스 영역 모니터)	
테스트 수행	설정한 각 항목을 PLC로 Write합니다. (특수 K 디바이스 영역으로 설정내용 쓰기)	
닫기	모니터 종료	

(c) 『모니터 시작』를 클릭하면 고속카운터의 모니터 화면이 표시되고 각 파라미터를 설정할 수 있습니다. 이때, 변경된 값은 전원 Off => On 시 또는 모드 변경시 저장되지 않습니다. 테스트 용으로만 사용하여 주시기 바랍니다.

(d) 『플래그 모니터』를 클릭하면 고속카운터의 각 플래그 모니터 화면이 표시되고 각 플래그 별 동작 지령을 지시 할 수 있습니다.(클릭시 반전 지령)

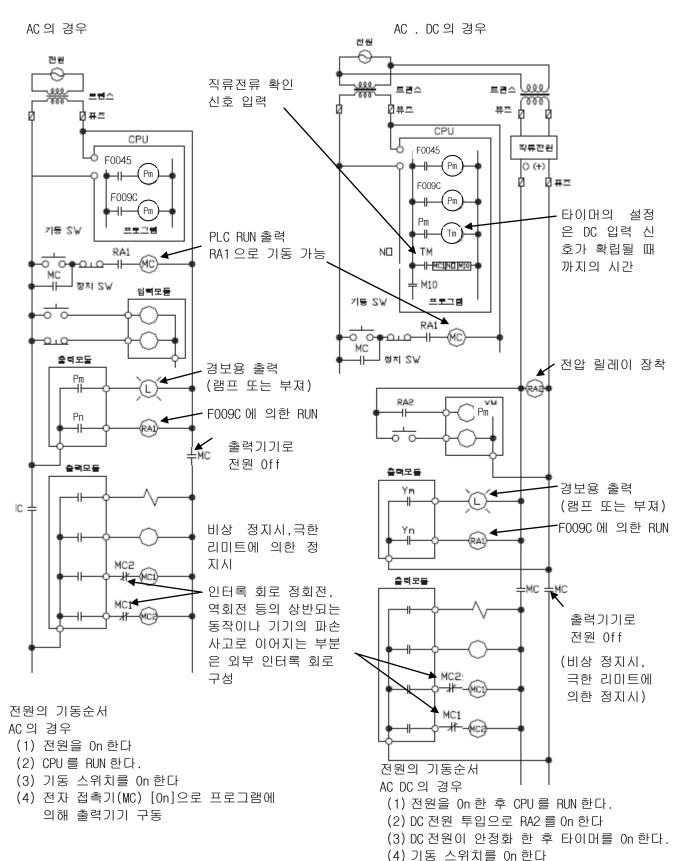
제 9 장 설치 및 배선

9.1 안전상의 주의사항

-

<u>/</u>! 위 험

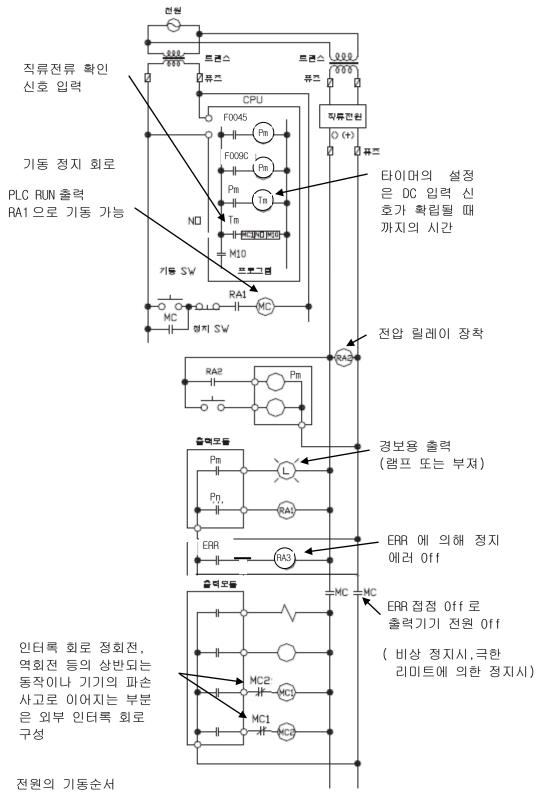
- ▶ 외부전원의 이상이나 PLC 본체의 고장시에 오출력 오동작에 의한 사고의 위험이 발생할 수 있으므로 시스템 전체가 안전하게 동작하도록 PLC의 외부에 아래와 같이 안전회로를 설계하여 주십시오.
 - (1) 비상정지회로 , 보호회로 , 정회전/역회전 등의 상반되는 동작의 인터록 회로, 위치결정의 상한 /하한등 기계의 파손방지 인터록 회로등은 PLC의 외부에 회로를 구성하여 주십시오.
 - (2) PLC는 다음의 이상상태를 검출하면 연산을 정지하여 무든 출력을 Off 합니다. (파라미터 설정에 따라 출력 유지 기능 있음)
 - (a) 전원 모듈의 과전류 보호장치 또는 과전압 보호장치 기능 작동 시
 - (b) PLC CPU에서 WDT에러등 자기진단 기능 이상 발생시
- ▶ PLC CPU 에서 검출 하지 못하는 입출력 제어부분등의 이상시에는 모든 출력이 Off 될 수 있습니다. 이러한 이상시에도 기계의 동작이 안전하도록 PLC 의 외부에 Fail Safe 회로를 구성하거나 기구를 설계하여 주십시오. 10.2 페일 세이프 회로의 구성예를 참조하여 주십시오.
 - (1) 출력모듈의 출력소자인 릴레이나 TR.등의 고장으로 출력이 정상적으로 동작 되지 않는 경우가 발생할수 있습니다. 중대한 사고를 일으킬수 있는 출력신호에 대해서는 외부에 감시 회로를 설치 하여 주십시오.
- ▶출력모듈에서 정격이상의 부하전류또는 부하단락등에 의해 과전류가 지속해서 흐르는 경우 발연,발 화의 위험이 발생할 수 있으므로 외부에 퓨즈등의 안전회로를 설치 하여 주십시오.
- ▶ PLC 본체에 전원 투입후 외부 공급 전원을 투입하도록 설계하여 주십시오. 외부 공급전원을 먼저 투입하면 오출력,오동작에 의한 사고의 위험이 있습니다.
- ▶ 통신의 경우 이상이 발생하였을 경우 각국의 동작 상태에 대해서는 각 통신 사용설명서를 참조하여 주십시오. 오출력 오동작에 의한 사고의 위험이 발생할 수 있습니다.
- ▶ CPU 모듈에 주변기기를 접속하여 운전중에 PLC를 제어 할 경우 항상 시스템 전체가 안전하게 동작하도록 PLC 프로그램상에 인터록 회로를 구성하여 주십시오. 또한 운전중 프로그램 변경,운전상태 벼 경등을 실행할 경우에는 사용설명서를 잘 숙지하시어 충분히 안전상태를 확인하고 조작하여 주십시오. 특히 외부기기로 원거리에 있는 PLC 에 상태제어등을 실행할 경우 통신의 이상등으로 PLC 측에 이상에 즉각 대응할 수 없는 경우도 발생할 수 있습니다.


PLC 프로그램에서 인터록 회로를 구상하는 것과 더불어 데이터 통신 이상 발생시 시스템의 조치 방법등을 외부기기와 PLC CPU 간으로 한정하여 주십시오.

<u>/</u> 위 험

- ▶ 제어선이나 통신 케이블은 주회로나 동력선등과 근접하지 않토록 하여 주십시오. PLC 프로그램에서 인터록 회로를 구상하는것과 더불어 데이터 통신 이상 발생시 시스템의 조치 방법 등을 외부기기와 PLC CPU간으로 한정하여 주십시오.
 - 100 ㎜이상 격리하여 주십시오. 노이즈에 의한 오동작의 원인이 됩니다.
- ▶ 출력모듈에서 램프 부하,히터,솔레노이드 밸브등을 제어 할 경우 출력의 Off → On 시에 큰 전류가 (통상의 10 배정도) 흐르는 경우가 있으므로 정격 전류에 여유가 있는 모듈로의 변경등을 고려 하여 주십시오.
- ▶ PLC 전원의 On-Off 시에 PLC 본체 전원과 프로세스용 외부전원(특히 DC)의 지연시간 및 기동시간의 차이에 따라 프로세스 출력이 일시적으로 정상동작 하지 않는 경우가 있습니다. 예를 들면 DC 출력 모듈에서 프로세스용 외부 전원을 투입하고 난 뒤 PLC 본체 전원을 투입한 경우 DC 출력 모듈이 PLC On 시에 일순간 오출력 되는 경우가 있으므로 먼저 PLC 본체 전원이 투입되도록 회로를 구성할 필요사 있습니다.
 또한 외부 전원의 이상시나 PLC 고장시는 이상동작이 될 가능성이 있습니다.
- ▶이의 이상이 시스템 전체에 이상 동작으로 연결되지 않도록 하기 위해서 이상동작에 따른 기계의 파손 이나 사고로 연결되는 부분(비상 정지 회로, 보호회로 , 인터록 회로)은 PLC 외부에서 회로를 구성하 여 주십시오.

9.1.1 페일 세이프 회로


(1) 시스템 설계 회로 예 (전원모듈의 ERR 접점을 사용하지 않는 경우)

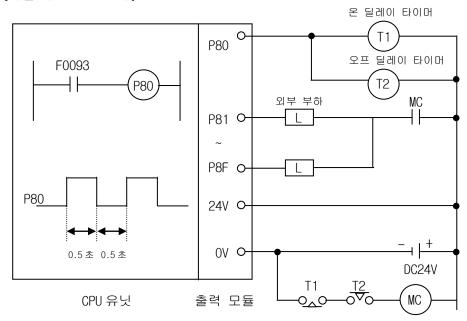
(5) 전자 접촉기(MC) [On]으로 프로그램에

의해 출력기기 구동

AC DC의 경우

- (1) 전원을 On 한 후 CPU를 RUN 한다.
- (2) DC 전원 투입으로 RA2 를 On 한다
- (3) DC 전원이 안정화 한 후 타이머를 On 한다.
- (4) 기동 스위치를 On 한다
- (5) 전자 접촉기(MC) [On]으로 프로그램에 의해 출력기기 구동

(3) PLC 고장시의 페일 세이프 대책


PLC CPU 와 메모리 이상 등은 자기진단에 의해 검출되지만 입출력 제어 부분 등에 이상이 있을 경우는 CPU 에서 고장을 검출할 수 없는 경우가 있습니다. 이런 경우 고장의 상태에 따라서 다르겠지만 모든 접점이 On 되거나 Off 되기도 하여 제어 대상의 정상적인 운전이나 안전을 확보할 수 없는 상태가 되는 경우가 발생할 수 있습니다. 제작사로서 품질에 최선을 다하고 있습니다만 어떤 원인에 의해 PLC 가 고장 난 경우 기계의 파손이나 사고로 이어지지 않도록 외부에 페일 세이프 회로를 구성하여 주십시오.

시스템 예

페일 세이프용 출력모듈은 시스템의 최종 슬롯에 장착하여 주십시오.

[페일 세이프 회로 예]

P80은 0.5초 간격으로 On/Off를 반복하므로 무접점의 출력모듈을 사용하여 주십시오.

9.1.2 PLC 발열량 계산

- (1) 각 부분별 소비 전력
 - (a) 모듈의 소비전력

전원 모듈의 전력변환 효율은 약 70% 정도이며, 30%는 발열로써 소비되고 출력 전력의 3/7이 자체 소비 전력이 됩니다. 따라서 계산식은

• $W_{pw} = 3/7 \{(15 \lor X 5) + (124 \lor X 24)\} (W)$

lsv : 각 모듈 DC5V 회로의 소비 전류 (내부 소비 전류)

124V: 출력 모듈 내부 사용 DC24V의 평균 소비 전류

(동시 On 점수 분의 소비 전류)

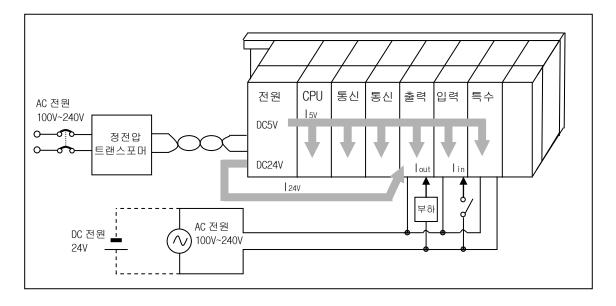
외부로부터 DC24V 를 공급할 경우나 DC24V 출력이 없는 전원 모듈을 사용 할 때에는 해당되지 않습니다.

(b) DC5V 회로 소비 전력의 합계

전원 모듈의 DC5V 출력 회로 전력이 각 모듈 소비 전력의 합계입니다.

• $W_{5V} = I_{5V} X 5 (W)$

(c) DC24V 평균 소비 전력(동시 On 점수 분의 소비 전력) 전원 모듈의 DC24V 출력 회로 평균 전력이 각 모듈의 합계 소비 전력 입니다.


• $W_{24V} = I_{24V} \times 24 (W)$

(d) 출력 모듈의 출력 전압강하에 의한 평균 소비전력(동시 On 점수분의 소비전력)

• Wout = lout X Vdrop X 출력점수 X 동시 On 율 (W)

lout : 출력전류 (실 사용상의 전류) (A)

Vdrop: 각 출력 모듈의 전압 강하 (V)

- (e) 입력 모듈의 입력부 평균 소비전력 (동시 On 점수분의 소비전력)
 - Win = lin X E X 입력점수 X 동시 On 율 (W)
 lin : 입력전류 (교류의 경우는 실효치) (A)
 E : 입력전압 (실 사용상의 전압) (V)
- (f) 특수 모듈 전원부의 소비전력
 - Ws = 15V X 5 + 124V X 24 + 1100V X 100 (W) 이상 각 블록별로 계산한 소비전력을 합한 값이 PLC 시스템 전체의 소비전력이 됩니다.
 - W = W_{PW} + W_{5V} + W_{24V} + W_{out} + W_{in} + W_s (W) 이 전체의 소비전력(W)에 따라 발열량을 계산하여 제어반내 온도상승을 검토하여 주십시오.

제어반내 온도상승의 대략 계산식을 다음에 표시합니다.

T = W / UA [°C]

W: PLC 시스템 전체의 소비전력 (위에서 구한 값)

A : 제어반내 표면적 [m²]

U: 팬 등에 의해 제어반 내의 온도를 균일하게 하는 경우 - - - 6 제어반의 공기를 순환시키지 않는 경우 - - - - - - - 4

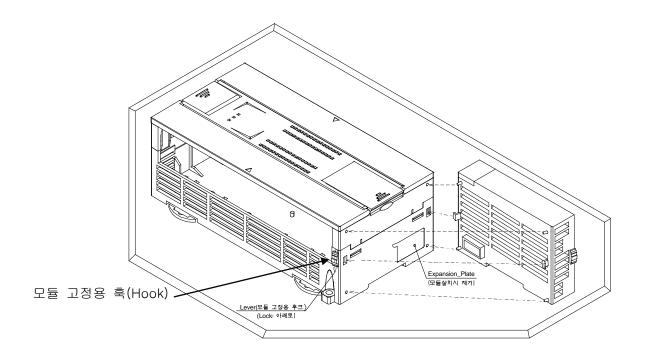
제어반내의 온도상승이 규정범위를 넘어선 경우는 팬등을 장착하여 제어반내의 온도를 규정 온도 이내로 하여 주십시오. 또한 팬을 사용할 경우 외부의 공기와 함께 먼지등도 흡입되 므로 먼지등에 의해 PLC 에 영향을 미칠수 있으므로 주의하여 주십시오.

9.2 모듈의 장착 및 분리

•

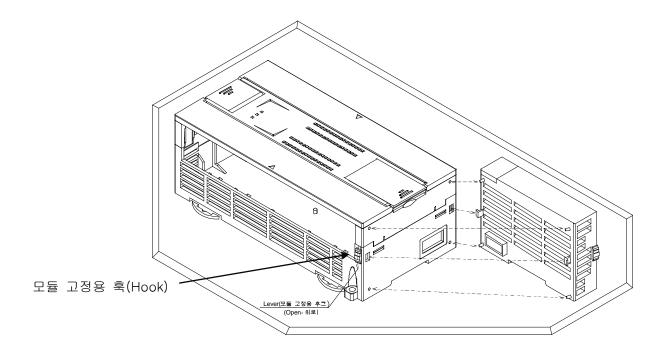
9.2.1 모듈의 장착 및 분리

취급상의 주의사항


PLC는 이 사용설명서에서 제시하는 일반 규격 범위내에서 사용하여 주십시오. 범위 이외에서 사용하는 경우 감전, 화재, 오동작 , 제품의 손상 또는 소손의 원인이 됩니다.

/! 주 의

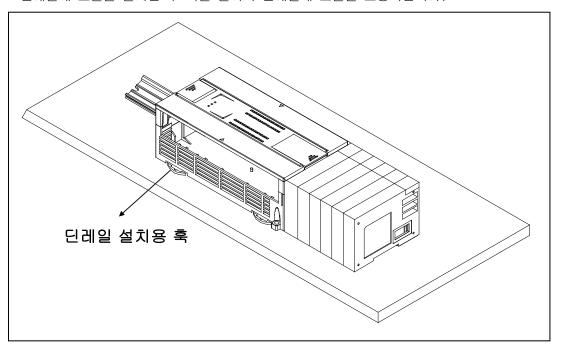
- ▶ 모듈은 반드시 모듈의 고정용 돌기를 모듈 고정 홀에 정확히 장착되게 한 후 고정하여 주십시오. 무리하게 부착하면 모듈이 파손됩니다 모듈이 바르게 장착되지 않으면 오동작, 고장의 원인이 됩니다.
- ▶ 모듈의 케이스 ,단자대 커넥터등은 떨어트리거너 강한 충격을 받지 않도록 하여 주십시오.
- ▶ 모듈의 PCB 기판은 케이스에서 분리 하지 말아 주십시오.


(1) 모듈의 장착

- 접속하려는 모듈 상단의 증설 커버를 제거합니다.
- 하단의 접속용 돌기 부분과 네 모서리의 위치 고정용 돌기 부분이 맞도록 모듈을 서로 밀어서 접속합니다.
- 접속이 끝난후 윗부분과 아래 부분에 있는 모듈 고정용 Hook을 아래쪽으로 내려 확실히 고정합니다.

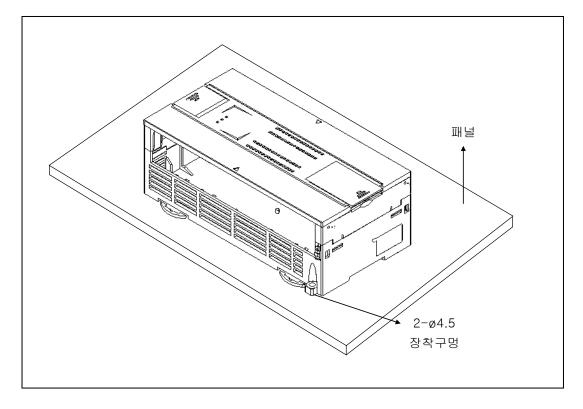
(2) 모듈의 분리

- 윗부분과 아래 부분에 있는 모듈 고정용 Hook을 위쪽으로 올려 접속이 분리 될 수 있게 합니다.
- 양손으로 모듈을 잡고 모듈의 떼어 냅니다.(무리한 힘을 가 하지 말아 주십시오)

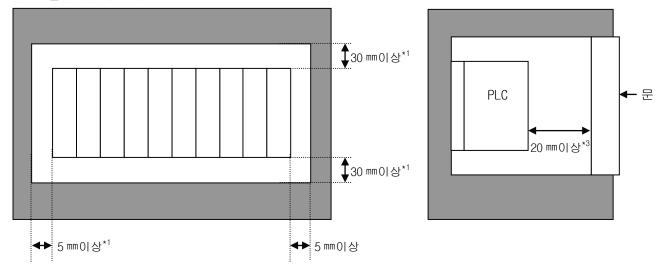

▶ 모듈을 분리할 때에 무리하게 모듈을 떼어내려고 하면, 훅 또는 모듈 고정용 돌기부가 파손 됩니다.

(3) 모듈의 설치

XGB PLC는 기본 유닛, 증설 모듈에 딘(DIN)레일(레일폭 35mm)용 훅(Hook)을 표준 장착하고 있어딘(DIN)레일에 설치할 수 있습니다.


(a) 딘레일에 설치하는경우

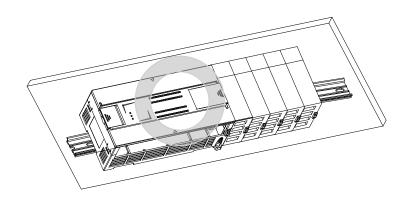
- 모듈의 아래 부분에 있는 딘레일 설치용 훅을 당겨서 딘레일에 설치할 수 있도록 합니다.
- 딘레일에 모듈을 설치한 후 훅을 밀어서 딘레일에 모듈을 고정시킵니다.


(b) 패널에 직접 설치하는 경우

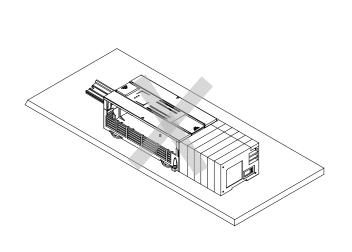
- XGB 콤팩트형 기본유닛은 나사 장착 구멍을 이용해서 패널에 직접 설치할 수 있습니다.
- 제품을 패널에 직접 설치할 때 고정 나사는 M4 타입을 사용해 주시기 바랍니다.

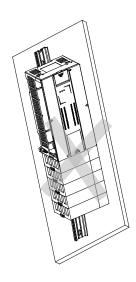
(4) 모듈 장착 위치

통풍이 잘 되도록 또는 모듈 교환이 용이하도록 모듈 상,하부의 구조물이나 부품과는 아래의 거리를 두고 설치하여 주십시오.


*1 : 배선 덕트 높이가 50 mm 이하인 경우(그외의 경우는 40 mm 이상)

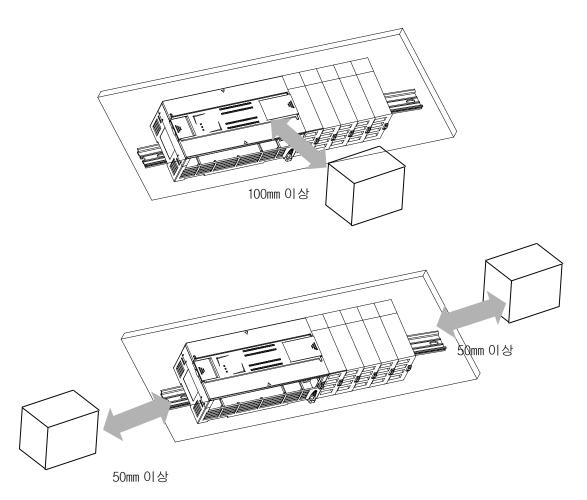
*2 : 인접하는 모듈을 빼내지 않고 케이블을 장착하는 경우는 20 mm 이상


*3 : 커넥터 타입의 경우는 8020 mm 이상


(5) 모듈 장착 방향

(a) PLC는 방열을 위해 통풍이 잘 되는 아래 그림과 같은 방향으로 설치하여 사용해 주십시오.

(b) 아래 그림과 같은 방향으로는 설치하지 마십시오.



(6) 다른 기기와의 거리

방사 노이즈나 열의 영향을 피하기 위해서 PLC와 기구 (커넥터와 릴레이)는 아래의 거리 만큼 띄어서 설치하여 주십시오.

PLC 앞면에 장착된 기구 : 100 mm이상 PLC 좌우 방향에 장착된 기구 : 50 mm이상

9.2.2 취급 시 주의 사항

각 모듈의 개봉에서부터 설치까지 취급상의 주의사항에 대해 설명합니다.

- 떨어뜨리거나 강한 충격을 주지 않도록 하여 주십시오.
- 케이스로부터 PCB를 분리하지 말아 주십시오. 고장의 원인이 됩니다.
- 배선 시 모듈 상부에 배선 찌꺼기 등의 이물질이 들어가지 않도록 주의하여 주십시오. 만약 들어간 경우에는 제거하여 주십시오.

(1) 입출력 모듈의 취급 시 주의사항

입출력 모듈을 취급하거나 설치할 경우의 주의사항에 대하여 설명합니다.

(a) 입출력 모듈 규격의 재확인

입력 모듈은 입력 전압에 유의하여야 하며, 출력 모듈의 경우 최대 개폐 능력을 초과하는 전압을 인가하면 고장. 파괴 및 화재의 위험이 있습니다.

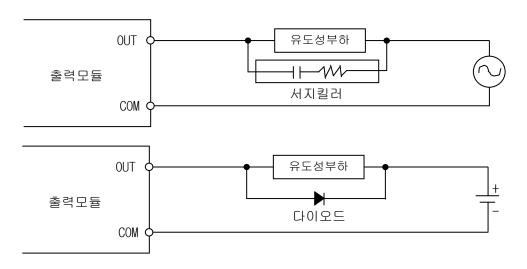
(b) 사용전선

전선은 주위온도, 허용 전류를 고려해서 선정하여야 하며, 전선의 최소 규격은 AWG22(0.3mm²) 이 상이 되어야 합니다.

(c) 환경

입출력 모듈을 배선할 경우, 높은 열이 나는 기기나 물질에 너무 가까이 있거나, 기름 등에 배선 이 장시간 직접 접촉하게 되면 합선의 원인이 되며 파손이나 오동작을 발생할 수 있습니다.

(d) 극성


단자대에 극성이 있는 모듈은 전원을 인가하기 전에 극성을 확인해야 합니다.

(e) 배선

- 입출력 배선을 고압선이나 동력선과 함께 배선하는 경우에는 유도장해를 일으켜 오 동작이나 고 장의 원인이 될 수 있습니다.
- 입출력 동작 표시부(LED) 앞으로는 전선이 지나가지 않도록 해야 합니다.

(입출력 표시를 정확히 식별할 수 없습니다.)

• 출력 모듈에 유도부하가 접속되는 경우에는, 서지킬러(Surge Killer)나 다이오드를 부하와 병 렬로 연결하여 주십시오. 다이오드의 캐소드측을 전원의 +측에 접속하여 주십시오.

(f) 단자대

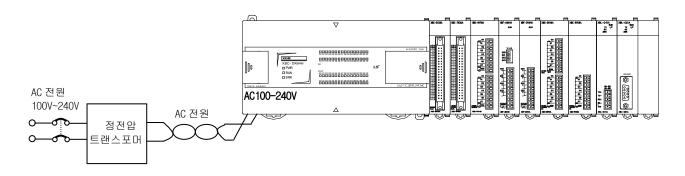
단자대의 밀착 상태를 확인하고, 단자대 배선이나 나사구멍 가공 시 전선의 찌꺼기가 PLC 안으로 들어갈 수 있으므로 주의하여 주십시오. 이 경우에는 오동작과 고장의 원인이 됩니다.

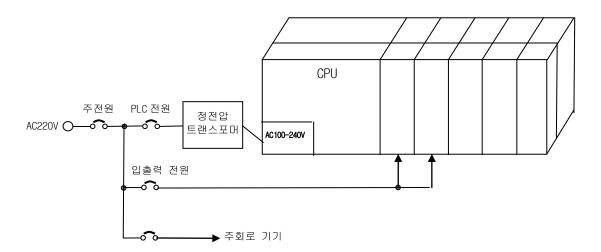
(g) 위에 열거한 것 이외에 입출력 모듈에 강한 충격을 주거나, PCB 기판을 케이스로부터 분리시키는 것을 삼가하여 주십시오.

9.3 배선

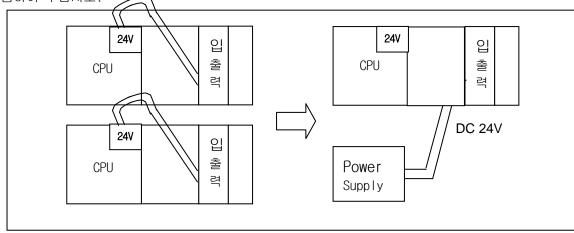
시스템을 사용하는 경우, 배선에 관련하여 알아야 할 주의 사항에 대해 설명합니다.

⚠ 위 험

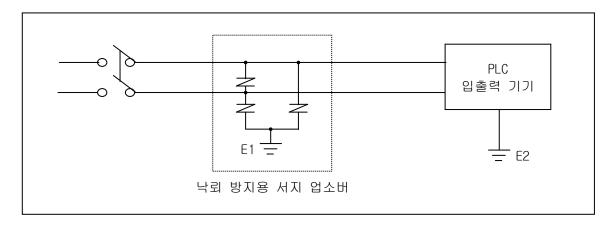

- ▶배선작업은 반드시 외부에서 전원을 차단한 후 실시하여 주십시오.
- ▶모두 차단되지 않으면 감전이나 제품이 손상될 우려가 있습니다.'
- ▶ 배선 작업 후 통전, 운전을 실행할 경우에는 반드시 제품에 부속된 단자 커버를 장착하십시오. 단자 커버를 장착하지 않으면 감전의 우려가 있습니다.


- ▶ FG 및 LG 단자는 PLC 전용의 D 종 접지 (제 3 종 접지)이상으로 접지하여 주십시오. 감전,오동작의 위험이 있습니다.
- ▶ 모듈의 배선은 제품의 정격전압 및 단자 배열을 확인하고 나서 올바르게 실시하여 주십시오. 정격과 다른 전원을 접속하거나 배선하게 되면 화재, 고장의 원인이 됩니다.
- ▶ 외부 접속용 커넥터는 제작사 지정의 공구로 압착,압점, 올바른 납땜을 하여 주십시오. 접속이 불안전 하게 되면 단락,화재,오동작의 원인이 됩니다.
- ▶ 단자나사의 조임은 규정 토오크 범위내에서 하여 주십시오. 단자 나사의 조임이 헐거우면 단락,화재, 오동작의 원인이 됩니다.
- ▶ 모듈내에서 단선조각이나 배선 쓰레기등의 이물질이 들어가지 않도록 주의하여 주십시오. 화대, 고장 오동작의 원인이 됩니다.

9.3.1 전원 배선


(1) 전원 변동이 규정 값 범위보다 큰 경우에는 정전압 트랜스포머를 접속하여 주십시오.

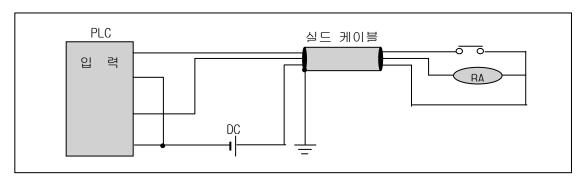
(2) 선간 및 대지간 노이즈가 작은 전원을 연결하여 주십시오. (노이즈가 많은 경우에는 절연 트랜스포머를 접속하여 주십시오.) (3) PLC의 전원과 입출력 기기 및 동력기기는 아래와 같이 계통을 분리하여 주십시오.



- (4) 기본 유닛 의 DC24V 출력 사용 시
 - (a) 여러 대의 전원 모듈 DC24V 출력을 병렬로 접속하지 말아 주십시오. 병렬로 접속하면 모듈이 파손 됩니다.
 - (b) 1 대의 전원 모듈로 DC24V 출력 용량이 부족할 경우에는 아래 그림과 같이 외부의 DC24V 전원으로 공급하여 주십시오.

- (5) AC110V 선, AC220V 선, DC24V 선은 가능한 조밀하게 트위스트하고, 최단 거리로 접속하여 주십시오.
- (6) AC110V 선, AC220V 선은 전압 강하를 작게 하기 위하여 가능한 굵은 선(2mm²)을 사용하여 주십시오.
- (7) AC110V 선, DC24V 선은 주 회로(고전압, 대전류)선, 입출력 신호 선과 근접시키지 말아 주십시오. 가능한 100mm 이상 떨어뜨려 주십시오.

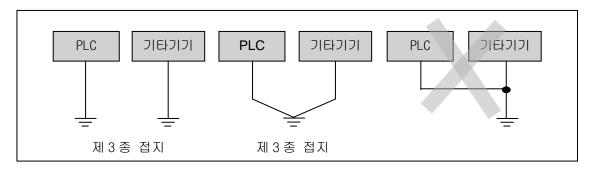
(8) 번개 등의 서지 대책으로써 아래 그림과 같은 뇌서지 업소버(Absorber)를 사용하여 주십시오.



알아두기

- (1) 뇌서지 업소버의 접지(E1)는 PLC의 접지(E2)와 분리하여 주십시오.
- (2) 전원전압 최대 상승 시에도 서지 업소버의 최대 허용 전압을 넘지 않도록 선정하여 주십시오.
- (9) 노이즈 침투가 우려될 때에는 절연 차폐 트랜스나 노이즈 필터를 사용해 주십시오.
- (10) 각 입력 전원의 배선은 가능한 짧게 꼬아주시고 차폐 트랜스나 노이즈 필터의 배선은 덕트를 거치지 않도록 해 주십시오.

9.3.2 입출력 기기 배선


- (1) 입출력 배선용 전선의 규격은 0.3~2 mm² 이지만, 사용하기 편리한 전선 규격(0.3 mm²))으로 하는 것이 좋습니다.
- (2) 입력 선과 출력 선은 분리하여 배선해 주십시오.
- (3) 입출력 신호 선은 고전압·대전류의 주회로선과 100mm 이상 분리하여 배선해 주십시오.
- (4) 주 회로 선과 동력 선을 분리할 수 없는 경우에는 일괄 실드 케이블을 사용하고, PLC 측을 접지하여 주십시오.

(5) 배관 배선을 할 경우에는 관을 확실하게 접지하여 주십시오.

9.3.3 접지 배선

- (1) 본 PLC는 충분한 노이즈 대책을 실시하고 있어, 특별히 노이즈가 많은 경우를 제외하고는 접지를 하지 않아도 사용할 수 있습니다. 단, 접지를 할 경우에는 아래의 사항을 참고하여 주십시오.
- (2) 접지는 가능한 한 전용 접지로 하여 주십시오. 접지 공사는 제 3 종 접지(접지 저항 100 Ω 이하)로 하여 주십시오.
- (3) 전용 접지를 할 수 없는 경우에는 아래 그림 (b) 와 같이 공용 접지로 하여 주십시오.

(a) 전용접지 : 가장 좋음 (b) 공용접지 : 양호 (c) 공용접지 : 불량

- (4) 접지용 전선을 2 mm² 이상의 것으로 사용하여 주십시오. 접지점을 가능한 한 본 PLC의 근처에 두어 접지선의 길이를 짧게 하여 주십시오.
- (5) 만약 접지에 따라 오 동작하는 일이 있으면 FG를 접지와 분리하여 주십시오.

9.3.4 배선용 전선 규격

배선에 사용되는 전선 규격은 다음과 같습니다.

외부 접속의 종류	전선 규격 (mm²)		
피구 압독의 중류	하 한	상 한	
디지털 입력	0.18 (AWG24)	1.5 (AWG16)	
디지털 출력	0.18 (AWG24)	2.0 (AWG14)	
아날로그 입출력	0.18 (AWG24)	1.5 (AWG16)	
통신	0.18 (AWG24)	1.5 (AWG16)	
주전원	1.5 (AWG16)	2.5 (AWG12)	
보호 접지	1.5 (AWG16)	2.5 (AWG12)	

제 10 장 유지 및 보수

PLC를 항상 최상의 상태로 유지하기 위하여 일상 점검과 정기 점검을 실시해 주십시오.

10.1 보수 및 점검

입출력 모듈은 주로 반도체 소자로 구성되어, 수명이 반영구적이라 할 수 있습니다.그러나 주위 환경에 영향을 받아 소자에 이상이 발생할 수 있으므로 정기적인 점검이 필요합니다. 6 개월에 1~2 회 정도 점검 할사항에 대하여 아래 항목을 참고하여 주십시오.

점검 항목		판정 기준	조 치
공급 전원		전원 변동 범위 내 (-15% / +20% 이내)	공급 전원이 허용 전압 변동 범위 내에 들 도록 변경하여 주십시오.
입출력용 전원		각 모듈의 입출력 규격	공급 전원이 각 모듈의 허용 전압 변동 범위 내에 들도록 변경해 주십시오.
	온도 측정	0 ~ + 55℃	사용 온도와 사용 습도가 적당하도록 조절합
주위 환경	습도 측정	5 ~ 95%RH	니다.
	진동 유무	진동 없음	방진 고무를 사용하거나 기타 진동 방지 대 책을 강구합니다.
각 모듈의 흔들림		흔들림이 없을 것	모든 모듈이 흔들리지 않도록 합니다.
단자 나사의 풀림		풀림이 없을 것	풀린 곳은 조여 줍니다.
예비 부품		예비 보유량과 보관 상태는 양호한지 확인	부족분은 충당하고, 보관 상태를 개선합니 다.

10.2 일상 점검

일상적으로 실시하여야 하는 점검은 다음과 같습니다.

점검 항목		점검 내용	판정 기준	조 치
베이스의 부착 상태		부착 나사의 풀림을 확인	확실하게 부착되어 있을 것	나사 조임
입출력 모듈의 부착 상태		모듈의 부착 나사가 확실하게 조여져 있는가를 확인모듈 위 커버의 이탈 여부 확인	확실하게 조여져 있을 것	나사 확인
		단자 나사의 풀림	풀림이 없을 것	나사 조임
단자대 및 증설 케이블의 접속 상태		압착 단자 간의 근접	적정한 간격일 것	교정
		증설 케이블의 커넥터부	커넥터가 풀려있지 않을 것	교정
	전원 LED	점등 확인	점등 (소등은 이상)	5장 참조
RUN LED		Run 상태에서 점등 확인	점등 (소등 또는 점멸은 이상)	5 장 참조
LED 입력 LED	STOP LED	Run 상태에서 소등 확인	점멸은 이상	5장 참조
	입력 LED	점등, 소등 확인	입력 On 시 점등 입력 Off 시 소등	5 장 참조
	출력 LED	점등, 소등 확인	출력 On 시 점등 출력 Off 시 소등	5장 참조

10.3 정기 점검

6개월에 1~2회 정도 다음 항목을 점검하여 필요한 조치를 실시하여 주십시오.

점검 항목		점검 방법	판정 기준	조 치	
	주위 온도		0 ~ 55 °C		
주위 환경	주위 습도	온도 / 습도계로 측정 부식성 가스 측정	5 ~ 95%RH	조정 (제어반 내 환경	
	주위 오염도		부식성 가스가 없을 것	기준)	
PLC	풀림, 흔들림	흔들림 각 모듈을 움직여 본다. 단단히 특		나사 조임	
상태 먼지, 이물질 부		육안 검사 부착이 없을 것			
	나사의 풀림	드라이버로 조임	풀림이 없을 것	조임	
접속 상태	압착 단자의 근접	육안 검사	적당한 간격일 것	교정	
Ö ИІ	커넥터 풀림	육안 검사	풀림이 없을 것	커넥터 고정나사 조임	
전원 전압 점검		전원 입력 단자의 전원 전압을 테스터를 이용하 여 확인	DC24V:DC20.4 ~ 28.8V	공급 전원 변경	

제 11 장 트러블 슈팅

시스템 운영 시 발생하는 각종 에러의 내용, 발생원인 발견 방법 및 조치 방법에 대해 설명합니다.

11.1 트러블 슈팅의 기본절차

시스템의 신뢰성을 높이기 위해서는 신뢰성이 높은 기기를 사용하는 것이 중요하지만, 더불어 이상 이 발생한 경우 어떤 방법으로 신속히 조치하는가도 중요한 점입니다.

시스템을 신속히 가동시키려면 트러블의 발생 원인을 신속히 발견하여 조치하는 일이 무엇보다 중요한 사항으로 이러한 트러블 슈팅을 실시하는 경우에 유의하여야 할 기본적인 사항은 다음과 같습니다.

(1) 육안에 의한 확인

다음 사항들을 육안으로 확인하여 주십시오.

- 기계 동작 상태 (정지 상태, 동작 상태)
- 전원 인가 상태
- 입출력 기기 상태
- 배선 상태 (입출력선, 증설 및 통신 케이블선)
- 각종 표시기의 표시 상태 (PWR LED, RUN LED, STOP LED, 입출력 LED 등)를 확인한 후 주변 기기를 접속하여 PLC 동작 상태나 프로그램 내용을 점검합니다.

(2) 이상 확인

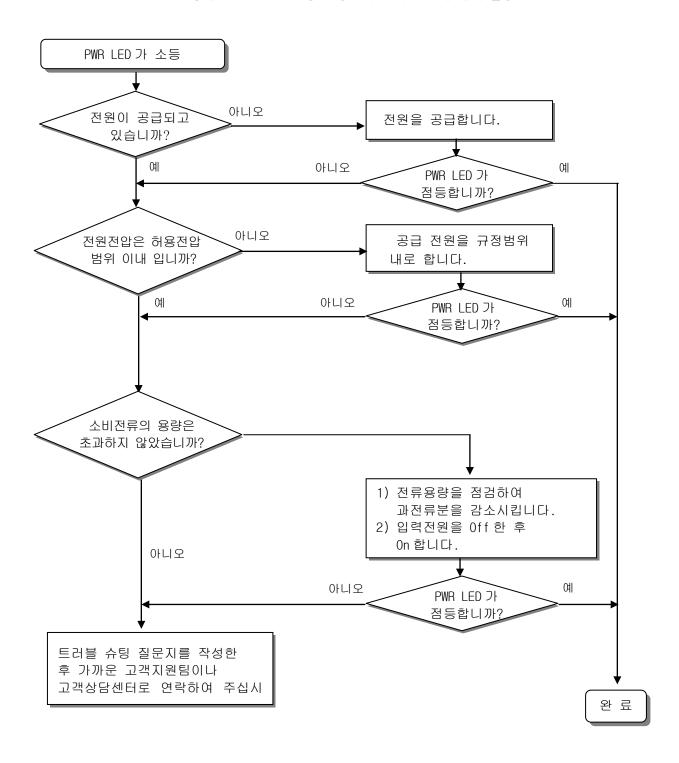
다음 조작으로 이상이 어떻게 변화하는가를 관찰하여 주십시오.

• 키 스위치를 STOP 위치로 하고 전원을 On / Off 합니다.

(3) 범위 한정

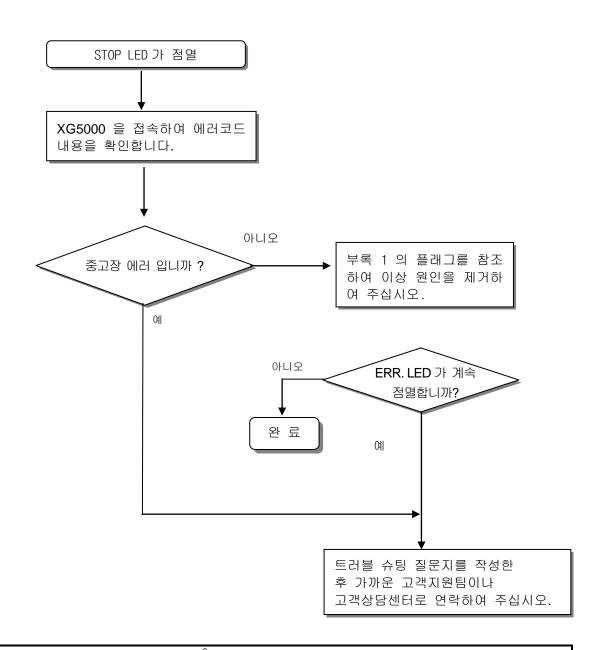
상기와 같은 방법에 의해 고장 요인이 다음의 어떤 것인가를 추정합니다.

- PLC 자체인가? 외부 요인인가?
- 입출력 모듈인가? 기타인가?
- PLC 프로그램인가?


11.2 트러블 슈팅

이상과 같은 내용의 발견 방법 및 에러 코드에 대한 에러 내용과 조치에 대해 현상별로 나누어 설명합니다.

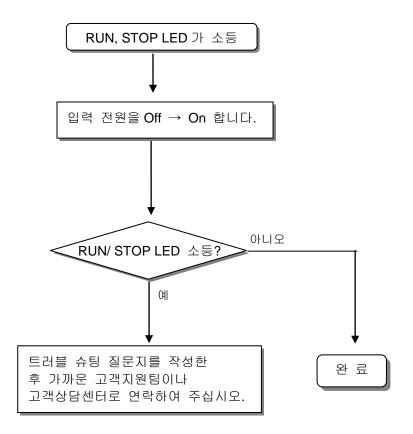
이상발생내용 PWR LED 가 PWR LED가 소등한 경우의 조치방법 소등하고 있는 경우 ERR. LED 가 ERR LED 가 점멸하고 있는 경우의 조치방법 점멸하고 있는 경우 RUN, STOP LED 가 RUN, STOP LED가 소등한 경우의 조치방법 소등하고 있는 경우 입출력 모듈이 입출력 모듈이 정상 동작하지 않는 경우의 조치방법 이상동작 하는 경우 프로그램 쓰기가 프로그램 쓰기가 수행되지 않는 경우의 조치방법 수행되지 않는 경우


11.2.1 PWR(Power) LED가 소등한 경우의 조치방법

전원 투입 시 또는 운전 중에 PWR LED 가 소등한 경우의 조치 순서에 대해 설명합니다.

11.2.2 ERR(Error) LED가 점멸하고 있는 경우의 조치방법

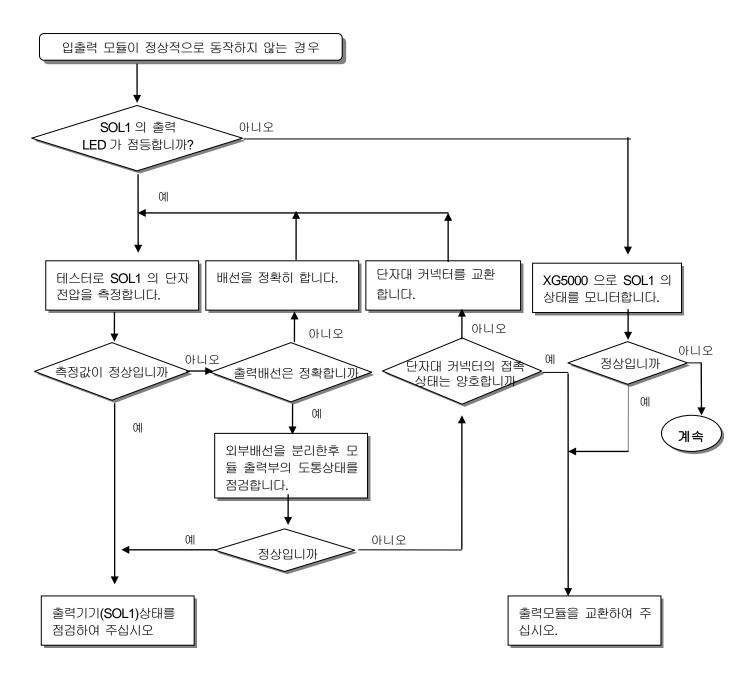
전원 투입 시 또는 운전 개시 시, 운전 중에 ERR LED가 점멸하는 경우의 조치 순서에 대해 설명합니다.

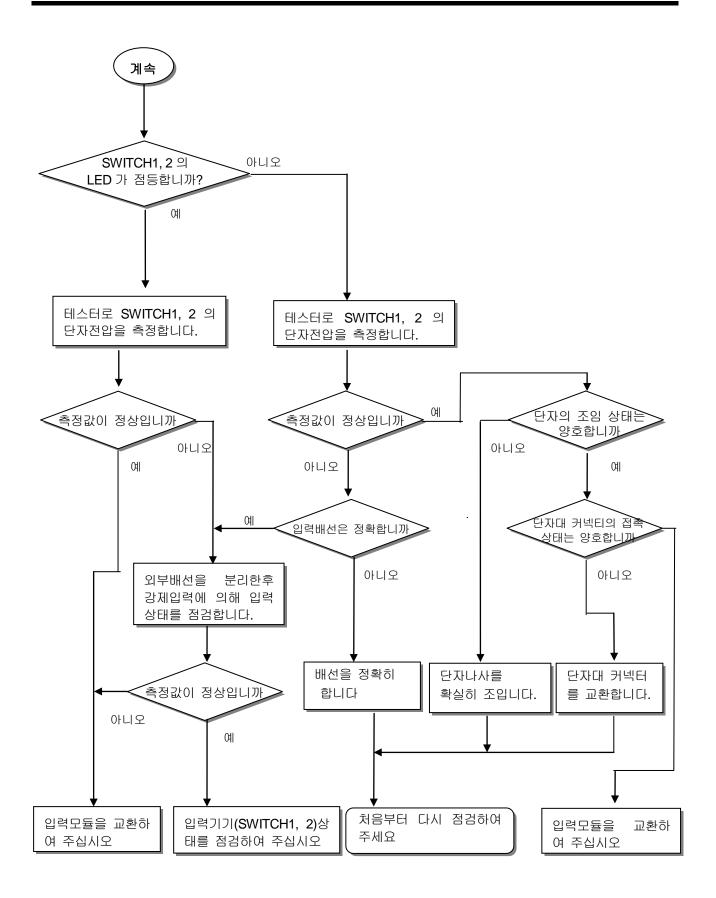


∕!∖ 주 의

경고장 에러가 발생하는 경우 PLC 시스템은 정지하지 않지만 신속하게 에러내용을 확인하여 조치하여 주십시오. 방치할 경우 중고장의 원인이 될수 있습니다.

11.2.3 RUN, STOP LED가 소등한 경우의 조치방법


전원 투입시 또는 운전개시시, 운전중에 RUN, STOP LED가 소등한 경우의 조치 순서에 대해설명합니다.

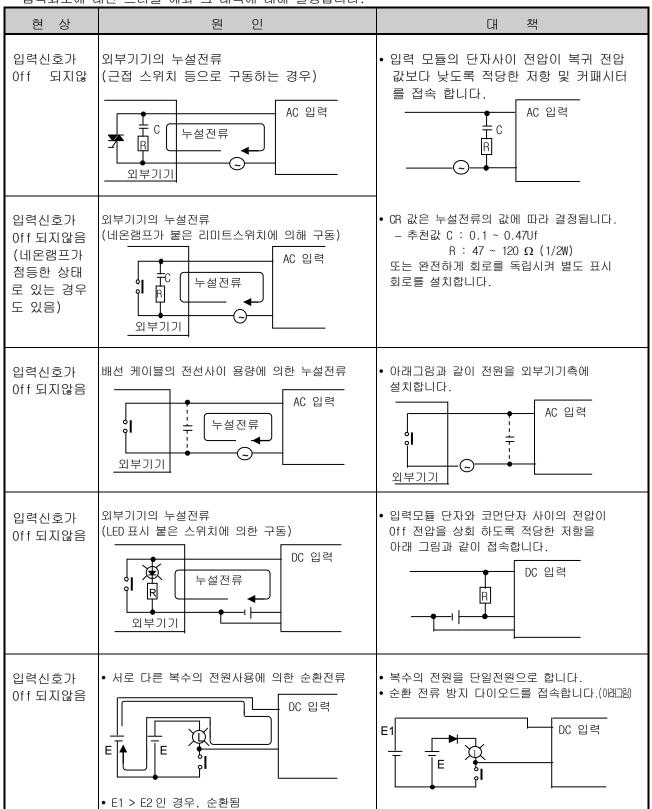


11.2.4 입출력 모듈이 정상 동작하지 않는 경우의 조치 방법

운전중 입출력 모듈의 정상적으로 동작 하지 않는 경우의 조치 순서에 대해 아래 프로그램의 예로 설명합니다.

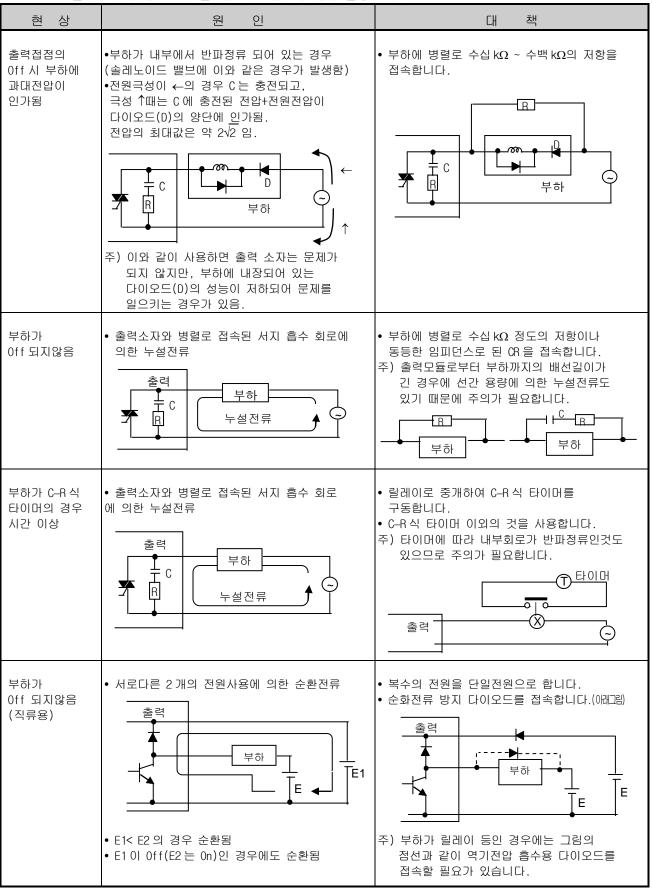
11.3 트러블 슈팅 질문지

XBC 사용 중 이상이 발생한 경우는 본 질문지를 작성한 후, A/S 센터에 전화 또는 FAX 로 문의 바랍니다.

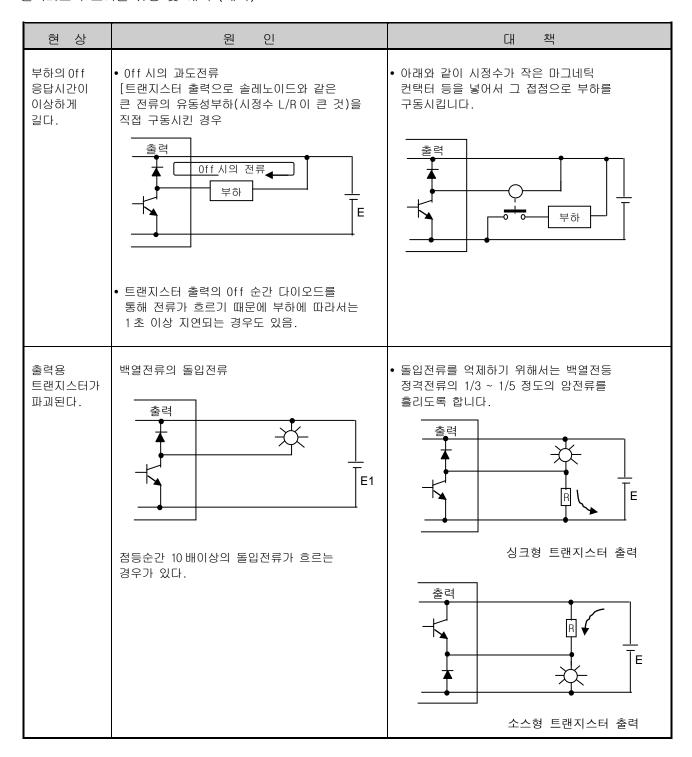

• 특수, 통신 모듈에 관련된 에러는 해당 제	품 사용 설명서에 부착된 질문지를 작성해 주십시오.
1. 사용자 연락처 :	전화) FAX)
2. 사용 기종 :	()
3. 적용 기기의 상세	
- CPU 모듈 상세 : - OS 버전 (), - 제품의 시리얼 번호 ()
- 프로그램 컴파일에 사용한 XG5000 버전	넘버 : ()
4. 제어 대상 기기 및 시스템 개략 설명 :	
5. CPU 모듈의 사용 모듈 :	
- 키 스위치에 의한 운전 (),	- XG5000 또는 통신을 통한 운전 ()
- 메모리 모듈 운전 ()	
6. CPU 모듈의 STOP LED 점등? Yes(), No()
7. XG5000 에 의한 에러 메시지 내용 :	
8. 7항의 에러 코드에 대한 조치 시도 상황	:
9. 기타 에러 조치를 위해 시도한 트러블 슈	팅 방법 :
10. 에러의 특징	
• 반복() : 주기적(), 특정	시퀀스 수준에 관련()
환경 관련()	
• 간헐() : 대체적인 에러 간격 :	
11. 에러 현상에 대한 상세 설명 :	
12. 적용 시스템의 구성도 :	

11.4 각종 사례

각종 회로에 대한 트러블 유형 및 대책에 대해 설명합니다.


11.4.1 입력 회로의 트러블 유형 및 대책

입력회로에 대한 트러블 예와 그 대책에 대해 설명합니다.



11.4.2 출력 회로의 트러블 유형 및 대책

출력회로에 대한 트러블 예와 그 대책에 대해 설명합니다.

출력회로의 트러블 유형 및 대책 (계속)

11.5 에러 코드 일람

에러 코드	에러 원인	조치 방법	고장 종류	LED 상태	진단 시점
23	수행할 프로그램이 비정상적인 경우	프로젝트 재 다운로드 후 기동	경고장	0.5 초 Flicker	RUN 모드
24	1/0 파라미터 이상	I/O 파라미터 업로드 후 보존 상태를 확인. 깨진 경우 수정하여 재 다운로드 하여 동작 확인. 계속 이상이 있으면 기본 유닛 교환	경고장	0.5 초 Flicker	리셋 RUN 모드 전환
25	기본 파라미터 이상	기본 파라미터 업로드 후 보존 상태를 확인. 깨진 경우 수정하여 재 다운로드 하여 동작 확인. 계속 이상이 있으면 기본 유닛 교환	경고장	0.5 초 Flicker	리셋 RUN 모드 전환
30	파라미터에 설정된 모듈과 실제 장착된 모듈이 일치하지 않음	파라미터 수정 후 재 다운로드	경고장	0.5초 Flicker	RUN 모드 전환
31	운전 중 모듈의 탈락 또는 추가 장착	운전중 증설 모듈의 탈락 또는 추가 장착	경고장	0.5초 Flicker	매 스캔
33	운전 중 입출력 모듈의 데이터가 정상적으로 액세스 안됨	XG5000 에서 액세스 에러가 발생한 슬롯의 위치를 확인하여 모듈을 교환하고 재기동(파라미터에 따름)	중고장	0.1초 Flicker	스캔 종료
34	운전 중 특수/통신 모듈의 데이터가 정상적으로 액세스 안됨	XG5000 으로 액세스 에러가 발생한 슬롯의 위치를 확인하여 모듈을 교환하고 재기동	중고장	0.1초 Flicker	스캔 종료
39	PLC CPU 폭주 또는 고장	노이즈나 하드웨어의 이상에 의하여 비정상적으로 시스템 종료. 1)전원 재투입시 반복 발생하면 A/S 요청 2)노이즈 대책 실시	중고장	0.1초 Flicker	상시
40	운전 중 프로그램의 스캔타임이 파라미터에 의해 지정한 스캔 지연 감시 시간을 초과	파라미터에 의해 지정한 스캔 지연 감시 시간을 확인하여 파라미터의 수정 또는 프로그램의 수정 후 재기동	경고장	0.5초 Flicker	프로그램 수행 중
41	유저 프로그램 수행 중 연산 에러 발생	연산 에러 제거→프로그램 재 다운로드 하고 재기동	경고장	0.5초 Flicker	프로그램 수행 중
44	타이머 인덱스 사용 에러	타이머 인덱스 프로그램 수정 후 프로그램 재 다운로드 하고 재기동	경고장	0.5 초 Flicker	스캔 종료
50	운전 중 사용자 프로그램에 의해서 외부 기기의 중고장 검출	외부 기기의 중고장 검출 에러 플래그를 참조하여 잘못된 기기를 수리하고 재기동(파라미터에 따름)	중고장	0.1초 Flicker	스캔 종료
60	E_STOP 펑션 수행	프로그램 상의 E_STOP 평션을 기동한 에러 요인을 제거한 후 전원 재 투입	중고장	0.1초 Flicker	프로그램 수행 중
500	데이터 메모리 백업 에러	전원 재 투입 (리모트 모드에서는 STOP모드로 전환 됨)	경고	1초 Flicker	리셋
501	시계 데이터 이상	배터리에 이상이 없으면 XG5000등 기기로 시간 재 설정	경고	1초 Flicker	상시
502	배터리 전압 저하	전원 투입 상태에서 배터리 교환	경고	1초 Flicker	상시

부록 1 플래그 일람

부록 1.1 특수 릴레이(F)일람

워 드	비트	변수	기능	설명
	_	_SYS_STATE	모드와 상태	PLC의 모드와 운전 상태를 표시합니다.
	F0000	_RUN	RUN	RUN 상태입니다.
	F0001	_STOP	ST0P	STOP 상태입니다.
	F0002	_ERROR	ERROR	ERROR 상태입니다.
	F0003	_DEBUG	DEBUG	DEBUG 상태입니다.
	F0004	_LOCAL_COn	로컬 컨트롤	로컬 컨트롤 모드입니다.
	F0006	_REMOTE_COn	리모트 모드	리모트 컨트롤 모드입니다.
	F0008	_RUN_EDIT_ST	런 중 수정 중	런중 수정 프로그램 다운로드 중입니다.
	F0009	_RUN_EDIT_CHK	런 중 수정 중	런중 수정 내부 처리 중입니다.
	F000A	_RUN_EDIT_DOnE	런 중 수정 완료	런중 수정 완료입니다.
	F000B	_RUN_EDIT_END	런 중 수정 끝	런중 수정이 끝났습니다.
	F000C	_CMOD_KEY	운전 모드	키에 의해 운전 모드가 변경 되었습니다.
	F000D	_CMOD_LPADT	운전 모드	로컬 PADT 에 의해 운전 모드가 변경 되었습니다.
F000~1	F000E	_CMOD_RPADT	운전 모드	리모트 PADT에 의해 운전 모드가 변경 되었습니다.
	F000F	_CMOD_RLINK	운전 모드	리모트 통신 모듈에 의해 운전 모드가 변경 되었습니다.
	F0010	_FORCE_IN	강제 입력	강제 입력 상태입니다.
	F0011	_FORCE_OUT	강제 출력	강제 출력 상태입니다.
	F0014	_MOn_On	모니터	모니터가 실행 중입니다.
	F0015	_USTOP_On	STOP	STOP 펑션에 의해 STOP 되었습니다.
	F0016	_ESTOP_On	EST0P	ESTOP 펑션에 의해 STOP 되었습니다.
	F0017	_COnPILE_MODE	컴파일중	컴파일 수행 중입니다.
	F0018	_INIT_RUN	초기화중	초기화 태스크가 수행 중입니다.
	F001C	_PB1	프로그램 코드 1	프로그램 코드 1 이 선택되었습니다.
	F001D	_PB2	프로그램 코드 2	프로그램 코드 2 가 선택되었습니다.
	F001E	_CB1	컴파일 코드1	컴파일 코드 1 이 선택되었습니다.
	F001F	_CB2	컴파일 코드2	컴파일 코드 2 가 선택되었습니다.
		_CNF_ER	시스템 에러	시스템의 중고장 상태를 보고합니다.
	F0021	_IO_TYER	모듈 타입 에러	모듈 타입이 일치하지 않습니다.
	F0022	_IO_DEER	모듈 착탈 에러	모듈이 착탈 되었습니다.
F002~3	F0024	_IO_RWER	모듈 입출력 에러	모듈 입출력에 문제가 발생했습니다.
	F0025	_IP_IFER	모듈 인터페이스 에러	특수 / 통신 모듈 인터페이스에 문제가 발생했습니다.
	F0026	_ANNUM_ER	외부 기기 고장	외부 기기에 중고장이 검출되었습니다.

워 드	비트	변수	기능	설명
	F0028	_BPRM_ER	기본 파라미터	기본 파라미터에 이상이 있습니다.
	F0029	_IOPRM_ER	10 파라미터	10 구성 파라미터에 이상이 있습니다.
	F002A	_SPPRM_ER	특수 모듈 파라미터	특수 모듈 파라미터가 비정상입니다.
F002~3	F002B	_CPPRM_ER	통신 모듈 파라미터	통신 모듈 파라미터가 비정상입니다.
F002~3	F002C	_PGM_ER	프로그램 에러	프로그램에 에러가 있습니다.
	F002D	_CODE_ER	코드 에러	프로그램 코드에 에러가 있습니다.
	F002E	_SWDT_ER	시스템 워치독	시스템 워치독이 작동했습니다.
	F0030	_WDT_ER	스캔 워치독	스캔 워치독이 작동했습니다.
		_CNF_WAR	시스템 경고	시스템의 경고장 상태를 보고합니다.
	F0041	_DBCK_ER	백업 이상	데이터 벡업에 문제가 발생했습니다.
	F0043	_ABSD_ER	운전 이상 정지	비정상 운전으로 인하여 정지합니다.
	F0046	_ANNUM_WAR	외부 기기 고장	외부 기기의 경고장이 검출 되었습니다.
F004	F0048	_HS_WAR1	고속 링크 1	고속 링크 - 파라미터 1 이상
	F0049	_HS_WAR2	고속 링크 2	고속 링크 - 파라미터 2 이상
	F0054	_P2P_WAR1	P2P 파라미터 1	P2P - 파라미터 1 이상
	F0055	_P2P_WAR2	P2P 파라미터 2	P2P - 파라미터 2 이상
	F0056	_P2P_WAR3	P2P 파라미터 3	P2P - 파라미터 3 이상
	F005C	_COnSTANT_ER	고정주기 오류	고정주기 오류
		_USER_F	유저 접점	사용자가 사용할 수 있는 타이머입니다.
	F0090	_T20MS	20ms	20ms 주기의 Clock 입니다.
	F0091	_T100MS	100ms	100ms 주기의 Clock 입니다.
	F0092	_T200MS	200ms	200ms 주기의 Clock 입니다.
	F0093	_T1S	1초 Clock	1초 주기의 Clock 입니다.
	F0094	_T2S	2 초 Clock	2 초 주기의 Clock 입니다.
F009	F0095	_T10S	10 초 Clock	10 초 주기의 Clock 입니다.
	F0096	_T20S	20 초 Clock	20 초 주기의 Clock 입니다.
	F0097	_T60S	60 초 Clock	60 초 주기의 Clock 입니다.
	F0099	_0n	항시 On	항상 On 상태인 비트입니다.
	F009A	_0ff	항시 Off	항상 Off 상태인 비트입니다.
	F009B	_10n	1 스캔 On	첫 스캔만 On 상태인 비트입니다.
	F009C	_10ff	1 스캔 Off	첫 스캔만 Off 상태인 비트입니다.
	F009D	_STOG	반전	매 스캔 반전됩니다.

워 드	비트	변수	기능	설명
		_USER_CLK	유저 Clock	사용자가 설정 가능한 Clock 입니다.
	F0100	_USR_CLK0	지정 스캔 반복	지정된 스캔만큼 On/Off Clock O
	F0101	_USR_CLK1	지정 스캔 반복	지정된 스캔만큼 On/Off Clock 1
	F0102	_USR_CLK2	지정 스캔 반복	지정된 스캔만큼 On/Off Clock 2
F010	F0103	_USR_CLK3	지정 스캔 반복	지정된 스캔만큼 On/Off Clock 3
	F0104	_USR_CLK4	지정 스캔 반복	지정된 스캔만큼 On/Off Clock 4
	F0105	_USR_CLK5	지정 스캔 반복	지정된 스캔만큼 On/Off Clock 5
	F0106	_USR_CLK6	지정 스캔 반복	지정된 스캔만큼 On/Off Clock 6
	F0107	_USR_CLK7	지정 스캔 반복	지정된 스캔만큼 On/Off Clock 7
		_LOGIC_RESULT	로직 결과	로직 결과를 표시합니다.
	F0110	_LER	연산 에러	연산 에러시 1스캔동안 On
F011	F0111	_ZER0	제로 플래그	연산 결과가 0일 경우 On
FUII	F0112	_CARRY	캐리 플래그	연산시 캐리가 발생했을 경우 On
	F0113	_ALL_Off	전출력 Off	모든 출력이 Off일 경우 On
	F0115	_LER_LATCH	연산 에러 래치	연산 에러시 계속 On 유지
		_CMP_RESULT	비교 결과	비교 결과를 표시합니다.
	F0120	_LT	LT 플래그	"보다 작다" 인 경우 On
	F0121	_LTE	LTE 플래그	"보다 작거나 같다" 인 경우 On
F012	F0122	_EQU	EQU 플래그	"같다" 인 경우 On
	F0123	_GT	GT 플래그	"보다 크다" 인 경우 On
	F0124	_GTE	GTE 플래그	"보다 크거나 같다" 인 경우 On
	F0125	_NEQ	NEQ 플래그	"같지 않다" 인 경우 On
F014	_	_FALS_NUM	FALS 번호	FALS의 번호를 표시합니다.
F015	_	_PUTGET_ERRO	PUT/GET 에러 0	메인 베이스 PUT / GET 에러
F023	_	_PUTGET_NDRO	PUT/GET 완료 0	메인 베이스 PUT / GET 완료
F044	_	_CPU_TYPE	CPU 타입	CPU 타입에 괸한 정보를 알려줍니다.
F045	_	_CPU_VER	CPU 버전	CPU 버전을 표시합니다.
F046	_	_OS_VER	OS 버전	OS 버전을 표시합니다.
F048	_	_OS_DATE	OS 날짜	OS 배포일을 표시합니다.
F050	_	_SCAN_MAX	최대 스캔시간	최대 스캔시간을 나타냅니다.
F051	_	_SCAN_MIN	최소 스캔시간	최소 스캔시간을 나타냅니다.
F052	-	_SCAN_CUR	현재스캔시간	현재 스캔시간을 나타냅니다.
F0053	_	_MON_YEAR	월 / 년	PLC의 월, 년 데이터입니다.
F0054	-	_TIME_DAY	시 / 일	PLC의 시, 일 데이터입니다.
F0055	_	_SEC_MIN	초 / 분	PLC의 초, 분 데이터입니다.
F0056	_	_HUND_WK	백년 / 요일	PLC의 백년, 요일 데이터입니다.

워 드	비트	변수	기능	설명
		_FPU_INF0	미사용	
	F0570	_FPU_LFLAG_I	미사용	
	F0571	_FPU_LFLAG_U	미사용	
	F0572	_FPU_LFLAG_0	미사용	
	F0573	_FPU_LFLAG_Z	미사용	
F057	F0574	_FPU_LFLAG_V	미사용	
F057	F057A	_FPU_FLAG_I	미사용	
	F057B	_FPU_FLAG_U	미사용	
	F057C	_FPU_FLAG_0	미사용	
	F057D	_FPU_FLAG_Z	미사용	
	F057E	_FPU_FLAG_V	미사용	
	F057F	_FPU_FLAG_E	비정규값 입력	비정규값 입력 시 보고합니다.
F058	_	_ERR_STEP	에러 스텝	에러 스텝을 저장합니다.
F060	_	_REF_COUNT	리프레시	모듈 리프레시 수행시 증가
F062	_	_REF_OK_CNT	리프레시 OK	모듈 리프레시가 정상일 때 증가
F064	_	_REF_NG_CNT	리프레시 NG	모듈 리프레시가 비정상일 때 증가
F066	-	_REF_LIM_CNT	리프레시 Limit	모듈 리프레시가 비정상일 때 증가 (TIME OUT)
F068	-	_REF_ERR_CNT	리프레시 Error	모듈 리프레시가 비정상일 때 증가
F070	1	_MOD_RD_ERR_CNT	미사용	
F072	1	_MOD_WR_ERR_CNT	미사용	
F074	1	_CA_CNT	미사용	
F076	1	_CA_LIM_CNT	미사용	
F078	-	_CA_ERR_CNT	미사용	
F080	1	_BUF_FULL_CNT	버퍼 Full	CPU 내부 버퍼 FULL 일 경우 증가
F082	1	_PUT_CNT	PUT 카운트	PUT 수행 시 증가합니다.
F084	_	_GET_CNT	GET 카운트	GET 수행 시 증가합니다.
F086	-	_KEY	현재 키	로컬 키의 현재 상태를 나타냅니다.
F088	-	_KEY_PREV	이전 키	로컬 키의 이전 상태를 나타냅니다.
F090	_	_IO_TYER_N	불일치 슬롯	모듈 타입 불일치 슬롯 번호 표시
F091	_	_IO_DEER_N	착탈 슬롯	모듈 착탈이 일어난 슬롯 번호 표시
F093	_	_IO_RWER_N	RW 에러 슬롯	모듈 읽기/쓰기 에러 슬롯 번호 표시
F094	_	_IP_IFER_N	IF 에러 슬롯	모듈 인터페이스 에러 슬롯 번호 표시
F096	1	_IO_TYER0	모듈타입 0 에러	메인 베이스 모듈 타입 에러

워 드	비트	변수	기능	설명
F104	_	_IO_DEERO	모듈착탈 0 에러	메인 베이스 모듈 착탈 에러
F120	_	_IO_RWERO	모듈 RW 0 에러	메인 베이스 모듈 읽기/쓰기 에러
F128	_	_10_1FER_0	모듈 IF 0 에러	메인 베이스 모듈 인터페이스 에러
F140	_	_AC_FAIL_CNT	전원 차단 횟수	전원이 차단 된 횟수를 저장합니다.
F142	_	_ERR_HIS_CNT	에러 발생 횟수	에러가 발생한 횟수를 저장합니다.
F144	_	_MOD_HIS_CNT	모드 전환 횟수	모드가 전환된 횟수를 저장합니다.
F146	_	_SYS_HIS_CNT	이력 발생 횟수	시스템 이력 발생 횟수를 저장합니다.
F148	_	_LOG_ROTATE	로그 로테이트	로그 로테이트 정보를 저장합니다.
F150	_	_BASE_INF00	슬롯 정보 0	메인 베이스 슬롯 정보
		_USER_WRITE_F	사용가능 접점	프로그램에서 사용 가능한 접점
	F2000	_RTC_WR	RTC RW	RTC 에 데이터 쓰고 읽어오기
F200	F2001	_SCAN_WR	스캔 RW	스캔 값 초기화
	F2002	_CHK_ANC_ERR	외부 중고장 요청	외부기기에서 중고장 검출 요청
	F2003	_CHK_ANC_WAR	외부 경고장 요청	외부기기에서 경고장 검출 요청
F20.1		_USER_STAUS_F	사용자 접점	사용자 접점
F201	F2010	_INIT_DONE	초기화 완료	초기화 태스크 수행 완료를 표시
F202	_	_ANC_ERR	외부 중고장 정보	외부 기기의 중고장 정보를 표시
F203	-	_ANC_WAR	외부 경고장 경보	외부 기기의 경고장 정보를 표시
F210	-	_MON_YEAR_DT	월 / 년	시계 정보 데이터 (월 / 년)
F211	_	_TIME_DAY_DT	시 / 일	시계 정보 데이터 (시 / 일)
F212	_	_SEC_MIN_DT	초 / 분	시계 정보 데이터 (초 / 분)
F213	_	_HUND_WK_DT	백년 / 요일	시계 정보 데이터 (백년 / 요일)

부록 1.2 링크(통신용) 릴레이(L)일람

통신용 링크릴레이에 대해 설명합니다.

(1) 고속 링크 1

디바이스	키워드	형태	내 용 설 명
			고속 링크 파라미터 1번의 모든 국 정상 동작
L000	_HS1_RLINK	비트	고속 링크에서 설정된 파라미터 대로 모든 국이 정상적으로 동작하고 있음을 표시하며, 아래와 같은 조건에서 이 됨 1.파라미터에 설정된 모든 국이 RUN모드이고,에러가 없고 2.파라미터에 설정된 모든 데이터 블록이 정상적으로 통신되며 3.파라미터에 설정된 각국 자체에 설정된 파라미터가 정상적으로 통신 되는 경우 런_링크는 한번 On 되면 링크 디세이블에 의해 중단 시키지 않 는 한 계속 On을 유지함
			_HS1RLINK On 이후 비정상 상태 표시
L001	_HS1_LTRBL	비트	_HS1_RLINK 플래그가 On 된 상태에서 파라미터에 설정된 국과 데이터 블록의 통신 상태가 다음과 같을 때 이 플래그는 On 됨 1.파라미터에 설정된 국이 RUN모드가 아니거나 2.파라미터에 설정된 국에 에러가 있거나 3.파라미터에 설정된 데이터 블록의 통신 상태가 원활하지 못한 경우 링크 트러블은 위 1,2,3 의 조건이 발생하면 On 되고,그 조건 이 정상적을 돌아가면 다시 Off 됨
			고속 링크 파라미터 1 번 k 번 블록의 종합적 상태 표시
L0020 ~ L005F	_HS1_STATE[k] (k = 00~63)	비트 Array	설정된 파라미터의 각 데이터 블록에 대한 통신 정보의 종합적 상태를 표시합니다 _HS1_STATE[k] = HS1MOD[k]&_HS1TRX[k]&(~_HS1_ERR[k])
L0060 ~	_HS1_MOD[k]	비트	고속 링크 파라미터 1 번 k 번 블록 국의 런 운전 모드
L009F	(k = 00~63)	Array	파라미터의 k 데이터 블록에 설정된 국의 동작 모드를 표시합니다.
L0100 ~	_HS1_TRX[k]	비트	고속링크 파라미터 1번 k 번 블록 국과 정상 통신 표시
L013F	(k = 00~63)	Array	파라미터의 k 데이터 블록의 통신 상태가 설정된 대로 원활히 통신 되고 있는지를 표시합니다.
L0140 ~	_HS1_ERR[k]	비트	고속 링크 파라미터 1 번 k 번 블록 국의 운전 에러 모드
L017F	(k = 00~63)	Array	파라미터의 k 데이터 블록의 통신 상태에 에러가 발생했는지를 표시합니다.
L0180 ~	_HS1_SETBLOCK[k]	비트	고속 링크 파라미터 1 번 K 번 블록 설정 표시
L021F	_U9	Array	파라미터의 k 데이터 블록 설정 여부를 표시합니다.

(2) 고속 링크 2

디바이스	키워드	형태	내 용 설 명
L0260	_HS2_RLINK	비트	고속 링크 파라미터 2번의 모든 국 정상 동작 고속 링크에서 설정된 파라미터 대로 모든 국이 정상적으로 동작하고 있음을 표시하며, 아래와 같은 조건에서 이 됨 1.파라미터에 설정된 모든 국이 RUN모드이고,에러가 없고 2.파라미터에 설정된 모든 데이터 블록이 정상적으로 통신되며 3.파라미터에 설정된 각국 자체에 설정된 파라미터가 정상적으로 통신 되는 경우 런_링크는 한번 이 되면 링크 디세이블에 의해 중단 시키지 않 는 한 계속 이이을 유지함
L0261	_HS2_LTRBL	비트	_HS2RLINK On 이후 비정상 상태 표시 _HS2_RLINK 플래그가 On 된 상태에서 파라미터에 설정된 국과데이터 블록의 통신 상태가 다음과 같을 때 이 플래그는 On됨 1.파라미터에 설정된 국이 RUN모드가 아니거나 2.파라미터에 설정된 국에 에러가 있거나 3.파라미터에 설정된 데이터 블록의 통신 상태가 원활하지 못한 경우 링크 트러블은 위 1,2,3 의 조건이 발생하면 On 되고,그 조건이 정상적을 돌아가면 다시 Off됨
L0280 ~ L031F	_HS2_STATE[k] (k = 00~63)	비트 Array	고속 링크 파라미터 1 번 k 번 블록의 종합적 상태 표시 설정된 파라미터의 각 데이터 블록에 대한 통신 정보의 종합적 상태를 표시합니다 _HS2_STATE[k]=HS2MOD[k]&_HS2TRX[k]&(~_HS2_ERR[k])
L0320 ~ L035F	_HS2_MOD[k] (k = 00~63)	비트 Array	고속 링크 파라미터 1번 k번 블록 국의 런 운전 모드 파라미터의 k 데이터 블록에 설정된 국의 동작 모드를 표시합 니다
L0360 ~ L039F	_HS2_TRX[k] (k = 00~63)	비트 Array	고속링크 파라미터 1번 k번 블록 국과 정상 통신 표시 파라미터의 k 데이터 블록의 통신 상태가 설정된 대로 원활히 통신 되고 있는지를 표시합니다
L0400 ~ L043F	_HS2_ERR[k] (k = 00~63)	비트 Array	고속 링크 파라미터 1번 k번 블록 국의 운전 에러 모드 파라미터의 k 데이터 블록의 통신 상태에 에러가 발생했는지를 표시합니다
L0440 ~ L047F	_HS2_SETBLOCK[k]	비트 Array	고속 링크 파라미터 1 번 K 번 블록 설정 표시 파라미터의 k 데이터 블록 설정 여부를 표시합니다

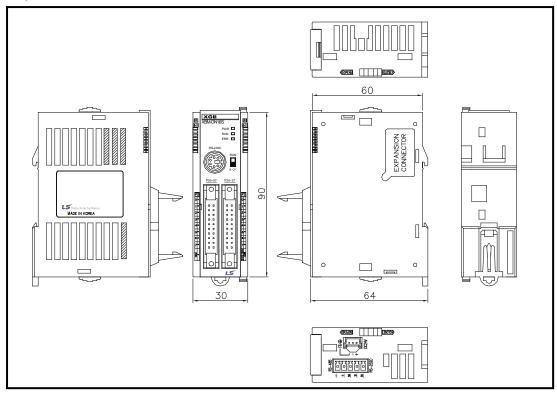
(3) 공통 영역

P2P 서비스 설정에 따른 통신플래그입니다. XGB의 경우 P2P 파라미터는 1 ~ 3 이고, P2P 블록은 0 ~ 31 입니다.

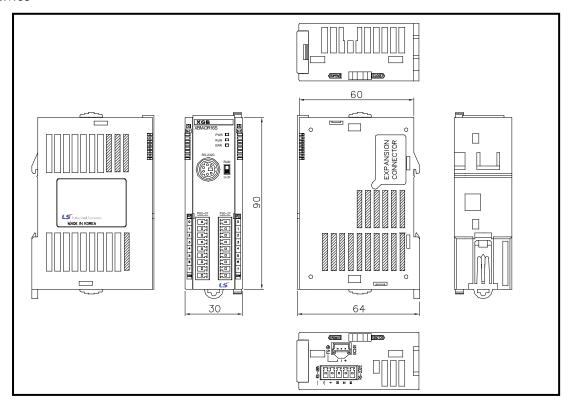
디바이스	키워드	형태	내 용 설 명
L5120	_P2P1_NDR00	비트	P2P 파라미터 1번 0번 블록 서비스 정상 완료
L5121	_P2P1_ERR00	비트	P2P 파라미터 1번 0번 블록 서비스 비정상 완료
L513	_P2P1_STATUS00	워드	P2P 파라미터 1번 0번 블록 서비스 비정상 완료 시 에러 코드를 표시합니다.
L514	_P2P1_SVCCNT00	더블 워드	P2P 파라미터 1번 0번 블록 서비스 정상 수행 횟수를 표시합니다.
L516	_P2P1_ERRCNT00	더블 워드	P2P 파라미터 1번 0번 블록 서비스 비정상 수행 횟수를 표시합니다.
L5180	_P2P1_NDR01	비트	P2P 파라미터 1번 1번 블록 서비스 정상 완료
L5181	_P2P1_ERR01	비트	P2P 파라미터 1번 1번 블록 서비스 비정상 완료
L519	_P2P1_STATUS01	워드	P2P 파라미터 1번 1번 블록 서비스 비정상 완료 시 에러 코드를 표시합니다.
L520	_P2P1_SVCCNT01	더블 워드	P2P 파라미터 1번 1번 블록 서비스 정상 수행 횟수를 표시합니다.
L522	_P2P1_ERRCNT01	더블 워드	P2P 파라미터 1번 1번 블록 서비스 비정상 수행 횟수를 표시합니다.
L524~L529	_	워드	P2P 파라미터 1번 2번 블록 서비스 종합
L530~L535	_	워드	P2P 파라미터 1번 3번 블록 서비스 종합
L536~L697	_	워드	P2P 파라미터 1번 4~30번 블록 서비스 종합
L698~L703	-	워드	P2P 파라미터 1번 31번 블록 서비스 종합

부록 1.3 네트워크 레지스터(N)일람

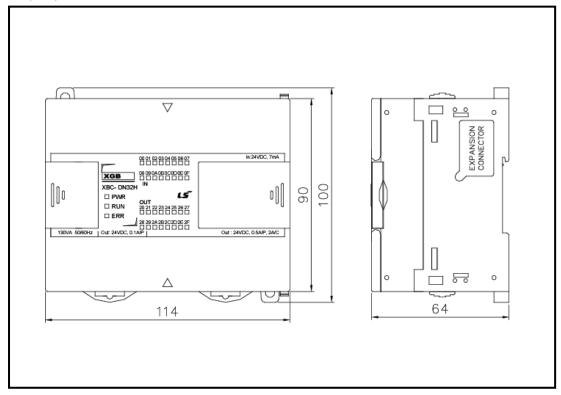
통신용 네트워크 레지스터에 대해 설명합니다.(P2P 파라미터 : 1~3 번, P2P 블록 : 0~31)

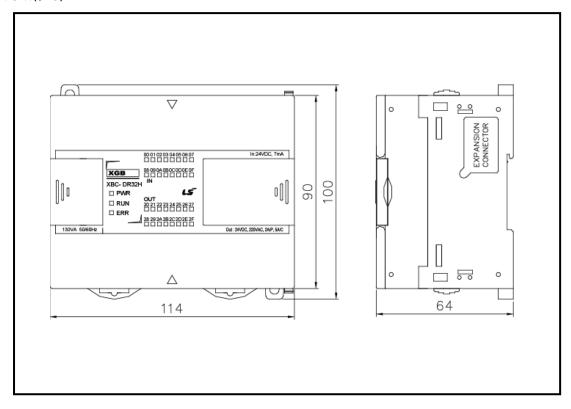

디바이스	키워드	형태	내 용 설 명
N000	_P1B00SN	워드	P2P 파라미터 1번 00번 블록의 상대 국번을 저장합니다.
N0000~0004	_P1B00RD1	워드	P2P 파라미터 1번 00번 블록 읽을 영역 사이즈 1을 저장합니다.
N005	_P1B00RS1	워드	P2P 파라미터 1번 00번 블록 읽을 영역 사이즈 1을 저장합니다.
N0006~0009	_P1B00RD2	워드	P2P 파라미터 1번 00번 블록 읽을 영역 디바이스2를 저장합니다.
NO10	_P1B00RS2	워드	P2P 파라미터 1번 00번 블록 읽을 영역 사이즈2를 저장합니다.
N0011~0014	_P1B00RD3	워드	P2P 파라미터 1번 00번 블록 읽을 영역 디바이스3을 저장합니다.
NO15	_P1B00RS3	워드	P2P 파라미터 1번 00번 블록 읽을 영역 사이즈3을 저장합니다.
N0016~0019	_P1B00RD4	워드	P2P 파라미터 1번 00번 블록 읽을 디바이스 영역4를 저장합니다.
N020	_P1B00RS4	워드	P2P 파라미터 1번 00번 블록 읽을 영역 사이즈4를 저장합니다.
N0021~0024	_P1B00WD1	워드	P2P 파라미터 1번 00번 블록 저장 영역 디바이스1을 저장합니다.
N025	_P1B00WS1	워드	P2P 파라미터 1번 00번 블록 저장 영역 사이즈 1을 저장합니다.
N0026~0029	_P1B00WD2	워드	P2P 파라미터 1번 00번 블록 저장 영역 디바이스2를 저장합니다.
N030	_P1B00WS2	워드	P2P 파라미터 1번 00번 블록 저장 영역 사이즈2를 저장합니다.
N0031~0034	_P1B00WD3	워드	P2P 파라미터 1번 00번 블록 저장 영역 디바이스 3을 저장합니다.
N035	_P1B00WS3	워드	P2P 파라미터 1번 00번 블록 저장 영역 사이즈 3을 저장합니다.
N0036~0039	_P1B00WD4	워드	P2P 파라미터 1번 00번 블록 저장 영역 디바이스4를 저장합니다.
N040	_P1B00WS4	워드	P2P 파라미터 1번 00번 블록 저장 영역 사이즈4를 저장합니다.
N0041~0081	-	워드	P2P 파라미터 1번 01번 블록 저장 영역
N0082~0122	-	워드	P2P 파라미터 1번 02번 블록 저장 영역
N0123~1311	-	워드	P2P 파라미터 1 번 03~31 번 블록 저장 영역
N1312~2623	_	워드	P2P 파라미터 2 번 저장 영역
N2624~3935	-	워드	P2P 파라미터 3번 저장 영역

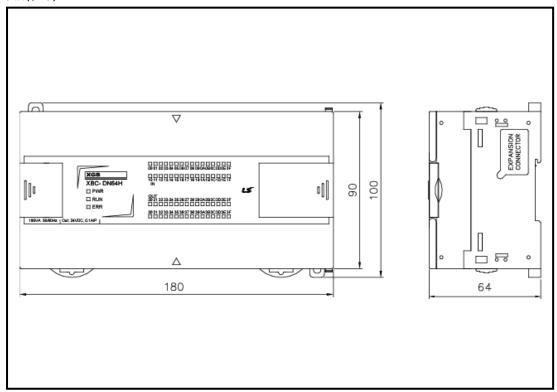
알아두기

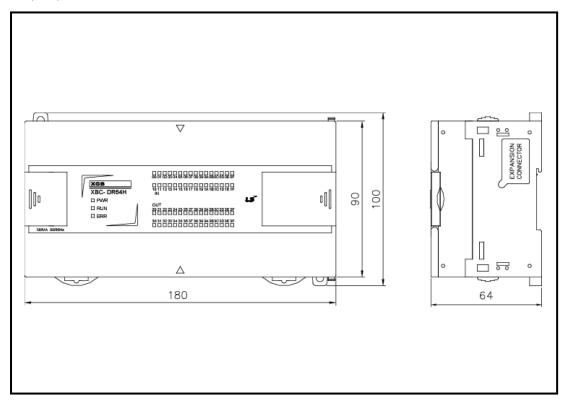

□ XGB 에서 네트워크 레지스터는 모니터링만 가능 합니다.(Read Only)

부록 2 외형 치수 (단위 : mm)

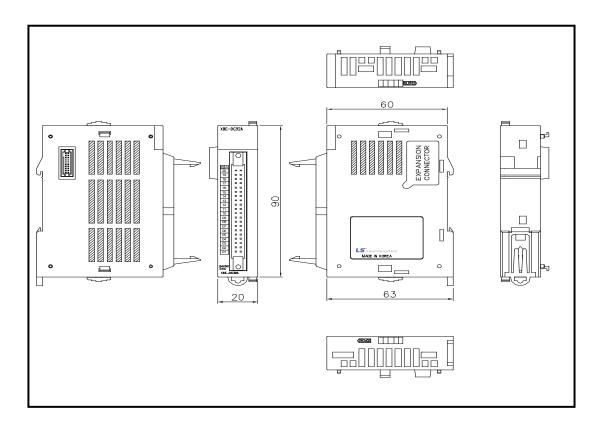

- (1) 표준형 기본 유닛("S" 타입)
- -. XBM-DN16S/32S


-. XBM-DR16S

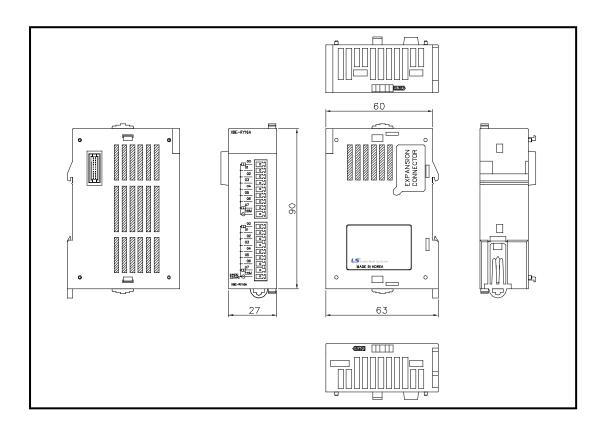

- (2) 콤팩트형 기본 유닛("H" 타입)
- -. XBC-DN32H(/DC)


-. XBC-DR32H(/DC)

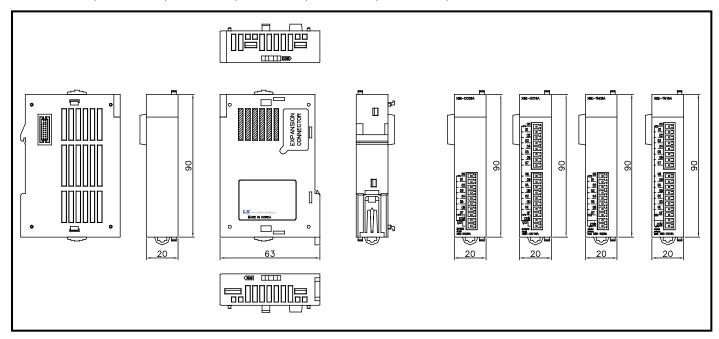
-. XBC-DN64H(/DC)

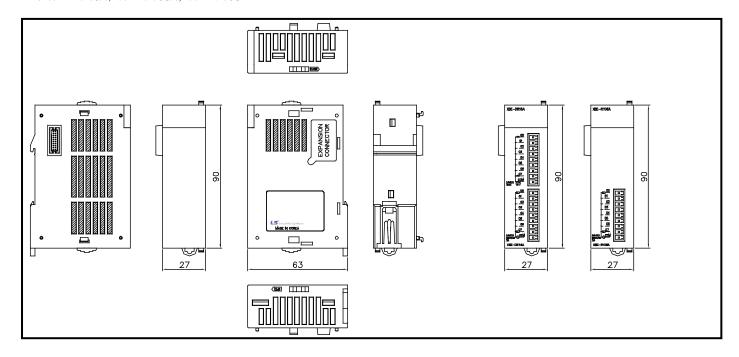


-. XBC-DR64H(/DC)



(3) 증설 1/0 모듈


-. XBE-DC32A, XBE-TN32A, XBE-TP32A


-. XBE-RY16A

-. XBE-DC08A, XBE-DC16A, XBE-DC16B, XBE-TN08A, XBE-TP08A, XBE-TN16A, XBE-TP16A

-. XBE-DR16A, XBE-RY08A, XBE-RY08B

부록 3. MASTER-K 와의 호환성(특수 릴레이)

MASTER-K		ин		XGB
접점	기 능	심볼	접점	기 능
F0000	RUN 모드	_RUN	F0000	RUN 모드
F0001	프로그램 모드	_STOP	F0001	프로그램 모드
F0002	Pause 모드	_ERROR	F0002	Error 모드
F0003	디버그 모드	_DEBUG	F0003	디버그 모드
F0004	미사용	_LOCAL_CON	F0006	Remote 모드
F0005	미사용	_MODBUS_CON	F0006	Remote 모드
F0006	Remote 모드	_REMOTE_CON	F0006	Remote 모드
F0007	User 메모리 장착	-	F0007	미사용
F0008	미사용	_RUN_EDIT_ST	F0008	런중 수정 중
F0009	미사용	_RUN_EDIT_CHK	F0009	런중 수정 중
F000A	User 메모리 운전	_RUN_EDIT_DONE	F000A	런중 수정 완료
F000B	미사용	_RUN_EDIT_END	F000B	런중 수정 끝
F000C	미사용	_CMOD_KEY	F000C	KEY에 의한 운전 모드 변경
F000D	미사용	_CMOD_LPADT	F000D	PADT 에 의한 운전 모드 변경
F000E	미사용	_CMOD_RPADT	F000E	리모트 PADT에 의한 운전 모드 변경
F000F	STOP 명령 수행	_CMOD_RLINK	F000F	리모트 통신 모듈에 의한 운전 모드 변경 요인
F0010	상시 On	_FORCE_IN	F0010	강제 입력
F0011	상시 Off	_FORCE_OUT	F0011	강제 출력
F0012	1 스캔 On	_SKIP_ON	F0012	입출력 Skip 실행 중
F0013	1 스캔 Off	_EMASK_ON	F0013	고장 마스크 실행 중
F0014	매 스캔 반전	_MON_ON	F0014	모니터 실행 중
		_USTOP_ON	F0015	Stop 평션에 의한 Stop
		_ESTOP_ON	F0016	ESTOP 평션에 의한 Stop
F0015 ~		_CONPILE_MODE	F0017	컴파일중
F001C	미사용	_INIT_RUN	F0018	초기화중
		-	F0019 ~ F001F	미사용
		_PB1	F001C	프로그램 코드 1
F001D	미사용	_PB2	F001D	프로그램 코드 2
F001E	미사용	_CB1	F001E	컴파일 코드 1
F001F	미사용	_CB2	F001F	컴파일 코드 2

	MASTER-K			XGB
접점	기 능	심볼	접점	기 능
F0020	1 스탭 RUN	_CPU_ER	F0020	CPU 구성 에러
F0021	Break Point RUN	_IO_TYER	F0021	모듈 타입 불일치 에러
F0022	스캔 RUN	_IO_DEER	F0022	모듈 착탈 에러
F0023	접점값 일치 RUN	_FUSE_ER	F0023	퓨즈 단선 에러
F0024	워드값 일치 RUN	_IO_RWER	F0024	입출력 모듈 읽기/쓰기 에러(고장)
		_IP_IFER	F0025	특수/통신 모듈 인터페이스 에러(고장)
		_ANNUM_ER	F0026	외부 기기의 중고장 검출 에러
		_	F0027	미사용
		_BPRM_ER	F0028	기본 파라미터 이상
F0025 ~		_IOPRM_ER	F0029	10 구성 파라미터 이상
F002F	미사용	_SPPRM_ER	F002A	특수 모듈 파라미터 이상
		_CPPRM_ER	F002B	통신 모듈 파라미터 이상
		_PGM_ER	F002C	프로그램 에러
		_CODE_ER	F002D	프로그램 코드 에러
		_SWDT_ER	F002E	시스템 워치독 에러
		_BASE_POWER_ER	F002F	베이스 전원 에러
F0030	중고장	_WDT_ER	F0030	스캔 워치독
F0031	경고장	_	F0031	
F0032	WDT 에러	_	F0032	
F0033	Ⅰ / 0 조합 에러	_	F0033	
F0034	배터리 전압 이상	_	F0034	
F0035	Fuse 이상	_	F0035	
F0036 ~ F0038	미사용	_	F0036 ~ F0038	
F0039	백업 정상수행	1	F0039	
F003A	시계 데이터 에러	1	F003A	
F003B	프로그램 교체중	1	F003B	
F003C	프로그램 교체중 에러	-	F003C	
F003D ~ F003F	미사용	-	F003D ~ F003F	미사용
		_RTC_ER	F0040	RTC 데이터 이상
		_DBCK_ER	F0041	데이터 백업 이상
		_HBCK_ER	F0042	핫 리스타트 불가 에러
F0040 ~ F005F	미사용	_ABSD_ER	F0043	비정상 운전 정지
1 0001		_TASK_ER	F0044	태스크 충돌
		_BAT_ER	F0045	배터리 이상
		_ANNUM_ER	F0046	외부 기기의 경고장 검출

	MASTER-K		XGB		
접점	기 능	- 심볼	접점	기 능	
		_LOG_FULL	F0047	로그 메모리 풀 경고	
		_HS_WAR1	F0048	고속 링크 파라미터 1 이상	
		_HS_WAR2	F0049	고속 링크 파라미터 2 이상	
		-	F004A ~ F0053	미사용	
F0040		_P2P_WAR1	F0054	P2P 파라미터 1 이상	
~ F005F	미사용	_P2P_WAR2	F0055	P2P 파라미터 2 이상	
		_P2P_WAR3	F0056	P2P 파라미터 3 이상	
		_	F0057 ~ F005B	미사용	
		_Constant_ER	F005C	고정주기 오류	
		-	F005D ~ F005F	미사용	
F0060 ~ F006F	에러 코드 저장	-	F0060 ~ F006F	미사용	
F0070 ~ F008F	Fuse 단락 상태 저장	-	F0070 ~ F008F	미사용	
F0090	20ms 주기 Clock	_T20MS	F0090	20ms 주기 Clock	
F0091	100ms 주기 Clock	_T100MS	F0091	100ms 주기 Clock	
F0092	200ms 주기 Clock	_T200MS	F0092	200ms 주기 Clock	
F0093	1초 주기 Clock	_T1S	F0093	1초 주기 Clock	
F0094	2초 주기 Clock	_T2S	F0094	2초 주기 Clock	
F0095	10 초주기 Clock	_T10S	F0095	10 초 주기 Clock	
F0096	20 초주기 Clock	_T20S	F0096	20 초 주기 Clock	
F0097	60 초주기 Clock	_T60S	F0097	60 초 주기 Clock	
		_	F0098	미사용	
		_ON	F0099	상시 On	
		_0FF	F009A	상시 Off	
F0098	미사용	_10N	F009B	1 스캔 On	
~ F009F		_10FF	F009C	1 스캔 Off	
		_STOG	F009D	매 스캔 반전	
		-	F009B ~ F009F	미사용	

	MASTER-K	ИH	XGB	
접점	기 능	- 심볼	접점	기 능
F0100	User Clock O	-	F0100	User Clock 0
F0101	User Clock 1	-	F0101	User Clock 1
F0102	User Clock 2	-	F0102	User Clock 2
F0103	User Clock 3	-	F0103	User Clock 3
F0104	User Clock 4	-	F0104	User Clock 4
F0105	User Clock 5	-	F0105	User Clock 5
F0106	User Clock 6	-	F0106	User Clock 6
F0107	User Clock 7	-	F0107	User Clock 7
F0108 ~ F010F		-	F0108 ~ F010F	미사용
F0110	연산 에러 플래그	_Ler	F0110	연산 에러 플래그
F0111	제로 플래그	_Zero	F0111	제로 플래그
F0112	캐리 플래그	_Carry	F0112	캐리 플래그
F0113	전출력 Off	_AII_Off	F0113	전출력 Off
F0114	공용 RAM R/W 에러	_	F0114	미사용
F0115	연산 에러 플래그(래치)	_Ler_Latch	F0115	연산 에러 플래그(래치)
F0116 ~ F011F		-	F0116 ~ F011F	미사용
F0120	LT 플래그	_LT	F0120	LT 플래그
F0121	LTE 플래그	_LTE	F0121	LTE 플래그
F0122	EQU 플래그	_EQU	F0122	EQU 플래그
F0123	GT 플래그	_GT	F0123	GT 플래그
F0124	GTE 플래그	_GTE	F0124	GTE 플래그
F0125	NEQ 플래그	_NEQ	F0125	NEQ 플래그
F0126 ~ F012F	미사용	-	F0126 ~ F012F	미사용
F0130 ~ F013F	AC Down Count	_AC_F_CNT	F0130 ~ F013F	AC Down Count
F014 0~ F014F	FALS 번호	_FALS_NUM	F0140 ~ F014F	FALS 번호
F0150 ~ F015F	PUT/GET 에러 플래그	_PUTGET_ERR	F0150 ~ F030F	PUT/GET 에러 플래그
		CPU TYPE	F0440 ~ F044F	CPU TYPE
_	-	CPU VERSION	F0450 ~ F045F	CPU VERSION
-	-	0/S 버전 번호	F0460 ~ F047F	시스템 O/S의 버전 번호
F0160~ F049F	미사용	0/S 날짜	F0480 ~ F049F	시스템 O/S의 DATE

	MASTER-K	VI E		XGB
접점	기 능	심볼	접점	기 능
F0500~ F050F	최대 스캔 시간	_SCAN_MAX	F0500 ~ F050F	최대 스캔 시간
F0510~ F051F	최소 스캔 시간	_SCAN_MIN	F0510 ~ F051F	최소 스캔 시간
F0520~ F052F	현재 스캔 시간	_SCAN_CUR	F0520 ~ F052F	현재 스캔 시간
F0530~ F053F	시계 테이터(년/월)	_YEAR_MON	F0530 ~ F053F	시계 데이터(년/월)
F0540~ F054F	시계 테이터(일/시)	_DAY_TIME	F0540 ~ F054F	시계 데이터(일/시)
F0550~ F055F	시계 테이터(분/초)	_MIN_SEC	F0550 ~ F055F	시계 데이터(분/초)
F0560~ F056F	시계 테이터(백년/요일)	_HUND_WK	F0560 ~ F056F	시계 데이터(백년/요일)
		_FPU_LF1ag_1	F0570	
		_FPU_LF1ag_U	F0571	
		_FPU_LFlag_0	F0572	
		_FPU_LF1ag_Z	F0573	
		_FPU_LF1ag_V	F0574	
50570		-	F0575 ~ F0579	미사용
F0570 ~ F058F	미사용	_FPU_Flag_I	F057A	
		_FPU_Flag_U	F057B	
		_FPU_Flag_0	F057C	
		_FPU_Flag_Z	F057D	
		_FPU_Flag_V	F057E	
		_FPU_Flag_E	F057F	
		Error Step	F0580 ~ F058F	에러 스텝 저장
F0590 ~ F059F	에러 스텝 저장	-	F0590 ~ F059F	미사용
F0600~ F060F	FMM 상세 에러 정보	REFCOUNT	F060 ~ F061	Refresh Count
F0610 ~ F063F	미사용	REFOKCNT	F062 ~ F063	Refresh OK Count
-	-	REFNGCNT	F064 ~ F065	Refresh NG Count
-	-	REFLIMONT	F066 ~ F067	Refresh Limit Count
_	-	REFERRONT	F068 ~ F069	Refresh Error Count

부록 3 MASTER-K 와의 호환성(특수 릴레이)

	MASTER-K	심볼	XGB		
접점	기 능	62	접점	기 능	
-	-	_MOD_RD_ERR_CNT	F070 ~ F071	MODULE Read Error Count	
-	-	_MOD_WR_ERR_CNT	F072 ~ F073	MODULE Write Error Count	
-	_	_CA_CNT	F074 ~ F075	Cmd Access Count	
_	-	_CA_LIM_CNT	F076 ~ F077	Cmd Access Limit Count	
_	_	_CA_ERR_CNT	F078 ~ F079	Cmd Access Error Count	
_	_	_BUF_FULL_CNT	F080 ~ F081	Buffer Full Count	

부록 4 명령어 일람

부록 4.1 명령어 분류

구분	명령어 종류	내용	비고
	접점명령	LOAD, AND, OR 관련명령	
기본명령	결합명령	AND LOAD, OR LOAD, MPUSH, MLOAD, MPOP	
	반전명령	NOT	
	마스터 컨트롤 명령	MCS, MCSCLR	
기보며려	출력명령	OUT, SET, RST, 1 스캔출력명령, 출력반전명령(FF)	
700	순차/후입 우선명령	스텝 컨트롤 명령 (SET Sxx.xx, OUT Sxx.xx)	
	종료명령	END	
	무처리명령	NOP	
	타이머명령	TON, TOFF, TMR, TMON, TRTG	
	카운터명령	CTD, CTU, CTUD, CTR	
	데이터전송명령	지정된 데이터 전송, 그룹전송, 문자열전송	4/8/64 비트 가능
	변환명령	지정된 데이터 BIN/BCD 변환, 그룹 BIN/BCD 변환	4/8 비트가능
	데이터형변환명령	정수/실수 변환명령	
	출력단 비교명령	비교결과를 특수릴레이에 저장.	Unsigned 비교
	입력단 비교명령	비교결과를 BR 에 저장. 실수, 문자열 비교, 그룹비교, 오퍼랜드 3개 비교	Signed 비교
	증감명령	지정된 데이터 1증가 또는 1감소	4/8 비트가능
	회전명령	지정된 데이터 좌회전, 우회전, 캐리포함 회전	4/8 비트가능
	이동명령	지정된 데이터 좌이동, 우이동, 워드단위 이동, 비트이동	4/8 비트가능
	교환명령	디바이스간 교환, 상하위바이트 교환, 그룹데이터 교환	
	BIN 사칙명령	정수/실수 덧셈, 뺄셈, 곱셈, 나눗셈. 문자열 덧셈, 그룹 덧셈, 그룹뺄셈	
	BCD 사칙명령	덧셈, 뺄셈, 곱셈, 나눗셈.	
	논리연산명령	논리곱, 논리합, Exclusive OR, Exclusive NOR, 그룹연산	
응용명령	시스템 명령	고장표시, WDT 초기화, 출력제어, 운전정지 등	
	테이터처리명령	Encode, Decode, 데이터분리/연결, 검색, 정렬, 최대, 최소, 합계, 평균 등	
	데이터테이블처리명령	데이터 테이블의 데이터 입출력	
	문자열처리명령	문자열 관련변환, 코멘트읽기, 문자열 추출, 아스키변환, HEX 변환, 문자열 검색 등	
	특수함수 명령	삼각함수, 지수/로그 함수, 각도/레디안 변환 등	
	데이터 제어명령	상하한리미트 제어, 불감대 제어, 존 제어	
	시간관련 명령	날짜시간 데이터 읽기/쓰기, 시간데이터 가감 및 변환	
	분기명령	JMP, CALL	
	루프명령	FOR/NEXT/BREAK	
	플래그관련명령	캐리플래그 Sst/Reset, 에러플래그 클리어	
	특수/통신관련명령	BUSCON Direct 액세스하여 데이터 읽기/쓰기	
	인터럽트관련명령	인터럽트 Enable/Disable	
	부호반전명령	정수/실수값의 부호 반전, 절대값 연산	
	파일관련명령	블록 읽기/쓰기/비교/전환, 플래쉬 데이터 전송	

부록 4.2 기본명령

(1) 접점 명령

ᄪᇐ	명 칭	심 벌	기 능	지원	여부
급 ㅠ	0 0	6 2	71-6	XGK	XGB
LO. AN OR OR LO. AN OR	LOAD	$\vdash\vdash\vdash$	A 접점 연산 개시	0	0
	LOAD NOT		B 접점 연산 개시	0	0
	AND		A 접점 직렬 접속	0	0
	AND NOT	-	B 접점 직렬 접속	0	0
	OR		A 접점 병렬 접속	0	0
저 저	OR NOT		B 접점 병렬 접속	0	0
	LOADP	P	양(Positive) 변환 검출 접점	0	0
	LOADN	N	음(Negative) 변환 검출 접점	0	0
	ANDP	— P —	양변환 검출 접점 직렬 접속	0	0
	ANDN	— N —	음변환 검출 접점 직렬 접속	0	0
	ORP	└ ┤ ₽├─┘	양변환 검출 접점 병렬 접속	0	0
	ORN	\square N \square	음변환 검출 접점 병렬 접속	0	0

(2) 결합 명령

분 류	명 칭	심 벌	기 능	지원	여부
<u> </u>	0 0	0 2	71 0	XGK	XGB
	AND LOAD	A B	A,B 블록 직렬 접속	0	0
	OR LOAD	A B B	A,B 블록 병렬 접속	0	0
결합	MPUSH	MPUSH ()	현재까지의 연산결과 Push	0	0
	MLOAD	MLOAD	분기점 이전 연산결과 Load	0	0
	MPOP	MPOP	분기점 이전 연산결과 Pop	0	0

(3) 반전 명령

u 2	분 류 명 칭 심 벌	Al H	기 능	지원 여부	
근 규		6 2		XGK	XGB
반전	NOT		이전 연산결과 반전	0	0

(4) 마스터 컨트롤 명령

분류 명칭 심벌		심 벌	기 능		여부
E //	0 0	וו	7 0	XGK	XGB
마스터	MCS	- MCS n	마스터 컨트롤 설정 (n:0~7)	0	0
컨트롤	MCSCLR	— MCS n	마스터 컨트롤 해제 (n:0~7)	0	0

(5) 출력 명령

분 류	명 칭	심 벌	기 능	지원	여부
<u></u> π	0 0	0 2	71 0	XGK	XGB
	OUT	—() 	연산 결과 출력	0	0
	OUT NOT	—(/)H	연산 결과 반전 출력	0	0
OUTP — (P)— 입력조건 :	입력조건 상승시 1스캔 출력	0	0		
출력	OUTN	— (N)—	입력조건 하강시 1스캔 출력	0	0
	SET	— (s)—	접점 출력 ON 유지	0	0
	RST	—(R)—	접점 출력 OFF 유지	0	0
	FF	—FF D	입력조건 상승시 출력 반전	0	0

(6) 순차/후입 우선 명령

분 류	명 칭	· · · · · · · · · · · · · · · · · · ·	기 능	지원 여부	
표 ㅠ	0 0	6 2	71 O	XGK	XGB
스텝	SET S	(S)—	순차 제어	0	0
컨트롤	OUT S	Sxx.xx (후입 우선	0	0

(7) 종료 명령

분 류	명 칭	심 벌	71 ≒	지원	여부
표 ㅠ	0 0	집	기 등	XGK	XGB
종료	END	— END	프로그램의 종료	0	0

(8) 무처리 명령

분 류	면치	명 칭 심 벌	71 ⊑	지원 여부	
ᆫ ㅠ	5 6	6 2	기 등	XGK	XGB
무처리	NOP	래더 표현 없음	무처리 명령, 니모닉에서 사용	0	0

(9) 타이머 명령

분 류	명 칭	심 벌	기 능	지원	여부
표 ㅠ	0 0		٦ ٥	XGK	XGB
	TON	—TON Tt	ĎÂ	0	0
	TOFF	—TOFF T t	₽Â	0	0
타이머	TMR	—TMR T t ⊢	ĎÂ	0	0
	TMON	—TMON T t	ØÂ	0	0
	TRTG	TRTG T t	입력 t → T	0	0

(10) 카운터 명령

(10) 카운터				지원	여부
분 류	명 칭	심 벌	기 능	XGK	XGB
	CTD	—CTD C c	Reset Count Pulse 설정치 출력	0	0
	СТИ	—CTU C c	Reset Count Pulse ÖMÄ å d	0	0
카운터 -	CTUD	— CTUD CUDC	Reset i ê Pulse i ê Pulse i ê Pulse i â A Â	0	0
	CTR	—CTR C c	Reset Count Pulse 설정치 출력	0	0

부록 4.3 응용 명령

(1) 데이터 전송 명령

분 류	명 칭	심 벌	기 능	지원 XGK	여부 XGB
16 비트	MOV	— MOV SD-			
전송	MOVP	- MOVP SD	(S) → (D)	0	0
32 비트	DMOV	— DMOV SD		(
전송	DMOVP	— DMOVP SD	(S+1,S)	0	0
단장형	RMOV	-RMOV SD	(0.1.0)	0	0
실수전송	RMOVP	-RMOVP SD	(S+1,S) → (D+1,D)	0	0
배장형	LMOV	- LMOV SD	(\$+3,\$+2,\$+1,\$)		
실수전송	LMOVP	LMOVP SD-	→ (D+3,D+2,D+1,D)	0	0
4 비트	MOV4	MOV4 SbDb	(Sb):비트위치 b15	0	0
전송	MOV4P	MOV4P Sb Db	(Db):비트위치)	O
8 비트	MOV8	MOV8 Sb Db	(Sb):비트위치 b15 b0	0	0
전송	MOV8P	MOV8P SbDb	8bit 전송 (Db):비트위치		
	CMOV	— CMOV SD	(S) ^{1 의 보} (D)	0	0
1 의 보수	CMOVP	- CMOVP SD	(6)		
전송	DCMOV	— DCMOV S D	(S+1,S) ^{1 의 보} (D+1,D)	0	0
	DCMOVP	DCMOVP S D			-
16bit 그룹전송	GMOV	GMOV S D N	(S) (D)	0	0
		- GMOVP S D N	(a) (b)		
다중전송	FMOV	- FMOV S D N -	(S) N	0	0
	FMOVP	- FMOVP SDN	b15 b0		
지정비트 전송	BMOV	- BMOV S D N	(S) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	0	0
	BMOVP	-BMOVP SDN	* Z: Control Word		
지정비트	GBMOV	— GBMOV S D Z N ⊢	(S) b15 b0 IN (S+N) (D)	0	0
그룹전송	GBMOVP	— GBMOVP S D Z N ⊢	(D+N) * Z: Control Word	Ü	J

분 류	명 칭 심 벌		기 능	지원 여부	
근 ㅠ	0 0	و	71 0	XGK	XGK
문자열	\$MOV		(S)부터 시작된 문자열	0	0
전송	\$MOVP	- \$MOVP SD	──→ (D)부터 시작된 문자열	0	0

(2) BCD/BIN변환 명령

분 류	명 칭	심 벌	기능	지원	여부
		J e		XGK	XGB
	BCDP	BCD SDH	(S) BCD 변 (D) BIN(0~9999)	0	0
BCD 변환					
	DBCD	— DBCD SD	(S+1,S) BCD 변환 (D+1,D)	0	\circ
	DBCDP	— DBCDP SD	1 BIN(0~9999999)		
	BCD4	BCD4 SbDb	(Sb):비트위치, BIN(0~9) b15 b0	\circ	0
4/8 비트 BCD 변환	BCD4P	- BCD4P SbDb	4bit BCD 변환 (Db):비트위치	O)
BCD 변환	BCD8	BCD8 SbDb	(Sb):비트위치, BIN(0~99) b15)	0
 - BIN 변환	BCD8P	BCD8P SbDb-	8bit BCD 변환))
	BIN	-BIN S D	(S) BIN 변환 (D))	
	BINP	-BINP SD	BCD(0~9999)	0	0
BIN 변환	DBIN	— DBIN S D	(S+1,S) BIN 변환 (S+1,D)	0	C
	DBINP	- DBINP S D	BCD(0~9999999)		
4/8 비트 BCD 변환 BIN 변환 4/8 비트 BIN 변환	BIN4	BIN4 SbDb-	(Sb):비트위치, BCD(0~9) b15 b0	0	0
	BIN4P	BIN4P SbDb-	4bit BIN 변환 (Db):비트위치	0)
BIN 변환	BIN8	BIN8 Sb Db	(Sb):비트위치, BCD(0~99) b15		0
	BIN8P	BIN8P Sb Db	8bit BIN 변환 (Db):비트위치)
	GBCD	- GBCD S D N	(S)부터 N 개의 데이터를 BCD 로 변	(
그룹변환	GBCDP	-GBCDP S D N	환하여 (D)부터 N까지 저장	O	0
그 법 긴 건	GBIN	- GBIN SDN	(S)부터 N 개의 데이터를 BIN 으로	0	0
	GBINP	GBINP S D N	변환하여 (D)부터 N까지 저장	Ü)

(3) 데이터형 변환 명령

분 류	명 칭	심 벌	기 능	지원	여부
군 규	70	6 2	Л 5	XGK	XGB
16bit	I2R I2RP	[12R	(S) Real 변환 (D+1,D) 1 Int(-32768~32767)	0	0
정수 실수 변환	I2L I2LP	— [12L S D H	(S) Long 변환 (D+3,D+2,D+1,D) Î Int(-32768~32767)	0	0
32bit 정수 실수 변환	D2R D2RP		(S+1,S) Real 변환 (D+1,D) ♣ Dint(-2147483648~2147483647)	0	0
	D2L D2LP	— D2L S D — D2LP S D —	(S+1,S) Long 변환 (D+3,D+2,D+1,D) Dint(-2147483648~2147483647)	0	0
단장형 실수정수	R2I R2IP	— R2I S D → R2IP S D →	(S+1,S) — INT 변환 (D) ← 단장형실수 전체범위	0	0
변환	R2D R2DP		(S+1,S) <u>DINT 변환</u> (D+1,D) ← 단장형실수 전체범위	0	0
배장형	L2I L2IP	— L2I S D — L2IP S D —	(S+3,S+2,S+1,S) → (D) ↑ ・	0	0
실수정수 변환	L2D L2DP	L2D	(S+3,S+2,S+1,S) → (D+1,D) ↑	0	0

알아두기

정수 값과 실수 값은 전혀 다른 형식으로 저장됩니다. 그러므로, 실수 데이터를 정수 연산에 사용하고자 할 경우 반드시 변환을 시켜 사용해야 합니다

(4) 비교 명령

분 류	명 칭	심 벌	71 느	지원 여부	
正元	50 성		기 능	XGK	XGB
특수릴레	CMP	- CMP S1 S2	CMP(S1,S2) 하여 해당 플래그 SET (S1, S2는 워드)	0	0
이들 사용한	CMPP	- CMPP S1S2	(01, 02 L 71)		
0110 1 g110 a	DCMP	DCMP S1S2	CMP(S1,S2) 하여 해당 플래그 SET	0	0
01717	DCMPP	DCMPP S1S2	(S1, S2는 더블워드)		
4/8 비트	CMP4	CMP4 S1 S2	CMP(S1,S2) 하여 해당 플래그 SET	0	0
	CMP4P	CMP4P S1 S2	(S1, S2는 니블)		
비교	CMP8		CMP(S1,S2) 하여 해당 플래그 SET	0	0
특수릴레 이를 (이를 사용한 Unsigned 비교 (이를 사용한 비교 (이를 사용한 비교 (이를 기를	CMP8P	CMP8P S1S2	(S1, S2는 바이트)		
	TCMP	TCMP S1S2D	CMP(S1,S2)) : : : : : : : : : : : : : : : : : :	0	0
테이블	TCMPP	TCMPP S1S2D	결과:(D) ~ (D+15), 같은 값이면 1)
비교	DTCMP	OTCMP S1S2D	CMP((S1+1,S1),(S2+1,S2))	0	0
	DTCMPP	OTCMPP S1S2 D	CMP((S1+31,S1+30),(S2+31,S2+30)) 결과:(D) ~ (D+15)	0	O
	GEQ	GEQ S1 S2 D N			
	GEQP	GEQP S1 S2 D N			
	GGT				
	GGTP	GGTP S1S2DN			
	GLT				
그룹비교	GLTP	GLTP S1S2 D N	S1 데이터와 S2 데이터를 1 워드 단위로 비교하여, 비교 결과를 D로 지정		
	GGE		된 디바이스의 하위비트부터 한 비트 씩 저장한다. (N ≤ 16)	0	0
	GGEP	GGEP S1S2 D N	· · · · · · ·		
	GLE	GLE S1 S2 D N -			
	GLEP	GLEP S1 S2 D N -			
	GNE	GNE S1 S2 D N			
	GNEP	GNEP S1S2DN			

알아두기

CMP(P), DCMP(P), CMP4(P), CMP8(P), TCMP(P), DTCMP(P) 명령은 모두 Unsigned 비교를 수행한 결과를 처리합니다. 그 외 모든 비교명령은 Signed 비교합니다.

분 류	명 칭	심 벌	기 능	지원 여부	
표 ㅠ	0 0	7.5	71 0	XGK	XGB
	GDEQ	GDEQ S1 S2 D N		0	0
	GDEQP			0	0
	GDGT			0	0
	GDGTP			0	0
	GDLT		S1 데이터와 S2 데이터를 2 워드 단위 - 로 비교하여, 비교 결과를 D 로 지정 된 디바이스의 하위비트부터 한 비트 - 씩 저장한다. (N ≤ 16)	0	0
그룹비교	GDLTP	—GDLTP S1 S2 D N		0	0
(32bit)	GDGE			0	0
	GDGEP	GDGEP S1 S2 D N	(10)	0	0
	GDLE	GDLE S1 S2 D N		0	0
	GDLEP	GDLEP S1 S2 D N		0	0
	GDNE			0	0
	GDNEP	GDNEP S1 S2 D N		0	0

				지원 여부	
분 류	명 칭	심 벌	기 능	XGK	XGB
	LOAD=	= S1 S2 > S1 S2			
16bit	LOAD<	< S1 S2			
네이터 비교	LOAD>=	>= S1 S2	(S1)과(S2)의 내용 비교하여 결과를 Bit Result(BR)에저장 (Signed 연산)	0	0
(LOAD)	LOAD<=	<= S1 S2			
	LOAD<>				
	AND=				
	AND>				
16bit 데이터	AND<	S1 S2	(S1)과(S2)의 내용 비교결과와		
비교 (AND)	AND>=		Bit Result(BR)값을 AND 연산한 후 BR 에 저장(Signed 연산)	0	0
	AND<=		Stroil Are (orginal E E /		
	AND⇔				
16bt 데이터 비교 (OR)	OR=	= \$1 \$2	(S1)과(S2)의 내용 비교결과와 Bit Result(BR)값을 OR 연산한 후 BR 에 저장 (Signed 연산)	0	0
	0R<=	<= S1 S2			
	0R<>	<> S1S2			
	LOADD=	D= S1 S2			
001.11	LOADD>	D> S1 S2			
32bit 데이터	LOADD<	D< \$1 \$2	(S1)과(S2)의 내용 비교하여 결과를	0	0
비교 (LOAD)	LOADD>=	D>= S1 S2	Bit Result(BR)에저장 (Signed 연산)		
(20/10)	LOADD<=	D<= S1 S2			
	LOADD<>	D<> S1 S2			

알아두기

입력단 비교 명령은 모두 Signed 비교명령을 수행한 결과를 처리합니다. Unsigned 비교수행을 원하실 경우는 입력단 비교 명령을 사용하시기 바랍니다.

	51:				제쪽) 여부
분 류	명 칭	심 벌	기 능	XGK	XGB
	ANDD=	⊢⊢D= S1 S2			
00L:±	ANDD>				
32bit 데이터	ANDD<		(S1)과(S2)의 내용 비교결과와 Bit Result(BR)값을 AND 연산한 후	0	0
비교 (AND)	ANDD>=		BR 에 저장(Signed 연산)		
(/110/	ANDD<=				
	ANDD<>				
	ORD=	D= S1 S2			
32bt 데이터 비교 (OR)	ORD>	D> S1 S2			
	ORD<	D< S1 S2	(S1)과(S2)의 내용 비교결과와 Bit Result(BR)값을 OR 연산한 후	0	0
	ORD>=	D>= S1 S2	BR 에 저장 (Signed 연산)	0	0
	ORD<=	D<= S1 S2			
	ORD<>	D<> S1 S2			
	LOADR=	R= S1 S2			
	LOADR>	R> S1 S2			
단장형 실수	LOADR<	R< \$1 \$2	(S1)과 (S2)의 내용 비교결과와 Bit Result(BR)값을 OR 연산한 후	0	0
비교 (LOAD)	LOADR>=	R>= S1 S2	BR에 저장 (Signed 연산)		O
	LOADR<=	R<= S1 S2			
	LOADR<>	R<> S1 S2			
	ANDR=	H-R= S1 S2			
	ANDR>	S1 S2 S1 S2 S2 S1 S2 S2 S2 S2 S2 S2 S2 S2 S2			
단장형 실수	ANDR<		(S1+1,S)과 (S2+1,S2)의 내용을 비 교하여 Bit Result(BR)에 저장	0	0
비교 (AND)	ANDR>=		(Signed 연산)		
	ANDR<=				
	ANDR<>				

нп	머큐	II HI	71 L	지원	여부
분 류	명 칭	심 벌	기 능	XGK	XGB
	ORR=	R= S1 S2			
	ORR>				
단장형 실수	ORR<	R< \$1\$2	(S1+1,S1)과 (S2+1,S2)의 내용 비교	((
비교 (OR)	ORR>=	R>= S1S2	결과와 Bit Result(BR)값을 OR 연산한 후 BR에 저장 (Signed 연산)	O	0
	ORR<=	R<= \$1\$2			
	0RR<>	R<> \$1\$2		0	
	LOADL=	L= S1 S2	(S1+3,S1+2,S1+1,S)과 (S2+3,S2+2, S2+1,S2)의 내용을 비교하여 Bit		
배장형	LOADL>	L> S1 S2 —			
실수 비교	LOADL<	L< \$1 \$2		0	0
(LOAD)	LOADL>=	L>= S1 S2	Result (BR)에 저장 (Signed 연산)	O	O
	LOADL<=	L<= S1 S2		XGK	
	LOADL⇔	L<> S1 S2			
	ANDL=	HHL= S1 S2			
	ANDL>				
배장형 실수	ANDL<		(S1+1,S1)과 (S2+1,S2)의 내용 비교 결과와 Bit Result(BR)값을 AND 연산		0
비교 (AND)	ANDL>=		한 후 BR 에 저장 (Signed 연산)	, t O	
	ANDL<=				
	ANDL⇔				

분 류	명 칭	심 벌	기 능	지원	여부
<u>υ</u> π	0 0	o 2	71 0	XGK	XGB
	ORL=	L= S1 S2			
	ORL>	L> S1 S2			
배장형실 수 비교	ORL<	L< \$1 \$2	(S1+1,S1)과 (S2+1,S2)의 내용 비교 결과와 Bit Result(BR)값을 OR 연산	0	0
(OR)	ORL>=	L>= S1 S2	할까가 BIT NeSUIT(BH)값을 어떤 전신한 후 BR에 저장 (Signed 연산)	0	0
	ORL<=	L<= \$1 \$2			
	0RL<>	L<> \$1 \$2		0	
	LOAD\$=	\$= S1S2	(S1)과 (S2)로 시작되는 문자열을		
	LOAD\$>	\$> S1S2			
문자열 비교	LOAD\$<	\$< \$1\$2			0
(LOAD)	LOAD\$>=	\$>= \$1\$2	비교하여 Bit Result(BR)에 저장		O
	LOAD\$<=	\$<= \$1\S2			
	LOAD\$<>	\$<> S1S2		0	
	AND\$=				
	AND\$>				
문자열	AND\$<		(S1)과 (S2)로 시작되는 문자열 비		
비교(AND)	AND\$>=		교 결과와 Bit Result(BR)의 결과를 AND 연산한 후 BR 에 저장	11	0
	AND\$<=				
	AND\$<>				

					게 득 <i>)</i> 여부
분 류	명 칭	심 벌	기 능	XGK	XGB
	OR\$=	\$= S1S2			
문자열 비교	OR\$>	\$> \$1 \$2			
	0R\$<	\$< S1 S2	(S1)과 (S2)로 시작되는 문자열 비 교결과와 Bit Result(BR)의 결과를	\circ	0
(OR)	0R\$>=	\$>= S1 S2	OR 연산한 후 BR 에 저장)	
	0R\$<=	\$<= \S1\S2			
	0R\$<>	\$<> S1 S2			
	LOADG=	G= S1S2 N			
16bit 데이터 그룹 비교 (LOAD)	LOADG>	G> S1S2 N	(04) (04)4) (04)11) 7		
	LOADG<	G< \$1\$2 N	(S1), (S1+1), …, (S1+N) 과 (S2), (S2+1), … , (S2+N) 의 값		
	LOADG>=	G>= S1 S2 N	을 일대일로 비교하여 비교한 모 든 값이 주어진 조건을 만족하면 Bit Result(BR)에 1을 저장	0	0
	LOADG<=	G<= S1S2 N	DIL Nesuil(bh/vii i = Ala		
	LOADG<>	G<> S1 S2 N			
	ANDG=				
	ANDG>	H-G> S1S1 N			
16bit 데이터	ANDG<	H	(S1), (S1+1), …, (S1+N) 과 (S2), (S2+1), … , (S2+N) 의 값 을 일대일로 비교한 최종값과 Bit	\circ	0
그룹 비교 (AND)	ANDG>=	⊢ G>= S1S1 N	Result(BR)의 값을 AND 연산한 후	Ü	
	ANDG<=		BR에 저장		
	ANDG<>			0	
	ORG=	G= S1 S2 N			
	ORG>	G> S1 S2 N			
16bit 데이터	ORG<	G< S1 S2 N	(S1), (S1+1), …, (S1+N) 과 (S2), (S2+1), … , (S2+N) 의 값		
그룹비교 (OR)	ORG>=	G>= S1 S2 N	을 일대일로 비교한 최종값과 Bit Result(BR)의 값을 OR 연산한 후 BR 에 저장	0	0
	ORG<=	G<= S1 S2 N			
	ORG<>	G<> \$1 \$2 N			

분 류	명 칭	심 벌	기 능	지원	여부
- Z //	0 0	ם כ	71 0	XGK	XGB
	LOADDG=	DG= S1 S2 N			
	LOADDG>	DG> S1 S2 N	(01) (01)		
32bit FIOLE	LOADDG<	DG< S1 S2 N	(S1), (S1+1), …, (S1+N) 과 (S2), (S2+1), … , (S2+N) 의 값		
그룹 비교	LOADDG>=	DG>= S1 S2 N	을 일대일로 비교하여 비교한 모 든 값이 주어진 조건을 만족하면	0	0
32bit 데이터 그룹 비교 (LOADDG<	LOADDG<=	DG<= S1 S2 N	Bit Result(BR)에 1을 저장		
	ANDDG=	⊢⊢DG= S1 S1 N —			
	ANDDG>	⊢⊢DG> S1 S1 N —	(S1), (S1+1), …, (S1+N) 과		
	ANDDG<	H DG< S1 S1 N H	(S1), (S1+1), …, (S1+N) 과 (S2), (S2+1), … , (S2+N) 의 값 을 일대일로 비교한 최종값과 Bit Result(BR)의 값을 AND 연산한 후 BR에 저장	0	0
	ANDDG>=	DG>= S1 S1 N		O	O
	ANDDG<=	DG<= S1 S1 N			
	ANDDG⇔	H DG<> S1 S1 N H			
	ORDG=	DG= S1 S2 N			
	ORDG>	DG> S1 S2 N			
	ORDG<	DG< \$1 \$2 N	(S1), (S1+1), …, (S1+N) 과 (S2), (S2+1), … , (S2+N) 의 값		
그룹비교 (OR)	ORDG>=	DG>= S1 S2 N	을 일대일로 비교한 최종값과 Bit Result(BR)의 값을 OR 연산한 후 BR 에 저장	0	0
	ORDG<=	DG<= S1 S2 N			
	ORDG<>	DG<> \$1 \$2 N			

					(세속 <i>)</i> 지원 여부	
분 류	명 칭	심 벌	기 능	XGK	XGB	
	LOAD3=	3= S1 S2 S3				
3 7# 01	LOAD3>	3> S1 S2 S3				
16bit	LOAD3<	S1 S2 S3	(S1),(S2),(S3)의 값이 주어진 조 건식을 만족하면 Bit Result(BR)에	0	0	
卫	LOAD3>=	3>= S1 S2 S3	1을 저장)	
(LOAU)	LOAD3<=	3<= \$1 \$2 \$3				
데이터 비	LOAD3⇔	3<> S1 S2 S3				
	AND=					
16bit 데이터 비	AND>					
	AND<		주어진 조건식에 따른 (S1),(S2),(S3)값의 비교결과와	0	0	
	AND>=		Bit Result(BR)의 값을 AND 연산한 후 BR 에 저장		0	
	AND<=					
	AND<>					
	0R3=	3= \$1 \$2 \$3				
	0R3>	3> \$1 \$2 \$3				
32bit	0R3<	<3 S1 S2 S3	주어진 조건식에 따른 (S1),(S2),(S3)값의 비교결과와		0	
	0R3>=	>=3 \$1\$2\$3	Bit Result(BR)의 값을 OR 연산한 후 BR 에 저장	0	O	
	0R3<=	3<= \$1 \$2 \$3		0		
	0R3<>	3<> \$1 \$2 \$3				
	LOADD3=	D3= S1 S2 S3				
וס ער ג	LOADD3>	D3> S1 S2 S3				
16bit	LOADD3<	D3< S1 S2 S3	(S1+1,S1),(S2+1,S2),(S3+1,S3)의 값이 주어진 조건식을 만족하면	0	0	
교	LOADD3>=	D3>= S1 S2 S3	Bit Result (BR)에 1을 저장		O	
(LUAU)	LOADD3<=	D3<= S1 S2 S3				
	LOADD3<>	D3<> S1 S2 S3				

분 류	명 칭	심 벌	기 능		여부
Ŀ 77	0	0	71 0	XGK	XGB
	ANDD3=	⊢⊢D3= S1 S2 S3			
3 개의 32bit	ANDD3>				
	ANDD3<		주어진 조건식에 따른 (S1+1,S1), (S2+1,S2), (S3+1,S3)값의 비교결	0	0
데이터 비 교(AND)	ANDD3>=		과와 Bit Result(BR)의 값을 AND 연 산한 후 BR 에 저장	0	O
	ANDD3<=	⊢ D3<= S1 S2 S3			
	ANDD				
	ORD3=	D3= S1 S2 S3			
	ORD3>	D3> S1 S2 S3	주어진 조건식에 따른 (S1+1,S1), (S2+1,S2), (S3+1,S3)값의 비교결		
3 개의 32bit	ORD3<	D3< S1 S2 S3		0	0
데이터 비 교(OR)	ORD3>=	D3>= S1 S2 S3	과와 Bit Result(BR)의 값을 OR 연 산한 후 BR에 저장	0	O
	ORD3<=	D3<= S1 S2 S3			
	ORD3<>	D3<> S1 S2 S3			

(5) 증감 명령

분 류	명 칭	심 벌	기능	지원 여부	
⊥ π	0 0	0 2	71 0	XGK	XGB
	INC	— INC D	45.	0	
	INCP	[INCP D-	$(D)+1 \longrightarrow (D)$		
	DINC	— DINC D			0
BIN 데이터	DINCP	— DINCP D	(D+1,D)+1 → (D+1,D)		
증감 (Signed)	DEC	DEC D			
	DECP	— DECP D	(D)−1 → (D)		(
	DDEC	— DDEC D	C	0	
	DDECP	DDECP D	$(D+1,D)-1 \longrightarrow (D+1,D)$		
	INC4	INC4 Db-	(D:x bit ~ D:x bit+4) + 1	- O	
데이터 증 감	INC4P	[INC4P Db-	$\longrightarrow (D:x bit \sim D:x bit+4)$		
	INC8	INC8 Db-	(D:x bit ~ D:x bit+8) + 1		0
	INC8P	[INC8P Db-	$\longrightarrow (D:x bit \sim D:x bit+8)$		
감	DEC4	DEC4 Db	(D:x bit ~ D:x bit+4) - 1		
(0.9,	DEC4P	DEC4P Db	$\longrightarrow (D:x bit \sim D:x bit+4)$		
데이터 증 감	DEC8	DEC8 Db	(D:x bit ~ D:x bit+8) - 1		0
	DEC8P	DEC8P Db	$\longrightarrow (D:x bit \sim D:x bit+8)$	XGK O	
	INCU	—[INCU D		- 0	
	INCUP	[INCUP D	(D)+1(D)		0
데이터 증 감 (Signed)	DINCU	— DINCU D			0
BIN 데이터	DINCUP	— DINCUP D	(D+1,D)+1 (D+1,D)		
	DECU	—[DECU D]			
	DECUP	— DECUP D	(D)−1 → (D)		
	DDECU	— DDECU D	(0.10)	0	0
	DDECUP	— DDECUP D	$(D+1,D)-1 \longrightarrow (D+1,D)$		

(6) 회전 명령

분 류	명 칭	심 벌	기 능	지원	여부
<u>υπ</u>	0 0	0 2	71 0	XGK	XGB
	ROL	ROL D n	b15 b0 ←		
왼쪽 회전	ROLP	ROLP D n		0	0
	DROL	— DROL D n	b31 b15 b0 CY		
	DROLP	— DROLP D n			
	ROL4	ROL4 Db n	CY b+3 b		
4/8 비트	ROL4P	ROL4P Db n		\cap	0
왼쪽 회전	ROL8	ROL8 Db n	CY ← D D D D	O	O
	ROL8P	- ROL8P Db n			
	ROR	-ROR D n	b15 b0 CY		
오른쪽 회전 4/8 비트 오른쪽 회전	RORP	-RORP D n	D CY	0	0
	DROR	— DROR D n	b31 b15 b0 CY		
	DRORP	- DRORP D n			
4/0 HIE	ROR4	ROR4 Db n	b+3 b CY		
	ROR4P	ROR4P Db n		0	0
	ROR8	ROR8 Db n	b+7 b cY		
4/8 비트 오른쪽 ROR4P - ROR4P	ROR8P Db n				
	RCL	-RCL D n	b15 b0		
	RCLP	-RCLP D n	CY D		\circ
	DRCL	- DRCL D n	b31 b15 b0		0
	DRCLP	- DRCLP D n			
4/0 1115	RCL4	-RCL4 Db n	CY b+3 b	0	
4/8 비트 왼쪽 회전	RCL4P	RCL4P Db n		\circ	0
(캐리 포함)	RCL8	-RCL8 Db n	CY b+7 b	0	O
_ ,	RCL8P	-RCL8P Db n			
0 = 1	RCR	RCR D n	b15 b0		
오른쪽 회전	RCRP	-RCRP D n	D	\circ	0
(캐리 포함)	DRCR	DRCR D n	b31 b15 b0 CY)	O
·	DRCRP	DRCRP D n			
4/8 비트	RCR4	RCR4 Db n	b+3 b CY		
오른쪽 회전	RCR4P	RCR4P Db n			0
(캐리	RCR8	RCR8 Db n	b+7 b cY		
포함)	RCR8P	-RCR8P Db n			

(7) 이동 명령

(7) 이공 8 분 류	명 칭	심 벌	기 능	지원	여부
ᆫ ㅠ	70 (0	(i) (ii)		XGK	XGB
비트이동	BSFT	BSFT St Ed	b15 b0	\circ	0
	BSFTP	BSFTP St Ed	0		
	BSFL	BSFL D n	(D)		
상위비트 박향으로	BSFLP	- BSFLP D n	CY 0	\circ	0
이동	DBSFL	- DBSFL D n	b31 b0 (D+1, D) b0		
	DBSFLP	- DBSFLP D n	CY		
1/8 HI 트번	BSFL4	BSFL4 Db n	b+3 b		
위 내에서	BSFL4P	BSFL4P Db n	CY		0
방향으로	BSFL8	BSFL8 Db n	b+7 b		0
이승	BSFL8P	BSFL8P Db n	CY	XGK O O O O O	
	BSFR	-BSFR D n	b15 b0		
하위비트 방향으로 이동	BSFRP	BSFRP D n	CY		0
	BSFTP BSFTP SIED		O		
	DBSFRP	- DBSFRP D n	t CY		
1/0 HI ∈ H	BSFR4	BSFR4 Db n	D		
위 내에서	BSFR4P	BSFR4P Db n	0 CY		0
방향으로	BSFR8	BSFR8 Db n			
이동	BSFR8P	-BSFR8P Db n	O CY		
01 - 01 -	WSFT	WSFT Et Ed-	h0000 — St (Start Word)		0
Ħ 그 데등	WSFTP				
	WSFL	-WSFL D1 D2 N	h0000 D1		
워드 데이		-WSFLP D1 D2 N	: \\ \sqrt{D2}		
더 솨/우 방향이동		WSFR D1D2N	□ ↓ ^{D1}	O	0
	WSFRP	WSFRP D1 D2 N	h0000		
비트이동	SR	SR Db I D N		0	0

(8) 교환 명령

분 류	명 칭	심 벌	기 능	지원	여부
근 ㅠ	0 0	<u> </u>	Л O	지원 XGK	XGB
	XCHG	XCHG D1 D2	(D1) ← → (D2)		
데이터	XCHGP	— XCHGP D1 D2	(01) 7 (02)		0
교환	DXCHG	DXCHG D1 D2	(D1+1, D1) ← → (D2+1, D2)	0	O
	DXCHGP	DXCHGP D1 D2	(0111, 01)	XGK	
그룹 데이터	GXCHG	GXCHG D1 D2 N	(D1) (D2))	0
교환	GXCHGP	GXCHGP D1 D2 N	: N)	O
상하위 바이트	SWAP	—SWAP D	b15 b0 (D) Upper Byte Lower Byte)	0
교환	SWAPP	-SWAPP D	(D) Lower Byte Upper Byte	0	O
그룹 바이트	GSWAP	- GSWAP D N	D 부터 N 개의 워드를 상하위 바이		0
교환	GSWAPP	- GSWAPP D N	트 교환	O	

(9) BIN 사칙 명령

분 류	명 칭	심 벌	기 능	지원	
	ADD	— ADD S1 S2 D -		XGN	XGB
T. 1. 5. 1.11	ADDP	— ADDP S1 S2 D	(S1)+(S2) → (D)		
성수넛셈 (Signed)	DADD	— DADD S1 S2 D	(0.1.1.0.1.) (0.0.1.0.)	0	0
정수덧셈 (Signed) 정수덕셈 (Signed) 정수데 (Signed) 정수 다 보세 (Signed) 정수 더 선셈 (Unsigned)	DADDP	— DADDP S1 S2 D	(S1+1,S1)+(S2+1,S2) → (D+1,D)		
	SUB	— SUB S1 S2 D			
정수뺄셈	SUBP	SUBP S1 S2 D	(S1)-(S2) → (D)		
	DSUB	— DSUB S1 S2 D	(S1+1,S1)-(S2+1,S2)	0	0
	DSUBP	— DSUBP S1 S2 D	——→ (D+1,D)		
	MUL	MUL S1 S2 D -	(S1)×(S2) → (D+1,D)		
정수곱셈	MULP	MULP S1 S2 D -	(S1)×(S2)		
(Signed)	DMUL	DMUL S1 S2 D -	(S1+1,S1)×(S2+1,S2)	O	0
	DMULP	- DMULP S1 S2 D	→ (D+3,D+2,D+1,D)		
	DIV	— DIV S1 S2 D	(S1)÷(S2)		
정수나눗셈	DIVP	— DIVP S1 S2 D	(ST) - (SZ) (D+1) 나머지		0
(Signed)	DDIV	— DDIV S1 S2 D	(S1+1,S1)÷(S2+1,S2)		
	DDIVP	DDIVP S1 S2 D	(D+1,D) 몫 (D+3,D+2) 나머지		
	ADDU	- ADDU S1S2D	(S1)+(S2) → (D)		
	ADDUP	ADDUP S1S2D			0
(Unsigned)	DADDU	— DADDU S1S2D	(\$1+1,\$1)+(\$2+1,\$2)		
	DADDUP	— DADDUP S1S2 D	——→ (D+1,D)		
	SUBU	— SUBU S1S2D	(S1)-(S2) → (D)		
	SUBUP	SUBUP S1S2D	(61) (62)	\circ	0
(Unsigned)	DSUBU	— DSUBU S1S2D	(S1+1,S1)-(S2+1,S2)		
	DSUBUP	OSUBUP S1S2 D	——→ (D+1,D)		
	MULU	MULU S1S2D	(S1)×(S2) → (D+1,D)		
정수곱셈	MULUP	MULUP S1S2D		\cap	0
(Unsigned)	DMULU	- DMULU S1S2D	(S1+1,S1)×(S2+1,S2)		
	DMULUP	- DMULUP S1S2 D	→ (D+3,D+2,D+1,D)		

u n	D4 =1		71 -	지원 여부	
분 류	명 칭	심 벌	기 능	XGK	XGB
	DIVU	— DIVU S1 S2 D	(c1):(c2) (D) 몫		
정수나눗셈	DIVUP	- DIVUP S1S2D	(S1)÷(S2)		0
(Unsigned)	DDTVU	- DDIVU S1S2D	(S1+1,S1)÷(S2+1,S2)	0	
	DDTVUP	DDIVUP S1S2D	(D+1,D) 몫 (D+3,D+2) 나머지		
	RADD	-RADD S1S2D	(S1+1,S1)+(S2+1,S2)		
시스터센	RADDP	-RADDP S1S2D	——→ (D+1,D)		
실수덧셈	LADD	— LADD S1S2D	(\$1+3,\$1+2,\$1+1,\$1) +(\$2+3,\$2+2,\$2+1,\$2)	0	0
	LADDP	-LADDP S1S2D	→ (D+3,D+2,D+1,D)		
	RSUB	-RSUB S1S2D	(\$1+1,\$1)-(\$2+1,\$2)		
시 시 HH Idl	RSUBP	-RSUBP S1S2D	——→ (D+1,D)		
실수뺄셈	LSUB	- LSUB S1S2D	(\$1+3,\$1+2,\$1+1,\$1) -(\$2+3,\$2+2,\$2+1,\$2)	0	0
	LSUBP	- LSUBP S1S2D	— (D+3,D+2,D+1,D)		
	RMUL	-RMUL S1S2D	(S1+1,S1)×(S2+1,S2)		
시스코센	RMULP	-RMULP S1S2D	——→ (D+1,D)		0
실수곱셈	LMUL	LMUL S1 S2 D	(\$1+3,\$1+2,\$1+1,\$1)	0	O
	LMULP	- LMULP S1S2D	×(S2+3,S2+2,S2+1,S2) 		
	RDIV	RDIV S1 S2 D -	(S1+1,S1)÷(S2+1,S2)		
A. A. I. \- 41	RDIVP	-RDIVP S1S2D	——→ (D+1,D)		
실수나눗셈	LDIV	— LDIV S1 S2 D	(\$1+3,\$1+2,\$1+1,\$1)	0	0
	LDIVP	— LDIVP S1S2D	÷(S2+3,S2+2,S2+1,S2) → (D+3,D+2,D+1,D)		
문자열	\$ADD	[\$ADD S1 S2 D -	S1 문자열과 S2 문자열을 연결하여		
년 시 년 덧셈	\$ADDP		D 에 저장	0	0
7251	GADD	GADD S1S2 D N	(S1) (S2) (D)		
그룹덧셈	GADDP	GADDP S1S2 D N	+ = = T _N	0	0
	GSUB	GSUB S1S2 D N	(S1) (S2) (D)		
그룹뺄셈	GSUBP	GSUBP S1S2 D N	- = <u>I</u> N	0	0

(10) BCD 사칙 명령

분 류	명 칭	명 칭 심 벌	기 능	지원 여부	
<u> </u>	0 0	J E	7 0	XGK	XGB
	ADDB	- ADDB S1S2D	(0.1) (00)		
BCD 덧셈	ADDBP	- ADDBP S1S2D	(S1)+(S2) → (D)		
BOD 닷컴	DADDB	— DADDB S1S2D	(\$1+1,\$1)+(\$2+1,\$2)	0	0
	DADDBP	— DADDBP S1S2 D	——→ (D+1,D)		
	SUBB	-SUBB S1S2D	(04) (00)		
BCD 뺄셈	SUBBP	-SUBBP S1S2D	(S1)-(S2) → (D)		0
BU 型省	DSUBB	OSUBB S1S2D	(S1+1,S1)-(S2+1,S2) → (D+1,D)	0	O
	DSUBBP	OSUBBP S1S2 D			
	MULB	- MULB S1S2D	(S1)×(S2) → (D+1,D)		
BCD 곱셈	MULBP	- MULBP S1S2D		0	0
	DMULB	- DMULB S1S2D	(S1+1,S1)×(S2+1,S2)		0
	DMULBP	- DMULBP S1S2 D	→ (D+3,D+2,D+1,D)		
	DIVB	— DIVB S1S2 D	(C1): (C2) (D) 몫		
BCD 나눗셈	DIVBP	— DIVBP S1S2D	(S1)÷(S2)	0	0
	DDTVB	— DDIVB S1S2D	(S1+1,S1)÷(S2+1,S2)		U
	DDTVBP	ODIVBP S1S2D	→ (D+1,D) 몫 (D+3,D+2) 나머지		

(11) 논리 연산 명령

분 류	명 칭	심 벌	기 능	지원	여부
Δ π	0 0	0	71 0	XGK	XGB
누리고	WAND	WAND S1S2D	Word AND (S1) ∧ (S2)(D)		0
	WANDP	WANDP S1S2D			
논리곱	DWAND	- DWAND S1S2D	DWord AND	O	
	DWANDP	- DWANDP S1S2 D	$(S1+1,S1) \wedge (S2+1,S2) \longrightarrow (D+1,D)$		
	WOR	[wor s1 s2 D -	Word OR		
. 71=1	WORP	WORP S1S2D			
논리합	DWOR	— DWOR S1S2D	DWord OR	O	O
	DWORP	- DWORP S1S2D	(S1+1,S1) V (S2+1,S2) (D+1,D)		
	WXOR	WXOR S1S2D	Word Exclusive OR		
Exclusive	WXORP	WXORP S1S2D	(S1) ¥ (S2)(D)		0
OR	DWXOR	- DWXOR S1S2D	DWord Exclusive OR	0	
	DWXORP	- DWXORP S1 S2 D	$(S1+1,S1)V(S2+1,S2) \longrightarrow (D+1,D)$		
	WXNR	WXNR S1S2D	Word Exclusive NOR		0
Exclusive	WXNRP	WXNRP S1S2D	(C1) \ \ (C2) \ (D)		
NOR	DWXNR	- DWXNR S1S2D		O	
	DWXNRP	- DWXNRP S1S2 D	$(S1+1,S1) + (S2+1,S2) \longrightarrow (D+1,D)$		
	GWAND	GWAND S1S2DN	(S1) (S2) = (D) N	0	
	GWANDP	GWANDP S1 S2 D N			0
	GWOR	GWOR S1S2 D N	(S1) (S2) (D)	(
그룹	GWORP	GWORP S1S2 D N	= <u></u>	0	0
논리연산	GWXOR	- GWXOR S1S2 D N	(S1) (S2) (D)		
	GWXORP	GWXORP S1 S2 D N	= <u></u>	0	0
	GWXNR	GWXNR S1S2DN	(S1) (S2) (D)		
	GWXNRP	- GWXNRP S1 S2 D N	= <u></u>	0	0

(12) 데이터 처리 명령

분 류	너 저리 명령 - 명 칭	심 벌	기 능	지원	여부
표 ㅠ	70			XGK	XGB
비트체크	BSUM	- BSUM S D	b15 b0 S		
	BSUMP	BSUMP S D	1 의 개수 □ D	0	0
	DBSUM	- DBSUM S D	b31 b15 b0 S S	0	0
	DBSUMP	DBSUMP S D	1 의 개수 □ D		
비트 리셋	BRST	BRST D N	D 로 지정한 비트부터 N 개의 비트를	0	0
	BRSTP	BRSTP D N	0으로 지움.	0	0
ENCODE	ENCO	-ENCO SDn	S □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0	0
LINGODE	ENCOP	ENCOP S D n	2 ^N 개의 비트 2진수))
DECODE	DECO	— DECO SDn	s D	0	0
DEGODE	DECOP	— DECOP S D n	N비트 2진수 2 ^N 개의 비트))
	DIS	— DIS SDn	→ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0	0
데이터 분리와	DISP	- DISP SDn	S : D+N−1)	
연결	UNI	-UNI SDn	D	0	0
	UNIP	-UNIP SDn	D+N-1))
	WTOB	-WTOB SDn	S 상위 하위 h00 하위 D h00 상위 D+1	0	0
워드/ 바이트	WTOBP	-WTOBP S D n	S+N-1 상위 하위 h00 하위 h00 상위	0	
변환	BTOW	BTOW SDn	D h00 하위 상위 하위 S D+1 h00 상위 :	0	0
	BTOWP	BTOWP S D n	h00 하위 상위 하위 S+N-1)	<u> </u>
1/0	IORF	[IORF S1 S2 S3	S1 으로 지정된 위치의 I/O 데이터를 S2, S3 데이터와 마스크한뒤 즉시	0	0
리프레쉬	IORFP		처리한다.)	
	SCH	SCH S1S2 D N			
데이터	SCHP	SCHP S1S2 D N	S1 의 값을 S2 부터 N 개까지의 범위 내에서 찾아서 D 에는 첫번째 같은	0	0
검색	DSCH	DSCH S1S2 D N	값이 나온 위치를 , D+1 에는 S1 과 같은 값의 총 개수를 저장합니다.		
	DSCHP	DSCHP S1S2 D N			
	MAX	- MAX SDn	S 부터 n 개의 워드 중 최대값을 D 에		
최대값	MAXP	- MAXP SDn	저장한다.	0	0
검색	DMAX	— DMAX SDn	S 부터 n 개의 더블워드 중 최대값을		
	DMAXP	- DMAXP SDn	D에 저장한다.		

				지원 여부	
분 류	명 칭	심 벌	기 능	XGK	XGB
최소값	MIN	- MIN SDn	S 부터 n 개의 워드 중 최소값을 D		0
	MINP	MINP SDn	에 저장한다.	0	
검색	DMIN	- DMIN SDn	S 부터 n 개의 더블워드 중 최소값	0	
	DMINP	- DMINP SDn	을 D에 저장한다.		
	SUM	—SUM SDn	S 부터 n 개의 워드 총합을 구하여		
합계	SUMP	-SUMP SDn	D에 저장한다.		0
구하기	DSUM	— DSUM SDn	S 부터 n 개의 더블워드 총합을 구	0	O
	DSUMP	- DSUMP S D n	하여 D에 저장한다.		
	AVE		S 부터 n 개의 워드 평균값을 구하		
평균	AVEP		여 D에 저장한다.	0	0
구하기	DAVE	— DAVE SDn	S 부터 n 개의 더블워드 평균값을		
	DAVEP	— DAVEP SDn	구하여 D에 저장한다.		
	MUX	MUX S1 S2 D N	S2 S1 번째데이터 나 주 		
MUX	MUXP	- MUXP S1S2 D N	N D	0	0
IVIOA	DMUX	- DMUX S1S2 D N	S2+1 S2 S1 번째데이터 D+1 D		
	DMUXP	- DMUXP S1S2 D N			
데이터	DETECT	- DETECT S1S2 D N	S1 부터 N 개의 데이터를 감시하여 S2 보다 큰 최초 값을 D 에, 초과 횟수를 D+1 에 저장한다	0	0
감시	DETECTP	DETECTP S1 S2 D N)	
경사신호 출력	RAMP	RAMP n1 n2 D1 n3 D2	초기값 n1 부터 최종값 n2 까지 n3 스캔 동안 선형으로 변하는 값을 D1 에 저장하고 D1+1 에는 현재의 스캔 횟수를 표시, 완료 후에는 D2의 값을 ON으로 바꾼다.	0	0
데이터	SORT	- SORT S n1 n2 D1 D2	S : 소트데이터 선두 번지 n1 : 소트할 워드 개수 n1+1 : 소트방법	0	0
정렬	SORTP	SORTP S n1 n2 D1 D2	n2 : 스캔당 연산횟수 D1 : 수행완료 시 ON D2 : 보조영역		

(13) 데이터 테이블 처리 명령

분 류	며 치	명 칭 심 벌 기 능	지원 여부		
군 규	0 0		기 등	XGK	XGB
데이터	FIWR	-FIWR S D	S 를 데이터 테이블 D ~ D+N 의 마 지막에 추가하고 D 에 저장된 데이	0	\circ
쓰기	FIWRP	-FIWRP S D	터 테이블의 길이(N)를 1 증가시킨 다.)
선입	FIFRD	-FIFRD SD	데이터 데이블 S ~ S+N 의 첫 번째 데이터인 S+1 을 D 로 옮기고 (원본 삭제 후 1 자리씩 당김) S 에 저장	0	0
데이터 읽기	FIFRDP	-FIFRDP SD	작세 우 1 사다씩 당감) 5 에 서장 된 데이터 테이블의 길이(N)를 1 감소시킨다.		
후입 데이터 읽기	FILRD	-FILRD SD	데이터 테이블 S ~ S+N 의 마지막 데이터인 S+N 을 D 로 옮기고 (원본 삭제) S 에 저장된 데이터 테이블의 길이(N)를 1 감소시킨다.	0	0
	FILRDP	-FILRDP SD-))
데이터	FIINS	FINS SDn	S 를 데이터 테이블 D ~ D+N 의 n 번 째 자리에 추가(기존 데이터는 1 자		
삽입	FIINSP	-FINSP SDn	리씩 밀림)하고 D 에 저장된 데이터 테이블의 길이(N)를 1 증가시킨다.	0	0
데이터 가져오기	FIDEL	FDEL S D n	데이터 테이블 S ~ S+N 의 n 번째 데이터를 삭제 후(1 자리씩 당김) S	C	0
	FIDELP	-FDELP SDn	에 저장된 데이터 테이블의 길이 (N)를 1 감소시킨다.		

(14) 표시 명령

분 류	명 칭	칭 심벌	기 능	지원 여부	
				XGK	XGB
7 Segment 丑시	SEG	- SEG SDZ	S 로 지정된 데이터를 Z 의 포멧에)	
	SEGP	-SEGP SDZ	맞추어 7-Segment 로 변환하여 D 에 저장한다.	O	

(15) 문자열 처리 명령

분 류	명 칭	심 벌	기 능	지원	여부
Δ π	0 0	0 2	71 0	XGK	XGB
10 진 아스키	BINDA	- BINDA S D	S 로 지정된 1 워드 BIN 값을 10 진		
	BINDAP	BINDAP S D	아스키코드로 변환하여 D 부터 저장	0	0
코드값으 로 변환	DBINDA	- DBINDA S D	S 로 지정된 2 워드 BIN 값을 10 진		
	DBINDAP	- DBINDAP S D	아스키코드로 변환하여 D 부터 저장		
	BINHA	-BINHA S D	S 로 지정된 1 워드 BIN 값을 16 진		
16 진 아스키	BINHAP	BINHAP S D	아스키코드로 변환하여 D 부터 저장	0	0
코드값으 로 변환	DBINHA	- DBINHA S D	S 로 지정된 2 워드 BIN 값을 16 진		O
	DBINHAP	- DBINHAP S D	아스키코드로 변환하여 D 부터 저장		
BCD 값을	BCDDA	BCDDA S D	S 로 지정된 1 워드 BCD 값을 아스키		0
10 진 아스키	BCDDAP	- BCDDAP S D	코드로 변환하여 D 부터 저장	0	
코드값으로 변환	DBCDDA	- DBCDDA S D	S 로 지정된 2 워드 BCD 값을 아스키		
노 인완	DBCDDAP	- DBCDDAF S D	코드로 변환하여 D 부터 저장		
	DABIN	— DABIN S D	S+2,S+1,S 의 10 진 아스키코드값을	- 0	
10 진아스 키값을	DABINP	- DABINP S D	BIN 값으로 변환하여 D 에 저장		0
BIN 값으로 변환	DDABIN	DDABIN S D	S+5~S 까지의 10 진 아스키 코드값 을 BIN 값으로 변환하여 D+1, D 에		
	DDABINP	DDABINP S D	저장		
	HABIN	HABIN S D	S+1,S 의 16 진 아스키 코드값을		0
16 진아스 키값을	HABINP	HABINP S D	BIN 값으로 변환하여 D에 저장	0	
BIN 값으로 변환	DHABIN	— DHABIN S D	S+3~S 까지의 16 진 아스키 코드값	O	
	DHABINP	- DHABINP S D	을 BIN 값으로 변환하여 D 에 저장		
	DABCD	— DABCD S D	S+1,S 의 10 진 아스키 코드값을		
10 진아스 키값을 BCD 값으로 변환	DABCDP	- DABCDP S D	BCD 값으로 변환하여 D 에 저장	0	0
	DDABCD	DDABCD S D	S+3~S 까지의 10 진 아스키 코드값 을 BCD 값으로 변환하여 D 에 저장		
	DDABCDP	DDABCDF S D	E 500 W T T C C O O O O O N O		
문자열	LEN	LEN S D	S 로 시작하는 문자열의 길이를 D	0	0
길이 검출	LENP	LENP S D	에 저장	O	

				지원	계속) 여부
분 류	명 칭	심 벌	기 능	XGK	XGB
	STR	- STR S1 S2 D	S2 에 저장된 워드 데이터를 S1 에		
BIN16/32 을 문자열 로 변환	STRP	STRP S1S2 D	로 변환하여 D 에 저장한다.		
	DSTR	OSTR S1S2D	S2 에 저장된 더블워드 데이터를 S1	O	0
	DSTRP	DSTRP S1S2 D	에 들어있는 자칫구에 맞두어 문자 열로 변환하여 D 에 저장한다.		
	VAL		S 에 들어있는 문자를 숫자로 변환		
문자열을	VALP	-VALP S D1 D2	D2 에 저장한다.		
BIN16/32 로 변환	DVAL	— DVAL S D1 D2	S 에 들어있는 문자를 숫자로 변환	O	0
	DVALP	— DVALP S D1 D2	수는 D2 에 저장한다.		
	RSTR	-RSTR S1S2D	부동소수점형 실수 데이터(S1:숫		
실수를 문자열로	RSTRP	RSTRP S1S2 D	사, S2·사닷구)들 군사일 저성 영 식에 맞추어 D에 저장한다.		V
군사일도 변환	LSTR	-LSTR S1 S2 D	부동소수점형 Long 실수 데이터	O	Х
	LSTRP	LSTRP S1 S2 D	장 형식에 맞추어 D에 저장한다.		
	STRR	-STRR S D	문자열 S 를 부동소숫점형 실수 데	- 0	
문자열을 실수로	STRRP	-STRRP S D	이터로 변환하여 D에 저장한다.		Х
변환	STRL	-STRL S D	문자열 S 를 부동소숫점형 Long 실		^
	STRLP	-STRLP S D	다.		
아스키변환	ASC	— ASC S D cw	S 부터 cw 의 포멧에 따라 BIN 데이 터르니브 다의로 ASCLL 변화하여		0
어뜨기진진	ASCP	— ASCP S D cw	바이트 단위로 D에 저장한다.)	
	HEX	HEX SDN	S 부터 N 개의 워드에 저장된 바이 트 단위의 2N 개의 ASCII 값을 니블		
HEX 변환	HEXP	HEXP S D N	단위의 16 진 BIN 으로 변환하여 D 에 저장한다.)	0
오른쪽부터	RIGHT	-RIGHT SDN	S 로 지정된 문자열의 최종 문자에	0	0
문자열추출	RIGHTP	- RIGHTP S D N	저 이 개의 문자들 무물이어 이 무디 저장))
왼쪽부터	LEFT	LEFT SDN	S 로 지정된 문자열의 선두 문자에 서 n 개의 무자를 츠촕하여 D 부터	\cap	\cap
문자열추출	LEFTP	LEFTP S D N	저 내 게 그 문자를 무돌하여 한 무디 저장		0
문자열임의	MID	- MID S1 S2 D	S1 으로 지정된 문자열 중 S2 조건 에 맞는 무자를 츠축하여 D 부터 저	\bigcirc	0
추출	MIDP	MIDP S1 S2 D	□))

분 류	명 칭	심 벌	71 -	지원	여부
군 규	70 70		٦ ا ا	XGK	XGB
문자열임의	REPLACE	REPLACE S1 D S2	D 로 지징된 문자열에 S1 문자열을	0	0
치환	REPLACEP	REPLACEP S1 D S2	S2 조건에 맞게 처리하여 저장 S1 부터 N 개의 데이터에서 S2 와 같은 문자열을 찾아 그 절대위치를 D에 저장 부동소수점 실수 데이터 S1을 자리수 S2 에 맞추어 BCD 로 변환후 D에 저장한다. 부동소수점 Long 실수 데이터 S1을 자리수 S2 에 맞추어 BCD 로 변환후 D에 저장한다. BCD 데이터 S1을 자리수 S2에 맞게 부동소수점형 실수로 변환하여 D에 저장한다.)	O
		\supset	\circ		
군사일음식	FINDP			0	O
	RBCD	RBCD S1S2D	수 S2 에 맞추어 BCD 로 변환 후 D		
실수를 BCD	RBCDP	-RBCDP S1S2D		0	Х
로 분해	LBCD	LBCD S1 S2 D -	=	0	٨
	LBCDP	- LBCDP S1 S2 D			
	BCDR	BCDR S1S2D			
BCD 데이터 를 실수로	BCDRP	BCDRP S1S2D		0	Х
글 걸구도 변환	BCDL	BCDR S1S2D	BCD 데이터 S1 을 자리수 S2 에 맞 게 부동소수점형 Long 실수로 변환		۸
	BCDLP	BCDRP S1S2D	게 구동소구점형 Long 철무도 단환 하여 D 에 저장한다.		

(16) 특수함수 명령

분류	명 칭	심 벌	기 능	지원	여부
근 규	70 70	6 2	Л 6	XGK	XGB
SIN 연산	SIN		SIN(S+1,S) (D+1,D)	0	0
	STIVI	3114F 3 0			
COS 연산	COS	— cos s d	COS(S+1,S) (D+1,D)	0	0
	COSP	COSP S D			-
TAN 연산	TAN	— TAN SDH	TAN(S+1,S) (D+1,D)		0
17111 = =	TANP	TANP SD	(-1,0)	0)
SIN ⁻¹ 연산	ASIN	-ASIN SD	SIN ⁻¹ (S+1,S)(D+1,D)		0
SIN EM	ASINP	-ASINP S D	(0.1,0))
COS ⁻¹ 연산	ACOS	—ACOS SD	COS ⁻¹ (S+1,S) (D+1,D)		0
003 원센	ACOSP	- ACOSP S D		0 0	0
TAN ⁻¹ 연산	ATAN	—ATAN SD	TAN ⁻¹ (S+1,S) (D+1,D)		0
TAN 원센	ATANP	-ATANP SD		0 0	
RAD 변환	RAD	-RAD SD-	(S+1,S) (D+1,D) 각도를 레디안값으로 변환		0
NAU 인권	RADP	-RADP SD	그보고 테더만하므로 만만		0
가드버링	DEG	— DEG SD	(S+1,S) (D+1,D) 레디안값을 각도로 변환		
각도변환	DEGP	— DEGP S D	에어딘따른 그노노 단단		0
제곱근	SQRT	-SQR SD	$\sqrt{(S+1,S)} \longrightarrow (D+1,D)$		
연산	SQRTP	-SQRP SD	\-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\ \\ \-\ \\ \		0

(17) 데이터 제어명령

분 류	명칭	심 벌	기 능	지원	여부
ᆫ ㅠ	70 70	~ Z	л б	XGK	XGB
	LIMIT	LIMIT S1S2S3D	If S1 < S2, then		
Limit	LIMITP	- LIMITP S1S2S3D	D = S2 If S2 < S1 < S3, then	\circ	0
제어	DLIMIT	— DLIMIT S1S2S3D	D = S1 If S3 < S1, then D = S3))
	DLIMITP	— DLIMITP S1S2S3 D	D = 33		
	DZONE	DZONE S1 S2 S3 D	If S1 < -S2, then		
Dead-zone	DZONEP	-DZONEP S1 S2 S3 D	D = S1+S2-S2(S3/100) If - S2 < S1 < S2, then	XGK O X X	0
제어	DDZONE	-DDZONE S1 S2 S3 D	D = (S3/100)S1 If S1 < S2, then	0	0
	DDZONEP	DDZONEP S1 S2 S3 D	D = S1-S2+S2(S3/100)	XGK O X X	
	VZONE	-VZONE S1 S2 S3 D	If S1 < -S2(S3/100), then		
Vertical-	VZONEP	VZONEP S1 S2 S3 D	D = S1-S2+S2(S3/100) If - S2(S3/100) <s1< 100),<="" s2(s3="" td=""><td></td><td></td></s1<>		
zone 제어	DVZONE	DVZONE S1 S2 S3 D	then D = (100/S3)S1 If S1 < S2(S3/100), then		0
	DVZONEP	— DVZONEP S1 S2 S3 D	D = S1+S2-S2(S3/100)		
	PIDRUN	PIDRUN N	PID 루프 N을 동작시킨다.	0	0
	PIDPAUSE	PIDPAUSE N	PID 루프 N의 동작을 일시정지 한다.	0	X
PID 관련	PIDPRMT	PIDPRMT S N	PID 루프 N의 파라미터를 변경 한다. (SV(word) / Ts(word) / Kp(real) / Ti(real) / Td(real))	0	X
	PIDAT	— PIDRUN N	PID 루프 자동동조 시작.	Χ	0
	PIDCAS	PIDPRMT S N	PID 루프 캐스케이드 운전 시작	O O X X	0
	PIDHBD	- PIDPRMT S N	PID루프 혼합운전 시작.	Χ	0

(18) 시간관련 명령

분 류	명 칭	심 벌	기 능	지원	여부
<u>υ</u> π	0	o 2	71 0	XGK	XGB
날짜시간 데이터	DATERD	— DATERD D	PLC의 시간을 읽어 D ~ D+6 에 저장		Χ
읽기	DATERDP	— DATERDP D	시년 (년/월/일/시/분/초/요일))	^
날짜시간 데이터	DATEWR	DATEWR S	S ~ S+6의 시간 데이터를 PLC에 입력)	Χ
쓰기	DATEWRP	- DATEWRES	급덕 (년/월/일/시/분/초/요일)	0	^
시간 데이터	ADDCLK	- ADDCLK S1S2 D	S1 ~ S1+2 와 S2 ~ S2+2 의 시간 데이터를 합하여 D ~ D+2 에 시간	0	Х
가산	ADDCLKP	ADDCLKFS1S2D	데이터 형식으로 저장한다. (시/분/초)		^
시간 데이터	SUBCLK	SUBCLK S1S2 D	S1 ~ S1+2 에서 S2 ~ S2+2 의 시간 데이터를 빼서 D ~ D+2에 시간)	Χ
감산	SUBCLKP	SUBCLKPS1S2D	데이터 형식으로 저장한다. (시/분/초))	٨
	SECOND	- SECOND S D	시간 데이터 S ~ S+2 를 초로 환산	0	Х
시간 데이터	SECONDP	SECONDP S D	하여 더블워드 D에 저장)	۸
포멧변환	HOUR	HOUR SD	더블워드 S 에 저장된 초를 시/분/		Χ
	HOURP	HOURP SD	초로 환산하여 D ~ D+2 에 저장		۸

(19) 분기명령

분 류	명 칭	심 벌	기 능	지원	여부
근 ㅠ	0,0	ם	٦ ٥	XGK	XGB
분기명령	JMP	JMP LABEL	LABEL 위치로 점프.	0	0
단기00	LABEL LABEL → ()→ ()→ ()→ ()→ ()→ ()→ ()→ (
	CALL	CALL LABEL	IADEL 에 헤다하느 하스 증초		0
서브루틴	CALLP	CALLP LABEL	LADEL 에 예정하는 참구 오늘.	\circ	
콜함수	SBRT	SBRT LABEL	CALL 에 의해 호출될 함수 지정.	-	
	RET	RET	RETURN		

(20) 루프 명령

분 류 명 칭	명 칭	심 벌	기 능	지원	여부
근 ㅠ	0	מ	Л O	XGK	XGB
	FOR	FOR N	FOR~NEXT 구간을 n 번 실행		0
루프명령	NEXT	NEXT -	FUNTNEXT 구선들 II 한 물병	0	O
	BREAK	BREAK	FOR~NEXT 구간을 빠져 나옴	0	0

(21) 플래그 제어 명령

분 류 명 경	명 칭	칭 심벌	기 능	지원 여부	
<u> </u>	0	บ	7 0	XGK	XGB
캐리 플래그	STC	—stc	캐리 플래그(F0112) SET))
들대그 Set,Reset	CLC	—clc	캐리 플래그(F0112) RESET	O	O
에러플래 그 클리어	CLE	—CLE	에러 래치 플래그(F0115) RESET	0	0

(22) 시스템 명령

шл	머린	AL HH	71 -	지원 여부	
분 류	명 칭	심 벌	기 능	XGK	XGB
고장표시	FALS	— FALS n	자기진단 (고장표시)	0	0
스캔클럭	DUTY	— DUTY D n1 n2	n1 스캔동안 On, n2 스캔동안 Off	0	0
시간클럭	TFLK		S1으로 설정된 시간동안 On, S2 로 설정된 시간동안 Off	0	0
WDT	WDT	— WDT	Watch Dog Timer Clear	0	0
초기화	WDTP	— WDTP	water bog filler creat)	O
출력제어	OUTOFF	OUTOFF	전출력 Off	0	0
운전정지	STOP	— STOP	해당 스캔을 끝내고 PLC 운전을 종료	0	0
비상운전 정지	EST0P	— ESTOP	명령어 수행 즉시 PLC 운전을 종료	0	0

(23) 인터럽트 관련 명령

ᄪᆯ	분 류 명 칭 심 벌	기 능	지원 여부		
도 ㅠ			7 0	XGK	XGB
전채널	EI	—EI —	전채널 인터럽트 허가		\circ
인터럽트 설정	DI		전채널 인터럽트 금지	O	
채널별 인터럽트	EIN	— EIN N	채널별 인터럽트 허가	0	0
설정	DIN	— DIN N	채널별 인터럽트 금지		

(24) 부호반전 명령

분 류	명 칭	칭 심벌	기 능	지원 여부	
ᆫ ㅠ	70 70	őz	Л б	XGK	XGB
	NEG	NEG D	D 의 값을 2 의 보수를 취해 다시 D		
	NEGP	NEGP D	에 저장	0	0
2의 모두	DNEG	- DNEG D	(D+1,D)의 값을 2 의 보수를 취해	O	O
	DNEGP	- DNEGP D	다시 (D+1,D)에 저장		
	RNEG	-RNEG D	D 로 지정된 단장형 실수의 부호를		
실수 데이	RNEGP	-RNEGP D	반전하여 다시 저장	\circ	0
반전	LNEGR	LNEG D	D 로 지정된 배장형 실수의 부호를	0	0
	LNEGP	LNEGP D	반전하여 다시 저장		
	ABS	-ABS D	D 로 지정된 최상위 비트를 O 으로		
절대값	ABSP	ABSP D	변환	0	0
연산	DABS	— DABS D	(D+1,D)로 지정된 최상위 비트를 0		
2 의 보수 DNEG DNEGP DNEGP DNEGP RNEG RNEGP HD EN H 부호 반전 LNEGR LNEGR LNEGP LNEGR ABS ABS ABSP DABS DABS DABS DABS	— DABSP D	으로 변환			

(25) 파일 관련 명령

분 류	명 칭	심 벌	기 능	지원	여부
L //	0 0		, 1	XGK	XGB
블록 전환	RSET	-RSET S	파일 레지스터의 블록 번호를 S 로	0	X
	RSETP	RSETP S	지정된 번호로 변경한다.	0	^
플래쉬 워드 데이	EMOV	EMOV S1 S2 D	S1 으로 지정한 블록내의 S2 의 워		
터 전송	EMOVP	EMOVP S1 S2 D	드 데이터를 D로 전송	0	Χ
플래쉬 더블 워드	EDMOV	EDMOV S1 S2 D	1 으로 지정한 블록내의 S2+1, S2 의 데블 워드 데이터를 D+1, D 로	O	^
데이터 전송	EDMOVP	EDMOVP S1 S2 D	전송		
블록 읽기	EBREAD	EBREAD S1S2	플래쉬 메모리 블록 읽기	0	X
블록 쓰기	EBWRITE	— EBWRITE S1 S2	플래쉬 메모리 블록 쓰기	0	X
블록 비교	EBCMP	EBCMP S1 S2 D1 D2	R 영역의 뱅크와 플래시 영역의 블록 비교	0	Χ

부록 4.4 특수/통신 명령

(1) 통신모듈 관련 명령

분 류	며 치	명 칭 심 벌	기 능	지원 여부	
Δ π	0 0	บ	71 0	XGK	XGB
국번 설정	P2PSN	P2PSN n1 n2 n3	P2P 통신시 상대방의 국번을 지정 n1:P2P 번호, n2:블록, n3:국번	0	Χ
읽기영역 지정 (WORD)	P2PWRD		워드데이터 읽기 영역 지정 n1:P2P 번호, n2:블록, n3:변수 순서,n4:변수 크기, n5:디바이스	0	Х
쓰기영역 지정 (WORD)	P2PWWR		워드데이터 쓰기 영역 지정 n1:P2P 번호, n2:블록, n3:변수 순서,n4:변수 크기, n5:디바이스	0	Х
읽기영역 지정(BIT)	P2PBR0		비트데이터 읽기 영역 지정 n1:P2P 번호, n2:블록, n3:변수 순서,n4:변수 크기, n5:디바이스	0	Х
쓰기영역 지정(BIT)	P2PBWR		비트데이터 쓰기 영역 지정 n1:P2P 번호, n2:블록, n3:변수 순서,n4:변수 크기, n5:디바이스	0	Х

(2) 특수모듈 공용 명령

분 류	명 칭	심 벌	기 능	지원 여부	
근 규	70 70		7 0	XGK	XGB
특수모듈 읽기/쓰기	GET	GET SISDN	메모리가 장착된 특수 모듈의 데이	0	0
	GETP	GETP SISDN	터를 읽어온다.		
	PUT	PUT SI S1 S2 N	메모리가 장착된 특수 모듈에 데이	0	
	PUTP	PUTP SI S1 S2 N	터를 써 넣는다.		O

(3) 위치결정 전용 명령

(3) 위지결성 선용 (지원 여부	
분 류	명 칭	심 벌	기 능	XGK	XGB
원점복귀	ORG	ORG si ax	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 원점복귀지령을 내 린다.	0	0
부동원점	FLT	— FLT sl ax	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 부동원점설정 지령 을 내린다.	0	0
직접기동	DST	-DST sl ax n1 n2 n3 n4 n5	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 목표위치(n1), 목표 속도(n2), 드웰타임(n3), M 코드 (n4), 콘트롤워드(n5)을 이용한 직 접기동 지령을 내린다.	0	0
간접기동	IST	IST slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n step 을 기동하는 간접기동 지령을 내린다.	0	0
직선보간	LIN	— LIN sl ax n1 n2	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n2 축들이 n1 스텝을 직선보간 운전을 하도록 지령을 내 린다.	0	0
원호보간	CIN	— CIN sl ax n1 n2	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n2 축들이 n1 스텝을 원호보간 운전을 하도록 지령을 내 린다.	0	X
동시기동	SST	-SST sl ax n1 n2 n3 n4	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n4 축들이 n1(X), n2(Y), n3(Z) step 을 기동하는 동 시기동지령을 내린다.	0	0
속도/위치 제어전환	VTP		sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 속도/위치제어전환 지령을 내린다.	0	0
위치/속도 제어전환	PTV	—PTV sl ax	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 위치/속도제어전환 지령을 내린다.	0	0
감속정지	STP	STP SI ax	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 감속정지 지령을 내 린다.	0	0
스킵	SKP	SKP sl ax	sl slot 에 장착되어있는 위치결정 모듈의 ax 축에 스킵 지령을 내린 다.	0	Х
위치동기	SSP	—SSP sl ax n1 n2 n3	sl slot 에 장착되어있는 위치결정 모듈의 ax 축에 n3 축을 주축으로 하고, n1 을 동기위치로 하며, n2 step 을 운전하는 위치동지지령을 내린다.	0	0
속도동기	SSS	— SSS slax n1 n2 n3	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n3 축을 주축으로 하고, n1 을 주축비, n2 를 종축비 로 하는 속도동기 지령을 내린다.	0	0
위치 오버라이 드	POR	— POR slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 목표위치를 n 으로 변경하는 위치오버라이드 지령을 내린다.	0	(계속)

шэ	명 칭	AT HH	21. 6	지원 여부		
분 류		심 벌	기 능	XGK	XGB	
속도 오버라이 드	SOR	— SOR slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 목표속도를 n 으로 변경하는 속도오버라이드 지령을 내 린다.	0	0	
위지지정 속도 오버라이 드	PS0	— PSO slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n1 위치에서 목표속 도를 n2 로 변경하는 위치지정 속도 오버라이드 지령을 내린다.	0	0	
연속운전	NMV	NMV slax	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n step 으로의 연속 운전 지령을 내린다.	0	Х	
인칭	INCH	INCH slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n 위치만큼 이동시키 는 인칭 지령을 내린다.	0	0	
수동운전 이전위치 로 복귀	RTP	RTP sl ax	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 수동운전 이전 위치 로 복귀 지령을 내린다.	0	Χ	
기동스텝 번호변경	SNS	IST sl ax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 운전스텝을 n 스텝 으로 변경하는 운전스텝변경 지령을 내린다.	0	0	
반복운전 스텝변경	SRS	— SRS slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 반복운전스텝을 n 스텝으로 변경하는 반복운전스텝 변 경 지령을 내린다.	0	Х	
M 코드 오프	MOF	MOF sl ax	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 발생한 M 코드를 오 프한다.	0	0	
현재위치 변경	PRS	— PRS slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 현재위치를 n 으로 변경한다.	0	0	
Zone 허용	Z0E	— ZOE sl ax	sl slot 에 장착되어 있는 위치결정 모듈의 Zone 출력을 허용한다.	0	Х	
Zone 금지	ZOD	—ZOD sl ax	sl slot 에 장착되어 있는 위치결정 모듈의 Zone 출력을 금지한다.	0	Х	
엔코더값 변경	EPRS	— EPRS slax n	sl slot 에 장착되어 있는 위치결정 모듈의 엔코더값을 n 으로 변경한 다.	0	Х	
티칭	TEA	─[TEA sl ax n1 n2 n3 n4	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 n1 스텝의 목표위치 혹은 목표속도값을 변경한다.	0	Х	
티칭 어레이	TEAA	-TEAA SI ax n1 n2 n3 n4 -	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 다수의 목표위치 혹 은 목표속도값을 변경한다.	0	Х	
비상정지	EMG	EMG sl ax	sl slot 에 장착되어 있는 위치결정 모듈에 비상정지 지령을 내린다.	0	0	
					(계속)	

분 류	며치	명 칭 심 벌	71 ⊑	지원 여부	
군 뉴	당 성	삼별	기 능	XGK	XGB
에러리셋	CLR		sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 발생한 에러를 리셋 한다.	0	0
에러 히스토리 리셋	ECLR	— ECLR sl ax	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 발생한 에러 히스토 리를 지운다.	0	Х
포인트 운전	PST	PST slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축을 포인트운전 시킨다.	0	X
기본 파라 미터 티칭	TBP	—TBP sl ax n1 n2	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 기본파라미터 중 n2 항목을 n1의 값으로 변경한다.	0	X
확장 파라 미터 티칭	TEP	TEP sl ax n1 n2	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 확장파라미터 중 n2 항목을 n1의 값으로 변경한다.	0	Х
원점복귀 파라미터 티칭	THP	—THP sl ax n1 n2	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 원점복귀 파라미터 중 n2항목을 n1의 값으로 변경한다.	0	X
수동운전 파라미터 티칭	TMP	[TMP sl ax n1 n2	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 수동운전 파라미터 중 n2 항목을 n1의 값으로 변경한다.	0	X
입려신호 파라미터 티칭	TSP	—TSP slax n	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 입력신호 파라미터의 값을 n1에 설정된 값으로 변경한다.	0	X
공통 파라 미터 티칭	TCP	TCP sl ax n1 n2	sl slot 에 장착되어 있는 위치결정 모듈의 공통 파라미터 중 n2 항목을 n1의 값으로 변경한다.	0	X
파라미터 저장	WRT		sl slot 에 장착되어 있는 위치결정 모듈의 ax 축에 n 축의 현재 파라미터 를 Flash ROM 에 저장하도록 지령을 내린다.	0	0
현재상태 읽기	SRD	SRD SI ax D	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 현재상태를 읽어서 CPU의 D 영역에 저장한다.	0	X
포인트운전 스텝쓰기	PWR	PWR slax S n1	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 포인트 운전 스텝 영 역에 CPU 의 S 영역의 값을 n 개 쓴 다.	0	X
복수티칭 데이터 쓰기	TWR	—TWR slax S n1	sl slot 에 장착되어 있는 위치결정 모듈의 ax 축의 복수 티칭 데이터 영 역에 CPU 의 S 영역의 값을 n 개 쓴 다.	0	X

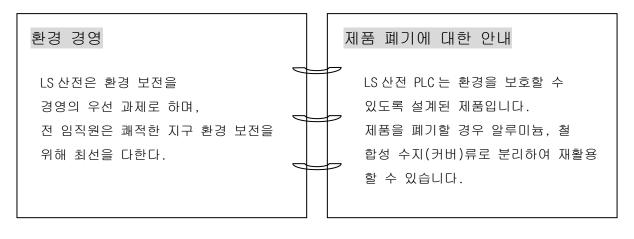
부록 5 KC 인증 취득 현황

구분	모델명	등록 번호
	XBM-DR16S	LSR-XBM-DR16S (A)
XGB 모듈러형	XBM-DN16S	LSR-XBM-DN16S (A)
기본유닛	XBM-DN32S	LSR-XBM-DN32S (A)
	XBM-DR16C3	LSR-XBM-DR16C3 (A)
	XBC-DR32H	LSR-XBC-DR32H (A)
	XBC-DR32H/DC	LSR-XBC-DR32H-DC (A)
	XBC-DR64H	LSR-XBC-DR64H (A)
	XBC-DR64H/DC	LSR-XBC-DR64H-DC (A)
XGB 콤팩트형 기본유닛	XBC-DN32H	KCC-REM-LSR-XBC-DN32H
12772	XBC-DN32H/DC	LSR-XBC-DN32H-DC (A)
	XBC-DN64H	LSR-XBC-DN64H (A)
	XBC-DN64H/DC	LSR-XBC-DN64H-DC
	XBC-DR32HL	LSR-XBC-DR32HL (A)
	XBE-DC08A	KCC-REM-LSR-XBE-DC08A
	XBE-DC16A	KCC-REM-LSR-XBE-DC16A
	XBE-DC16B	미취득
	XBE-DC32A	KCC-REM-LSR-XBE-DC32A
	XBE-TN08A	KCC-REM-LSR-XBE-TN08A
	XBE-TN16A	KCC-REM-LSR-XBE-TN16A
이초려 ㅁ드	XBE-TN32A	KCC-REM-LSR-XBE-TN32A
입출력 모듈	XBE-TP08A	KCC-REM-LSR-XBE-TP08A
	XBE-TP16A	KCC-REM-LSR-XBE-TP16A
	XBE-TP32A	KCC-REM-LSR-XBE-TP32A
	XBE-RY08A	KCC-REM-LSR-XBE-RY08A
	XBE-RY08B	KCC-REM-LSR-XBE-RY08B
	XBE-RY16A	KCC-REM-LSR-XBE-RY16A
	XBE-DR16A	KCC-REM-LSR-XBE-DR16A
옵션 모듈	XBO-M2MB	KCC-REM-LSR-XBO-M2MB

보증 내용

1.보증 기간

구입하신 제품의 보증 기간은 제조일로부터 18개월입니다.


2.보증 범위

위의 보증 기간 중에 발생한 고장에 대해서는 부분적인 교환 또는 수리를 받으실 수 있습니다. 다만, 아래에 해당하는 경우에는 그 보증 범위에서 제외하오니 양지하여 주시기 바랍니다.

- (1) 사용설명서에 명기된 이외의 부적당한 조건·환경·취급으로 발생한 경우
- (2) 고장의 원인이 당사의 제품 이외의 것으로 발생한 경우
- (3) 당사 및 당사가 정한 지정점 이외의 장소에서 개조 및 수리를 한 경우
- (4) 제품 본래의 사용 방법이 아닌 경우
- (5) 당사에서 출하 시 과학·기술의 수준에서는 예상이 불가능한 사유에 의한 경우
- (6) 기타 천재·화재 등 당사 측에 책임이 없는 경우
- 3.위의 보증은 PLC 단위체만의 보증을 의미하므로 시스템 구성이나 제품응용 시에는 안전성을 고려하여 사용하여 주십시오.

환경 방침

LS 산전은 다음과 같이 환경 방침을 준수하고 있습니다.

한번 맺은 인연을 가장 소중히 여깁니다!

품질과 더불어 고객 서비스를 최우선으로 여기는 LS 산전은 소비자를 위한 소비자에 의한 기업임을 굳게 다짐하며 고객 여러분의 만족을 위해 최선을 다하겠습니다.

www.lsis.com

LS산전주식회사

10310000693

FAX: (041)550-8600

FAX: (031)479-4784

FAX: (051)319-1052

FAX: (051)319-4938

■ 본사:	경기도	안양시	동안구	엘에스로	127 LS타워
■ 구입	문의				

TEL:(02)2034-4620~34 FAX:(02)2034-4622 서욱영언 TEL:(051)310-6855~60 부산영업 FAX:(051)310-6851 FAX:(053)603-7788 대구영업 TFI:(053)603-7741~7 서부영업(광주) TEL:(062)510-1885~91 FAX:(062)526-3262 서부영업(대전) TEL:(042)820-4240~42 FAX:(042)820-4298 서부영업(전주) TEL:(063)271-4012 FAX:(063)271-2613 ■ A/S 문의 고객지원팀 TEL:(031)689-7112 FAX:(031)689-7113 천안고객지원 TEL:(041)550-8308~9 FAX:(041)554-3949 -부산고객지원 TEL:(051)310-6922~3 FAX:(051)310-6851 대구고객지원 TEL:(053)603-7751~4 FAX:(053)603-7788 TEL:(053)383-2083 ■ 교육 문의

서비스 신고요령 LS산전의 PLC를 사용 중 이상이 생겼거나 의문이 있으면 서비스 대표 전화로 연락 하십시오.

TEL:(043)268-2631~2

TEL:(031)689-7101

TEL:(051)310-6860

TEL:(053)603-7744

서비스 대표전화 (전국 어디서나)1544-2080

■ 기술 문의 고객상담센터 동현 산전(안양) 신광 ENG(부산) 에이엔디시스템(부산) LS-WILL(구미) 네오엔시스(천안) 네오엔시스(대전) ■ 서비스 지정점 명 산전(서울)

TPI시스템(서울) 우진 산전(의정부) 신진시스템(안산) 성원M&S(인천) 디에스산전(청주) 파란자동화(천안) 태영시스템(대전) 서진 산전 (울산) 동남 산전 (창원) 대명시스템(대구) 정석시스템(광주)

코리아산전(익산)

지이티시스템(구미)

에프에이솔루션(원주)

TEL: 1544-2080 TEL: (031)479-4785~6 TEL: (051)319-1051 TEL: (051)319-4939 TEL: (054)454-7909 TEL: (041)570-6646~7 TEL: (042)934-4330~2 TEL: (02)462-3053 TEL: (02)895-4803~4 TEL: (031)877-8273 TEL: (031)508-9606

TEL: (053)564-4370

TEL: (062)526-4151

TEL: (063)835-2411

TEL: (054) 465-2304

TEL: (033)748-8156

FAX: (054)473-3909 FAX: (041)570-6648 FAX: (042)934-4333 FAX: (02)462-3054 FAX: (02)6264-3545 FAX: (031)878-8279 TEL: (032)588-3750 TEL: (043)237-4816 TEL: (041)579-8308 TEL: (042)670-7363 TEL: (052)227-0335 TEL: (055)265-0371

FAX: (031)508-9608 FAX: (032)588-3751 FAX: (043)237-4817 FAX: (041)579-8309 FAX: (042)670-7364 FAX: (052)227-0337 FAX: (055)265-0373 FAX: (053)564-4371

FAX: (062)526-4152 FAX: (063)831-1411 FAX: (054)465-2315 FAX: (033)748-8158

● 본 설명서에 기재된 제품은 예고 없이 단종이나 제품에 변동이 있을 수 있으므로 구입시 반드시 확인 바랍니다.

● 제품 사용 중 이상이 생겼거나 불편한 점은 LS산전으로 문의 바랍니다.

© LSIS Co., Ltd 2009

LS산전연수원

부산교육장

대구교육장

서울/경기교육장

All Rights Reserved.

FAX:(043)268-4384

FAX:(031)689-7113

FAX:(051)310-6851

FAX:(053)603-7788